Communications in Mathematics and Applications

Volume 1, Number 3 (2010), pp. 133–138 © RGN Publications

A Note on Factors for Absolute Norlund Summability

W.T. Sulaiman

Abstract. Improvement and generalization for two known results concerning summability factors for absolute Norlund summability of infinite series is presented.

1. Introduction

Let $\sum a_n$ be a given infinite series with the sequence of partial sums (s_n) and let $r_n=na_n$. By u_n^α and t_n^α we denote n-th Cesaro means of order $\alpha>-1$ of the sequences (s_n) and (r_n) respectively. These are

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} s_{\nu} , \qquad (1.1)$$

$$t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} \nu a_{\nu}, \qquad (1.2)$$

where

$$A_n^{\alpha} = O(n^{\alpha}), \quad \alpha > -1, A_0^{\alpha} = 1, A_{-n}^{\alpha} = 0.$$

The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \ge 1$, if (see [5], [7])

$$\sum_{n=1}^{\infty} n^{k-1} |\Delta u_{n-1}^{\alpha}|^k = \sum_{n=1}^{\infty} \frac{1}{n} |t_n^{\alpha}|^k < \infty,$$
(1.3)

where $\Delta u_n = u_n - u_{n+1}$. $|C, \alpha|_k$ summability reduces to $|C, 1|_k$ summability on taking $\alpha = 1$. The series $\sum a_n$ is said to be summable $\varphi - |C, \alpha|_k$, $k \ge 1$, if (see [10])

$$\sum_{n=1}^{\infty} \frac{\varphi_n^{k-1}}{n^k} |t_n^{\alpha}|^k < \infty. \tag{1.4}$$

 $\varphi-|C,\alpha|_k$ summability reduces to $|C,\alpha|_k$ summability by taking $\varphi=n$.

²⁰⁰⁰ Mathematics Subject Classification. 40D15; 40F05; 40G05; 40G99.

134 W.T. Sulaiman

Let (p_n) be a sequence of constants, real or complex, and we write

$$P_n = p_0 + p_1 + \ldots + p_n \to \infty$$
 as $n \to \infty$, $n \ge 0$.

The series $\sum a_n$ is said to be summable $|N, p_n|_k$, $k \ge 1$, if (see[8])

$$\sum_{n=1}^{\infty} n^{k-1} |\Delta \sigma_{n-1}|^k < \infty \tag{1.5}$$

where

$$\sigma_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu} \,. \tag{1.6}$$

In the special case when

$$p_n = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)\Gamma(n+1)}, \quad \alpha \ge 0,$$

 $|N,p_n|_k$ summability reduces to $|C,\alpha|_k$ summability. The series $\sum a_n$ is said to be summable $\varphi-|N,p_n|_k, k\geq 1$, if

$$\sum_{n=1}^{\infty} \frac{\varphi_n^{k-1}}{n^k} |\Delta \sigma_{n-1}|^k < \infty. \tag{1.7}$$

In the special case when $\varphi=n,\ \varphi-|N,p_n|_k$ summability reduces to $|N,p_n|_k$ summability.

2. Known Results

Theorem 2.1 ([6]). Let (p_n) be a non-increasing sequences. If $\sum a_n$ is summable $|C,1|_k$, then the series $\sum a_n P_n (n+1)^{-1}$ is summable $|N,p_n|_k$, $k \ge 1$.

Theorem 2.2 ([11]). Let (φ_n) be a sequence of positive real numbers with (λ_n) satisfying the following

$$\sum_{\nu=1}^{m} \frac{\varphi_{\nu}^{k-1}}{\nu^{k}} |t_{\nu}|^{k} = O(\log m) \text{ as } m \to \infty,$$
 (2.1)

$$\sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^{k+1}} = O\left(\frac{\varphi_{\nu}^{k-1}}{\nu^k}\right),\tag{2.2}$$

$$\lambda_m = o(1)$$
 as $m \to \infty$, (2.3)

$$\sum_{n=1}^{m} n \log n |\Delta^2 \lambda_n| = O(1), \tag{2.4}$$

then the series $\sum a_n \lambda_n$ is summable $\varphi - |C, 1|_k$, $k \ge 1$.

Theorem 2.3 ([2]). Let (p_n) be a non-increasing sequence such that $p_0 > 0$, $p_n \ge 0$, and let (X_n) be a positive non-decreasing sequence satisfying

$$|\lambda_n|X_n = O(1)$$
 as $n \to \infty$ (2.5)

$$\sum_{n=1}^{\infty} n|\Delta^2 \lambda_n|X_n < \infty. \tag{2.6}$$

If the sequence (w_n^{α}) defined by

$$w_n^{\alpha} = \begin{cases} |t_n^{\alpha}|, \alpha = 1\\ \max_{1 \le \nu \le n} |t_n^{\alpha}|, \quad 0 < \alpha < 1 \end{cases}$$
 (2.7)

satisfies the condition

$$\sum_{n=1}^{m} n^{-1} (w_n^{\alpha})^k = O(X_m) \quad as \quad m \to \infty,$$
 (2.8)

then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|_k$, $k \ge 1$, $0 < \alpha \le 1$.

3. Lemmas

The following Lemmas are needed for our aim

Lemma 3.1 ([4]). *If* $0 < \alpha \le 1$ *and* $1 \le v \le n$, *then*

$$\left| \sum_{\rho=0}^{\nu} A_{n-\rho}^{\alpha-1} a_{\rho} \right| \le \max_{1 \le m \le \nu} \left| \sum_{\rho=0}^{\nu} A_{m-\rho}^{\alpha-1} a_{\rho} \right| \tag{3.1}$$

Lemma 3.2 ([1]). Under the conditions on (X_n) and (λ_n) as taken in the statement of Theorem 3, the following conditions holds

$$nX_n|\Delta\lambda_n| = O(1) \text{ as } n \to \infty$$
 (3.2)

$$\sum_{n=1}^{\infty} |\Delta \lambda_n| X_n < \infty. \tag{3.3}$$

Lemma 3.3 ([9]). If $-1 < \alpha \le \beta$, k > 1 and the series $\sum a_n$ is summable $|C, \alpha|_k$, then it is summable $|C, \beta|_k$.

Lemma 3.4. The condition (4.1) is weaker than

$$\sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k} (w_n^{\alpha})^k = O(X_m). \tag{3.4}$$

Proof. If (3.4) holds, then we have

$$\sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k X_n^{k-1}} (w_n^{\alpha})^k = O\left(\frac{1}{X_1^{k-1}}\right) \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k} (w_n^{\alpha})^k = O(X_m).$$

while if (4.1) is satisfied then,

$$\begin{split} \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k} (w_n^{\alpha})^k &= \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k X_n^{k-1}} (w_n^{\alpha})^k X_n^{k-1} \\ &= \sum_{n=1}^{m-1} \left(\sum_{\nu=1}^{n} \frac{\varphi_{\nu}^{k-1}}{\nu^k X_{\nu}^{k-1}} (w_{\nu}^{\alpha})^k \right) \Delta X_n^{k-1} + \left(\sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k X_n^{k-1}} (w_n^{\alpha})^k \right) X_m^{k-1} \end{split}$$

136 W.T. Sulaiman

$$= O(1) \sum_{n=1}^{m-1} X_n |\Delta X_n^{k-1}| + O(X_m) X_m^{k-1}$$

$$= O(X_{m-1}) \sum_{n=1}^{m-1} (X_{n+1}^{k-1} - X_n^{k-1}) + O(X_m^k)$$

$$= O(X_{m-1}) (X_m^{k-1} - X_1^{k-1}) + O(X_m^k)$$

$$= O(X_m^k).$$

Therefore (3.4) implies (4.1) but not conversely.

The object of this paper is to present a general result not only covering Theorems 2 and 3, but as well to obtain an improvements for them. In fact we give the following theorem:

4. Main Result

Theorem 4.1. Let (X_n) be a positive non-decreasing sequence. If the conditions (1.12) and (1.13) are satisfied and if the sequence (w_n^{α}) defined by (1.14) satisfies

$$\sum_{n=1}^{m} \frac{\varphi_n^{k-1} (w_n^{\alpha})^k}{n^k X_n^{k-1}} = O(X_m)$$
(4.1)

and

$$\sum_{n=\nu}^{m} \frac{\varphi_n^{k-1}}{n^{k+\alpha k}} = O\left(\frac{\varphi_{\nu}^{k-1}}{\nu^{k+\alpha k-1}}\right),\tag{4.2}$$

then the series $\sum a_n \lambda_n$ is summable $\varphi - |C, \alpha|_k$, $k \ge 1$, $0 < \alpha \le 1$.

Remark 4.1. For the special case $\alpha = 1$, Theorem 8 gives an improvement of Theorem 2 in the sense that conditions (4.1) and (4.2) for $\alpha = 1$, $X_n = \log n$ are both weaker than conditions (1.8) and (1.9), respectively.

Remark 4.2. For the special case $\varphi = n$, Theorem 8 gives an improvement of Theorem 3 in the sense that condition (4.1) for $\varphi = n$, is weaker than condition (1.15). That is Theorem 3 follows from Theorem 8 by putting $\varphi = n$, and then making use of Lemma 6 and Theorem 1.

5. Proof of Theorem 8

Let (T_n^{α}) be the *n*-th (C,α) , $(0 < \alpha \le 1)$ mean of the sequence $(na_n\lambda_n)$. Then, we have

$$\begin{split} T_{n}^{\alpha} &= \frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha-1} \nu a_{\nu} \lambda_{\nu} \\ &= \frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n-1} \Delta \lambda_{\nu} \sum_{r=1}^{\nu} A_{n-r}^{\alpha-1} r a_{r} + \frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha-1} \nu a_{\nu} \,. \end{split}$$

By Lemma 3.1, the above implies

$$|T_n^{\alpha}| \leq \frac{1}{A_n^{\alpha}} \sum_{\nu=1}^{n-1} A_{\nu}^{\alpha} w_{\nu}^{\alpha} |\Delta \lambda_{\nu}| + |\lambda_n| w_n^{\alpha}$$
$$= T_{n1} + T_{n2}.$$

In order to complete the proof, it is sufficient, by Minkowski's inequality to show that

$$\sum_{n=1}^{\infty} \frac{\varphi_n^{k-1}}{n^k} |T_{nj}|^k < \infty, \quad j = 1, 2.$$

Now applying Holder's inequality,

$$\begin{split} \sum_{n=2}^{m+1} \frac{\varphi_n^{k-1}}{n^k} |T_{n1}|^k &= \sum_{n=2}^{m+1} \frac{\varphi_n^{k-1}}{n^k} \left(\frac{1}{A_n^\alpha} \sum_{\nu=1}^{n-1} A_\nu^a w_\nu^\alpha | \Delta \lambda_\nu| \right)^k \\ &\leq \sum_{n=1}^{m+1} \frac{\varphi_n^{k-1}}{n^k} \frac{1}{(A_n^\alpha)^k} \sum_{\nu=1}^{n-1} (A_\nu^\alpha)^k (w_\nu^\alpha)^k | \Delta \lambda_\nu | X_\nu^{1-k} \left(\sum_{\nu=1}^{n-1} | \Delta \lambda_\nu | X_\nu \right)^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{\varphi_n^{k-1}}{n^{k+ak}} \sum_{\nu=1}^{n-1} v^{ak} (w_\nu^\alpha)^k | \Delta \lambda_\nu | X_\nu^{1-k} \\ &= O(1) \sum_{\nu=1}^{m} v^{ak} (w_\nu^\alpha)^k | \Delta \lambda_\nu | X_\nu^{1-k} \sum_{n=\nu+1}^{m+1} \frac{\varphi_n^{k-1}}{n^{k+ak}} \\ &= O(1) \sum_{\nu=1}^{m} v | \Delta \lambda_\nu | \frac{\varphi_\nu^{k-1} (w_\nu^\alpha)^k}{\nu^k X_\nu^{k-1}} \\ &= O(1) \sum_{\nu=1}^{m-1} | \Delta (\nu \Delta \lambda_\nu) | \sum_{\nu=1}^{\nu} \frac{\varphi_r^{k-1} (w_r^\alpha)^k}{r^k X_r^{k-1}} + O(1) m | \Delta \lambda_m | \sum_{\nu=1}^{m} \frac{\varphi_\nu^{k-1} (w_\nu^\alpha)^k}{\nu^k X_\nu^{k-1}} \\ &= O(1) \sum_{\nu=1}^{m} | \Delta \lambda_\nu | X_\nu + O(1) \sum_{\nu=1}^{m} (\nu+1) | \Delta^2 \lambda_\nu | X_\nu + O(1) m | \Delta \lambda_m | X_m \\ &= O(1), \\ \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k} | T_{n2} |^k &= \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k} (|\lambda_n| w_n^\alpha)^k \\ &= \sum_{n=1}^{m} \frac{\varphi_n^{k-1}}{n^k X_n^{k-1}} (|\lambda_n| X_n)^{k-1} (w_n^\alpha)^k | \lambda_n | \\ &= O(1) \sum_{n=1}^{m} |\Delta |\lambda_n| | \sum_{\nu=1}^{n} \frac{\varphi_\nu^{k-1} (w_\mu^\alpha)^k}{\nu^k X_\nu^{k-1}} + O(1) |\lambda_m| \sum_{n=1}^{m} \frac{\varphi_n^{k-1} (w_n^\alpha)^k}{n^k X_n^{k-1}} \end{split}$$

138 W.T. Sulaiman

$$= O(1) \sum_{n=1}^{m} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m$$

= O(1).

The proof is complete.

Theorem 5.1. If the conditions of Theorem 8 are satisfied and if $\psi_x = \psi(x)$ is a convex function, with $\psi(0) = 0$, then the series $\sum na_n\lambda_n/\psi_n$ is summable $\varphi - |C,\alpha|_k$, $k \ge 1$, $0 < \alpha \le 1$.

Proof. The proof follows exactly as it has been done in Theorem 8 noticing that $n/\psi_n = O(1)$, as $\psi(x)/x$ is non-decreasing.

References

- [1] H. Bor, On a summability factor theorem, Commun. Math. Anal. 1(2006), 46–51.
- [2] H. Bor, Factors for absolute summability, Commun. Math. Anal. 7(1) (2009), 55–60.
- [3] D. Borwein and F.P. Cass, Strong Norlund summability, Mart. Zeith. 130 (1968), 94–111.
- [4] L.S. Bosanquet, A mean value theorem, J. London Math. Soc. 16(1941), 146–148.
- [5] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, *Proc. London math Soc.* 7(1957), 113–141.
- [6] N. Kishore, On the absolute Norlund summability factors, *Riv. Math. Univ. Parma*, **6**(1965), 129–134.
- [7] K. Kogbentliantz, Sur les series obsolument par la methode des moyennes arithmetiques, *Bull. Sci. Math.* **49**(1925), 234–256.
- [8] F.M. Mears, Some multiplications theorem for Norlund mean, *Bull. Amer. Math. Soc.* **41**(1935), 875–880.
- [9] M.R. Mehdi, Linear transformations between the Banach spaces L^p and l^p with applications to absolute summability, *Ph.D Thesis*, University College and Birkbeck College, London, 1959.
- [10] H. Seyhan, The absolute summability methods, *Ph.D Thesis*, Kayseri, 1995, 1–57.
- [11] H. Seyhan, On absolute Cesaro summability factors of infinite series, *Commun.Math. Anal.* **1**(2007), 53–56.

W.T. Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.

E-mail: waadsulaiman@hotmail.com

Received July 9, 2010

Revised November 30, 2010 Accepted December 12, 2010