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Abstract. The concepts of proximal contraction and proximal nonexpansive mapping have been
investigated and extended in many direction. However, most of these works concern only single-valued
mappings. So, in this paper, we introduce a concept of proximal nonexpansive for non-self set-valued
mappings and prove the existence of best proximity point for such mappings under appropriate
conditions. We also provide an algorithm to approximate a best proximity point of such mappings, and
prove its convergence theorem. Moreover, a numerical example supporting our main results is also
given.
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1. Introduction
Fixed point theory focuses on solving nonlinear equation in the form Tx = x where T is a
self-mapping defined on a subset of metric spaces or normed spaces. A solution of said equation
is called fixed point of T. The study of fixed point theory can be classified into two problems,
one is an existence problem and the other one is an approximation problem. The well-known
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Banach contraction principle [1] assures that every contraction self-mapping has a unique fixed
point, this theorem also provides the iteration for finding the fixed point of the mapping. This
work was extended in many directions, one of that is to extend from single-valued contraction
mappings to multi-valued contraction mappings. The first well-known result was established
by Nadler [16]. There are many interesting extensions of this kind of mappings (for more
information see [4–6,15,20]). However, all of these works concern on fixed point problem.

In the case that T is non-self mappings, it is possible for T to not having a fixed point. So,
it is natural to ask for a point in domain which lies closet to its image. This idea was first
investigated by Fan [8]. He established the best approximation theorem which asserts that a
continuous mapping T : A → X , where A is nonempty compact and convex subset of a Hausdorff
locally convex topological vector space X , has a point x ∈ A such that d(x,Tx)= D(Tx, A). This
idea led to the definition of best proximity point which states as follows:

Let A and B be two nonempty subsets of a metric space (X ,d) and T be non-self mapping of
A into B. A point x in A is said to be a best proximity point of T if the distance between x and
Tx is equal to the distance from A to B or dist(A,B).

Following this concept, it can be said that x is actually an optimal approximate solution
of x = Tx. The study of best proximity point theorem has been growing in recent years. Many
researchers established very interesting results, for example, Kim and Lee [14] combined the
optimal form of Fan’s best approximation theorem and equilibrium existence theorem into
a single existence theorem which can be use to answer some economic problems. For more
works related to best proximity point theorem see [7,13,18,19]. In 2011, Basha [2] introduced
a mapping called proximal contraction mapping. He proved the existence of best proximity
point of such mapping under appropriate conditions. However, this mapping is a single-valued
mapping. Motivated by this concept, we aim to introduce a proximal multi-valued nonexpansive
mapping, and prove the existence of best proximity point for such mappings under certain
conditions. We also provide a convergence theorem for this kind of mappings.

2. Preliminaries
In this section, we give definitions, notations and lemmas which will be used in our main results.

Definition 2.1. Let A and B be nonempty subsets of a metric space (X ,d), a distance between
A and B is as follows

dist(A,B)= inf{d(x, y) : (x, y) ∈ A×B}.

Let x be any element in X , a distance between x and a set B is defined by

D(x,B)= inf{d(x, y) : y ∈ B}.

Let T : A → 2B be a multi-valued non-self mapping, a point x ∈ A is a called best proximity point
of T if

D(x,Tx)= dist(A,B).

The subsets A0 and B0 of A and B, respectively, are given as follows:

A0 =
{
x ∈ A : d(x, y)= dist(A,B), for some y ∈ B

}
;
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B0 =
{
y ∈ B : d(x, y)= dist(A,B), for some x ∈ A

}
.

We denote CB(X ) a set of all closed and bound subsets of X . For A,B ∈ CB(X ), define

H(A,B)=max
{
sup
a∈A

D(a,B),sup
b∈B

D(b, A)
}
.

This mapping H is called Pompeiu-Hausdorff distance from A to B.

We note that if A and B are nonempty, weakly compact and convex subsets of a Banach
space X , then A0 and B0 are nonempty.

The following notions and lemma play crucial roles in our main results.

Definition 2.2. Let A and B be nonempty subsets of a metric space (X ,d). B is said to be
approximatively compact with respect to A if for any sequence {yn} ∈ B satisfying the condition
that d(x, yn) → D(x,B), for some x ∈ A has a convergent subsequence. We note that B is
approximatively compact with respect to itself.

Definition 2.3 ([17]). Let (X ,‖ · ‖) be normed space. X satisfies Opial’s condition if for any
sequence {xn} in X with xn* x, the inequality

limsup
n→∞

‖xn − x‖ < limsup
n→∞

‖xn − y‖
holds for any y 6= x.

Definition 2.4. Let A and B be nonempty subsets of a metric space (X ,d) such that both A0

and B0 are nonempty. A mapping T : A → CB(B) is said to have the best proximity property if
for any best proximity point x of T the following holds:

D(x,Tx)< D(y,Tx), for all y ∈ A, with y 6= x.

The following lemma can be found in [12].

Lemma 2.5. Let (X ,‖ ·‖) be a normed space and α ∈ (0,1). Suppose sequences {xn} and {yn} in X
satisfy for all n ∈N,

(i) xn+1 = (1−α)xn +αyn,

(ii) ‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖. Then for all i,n ∈N,

(1+nα)‖xi − yi‖ ≤ ‖yi+n − xi‖+ (1−α)−n(‖yi − xi‖−‖yi+n − xi+n‖).

The notion of proximal contraction was introduced by Basha [2] as follows.

Definition 2.6. Let A and B be nonempty subsets of metric space (X ,d). A mapping T : A → B
is said to be proximal contraction if there exists non-negative real number α< 1 such that, for
all u1,u2, x1, x2 in A,

d(u1,Tx1)= dist(A,B)= d(u2,Tx2) ⇒ d(u1,u2)≤αd(x1, x2).

The following theorem is the main result of [2].

Theorem 2.7. Let A and B be nonempty, closed subsets of a complete metric space (X ,d) such
that B is approximatively compact with respect to A. Moreover, assume that A0 and B0 are
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nonempty. Let T : A → B and g : A → A satisfy the following conditions:

(i) T is a proximal contraction,

(ii) T(A0) is contained in B0,

(iii) g is an isometry,

(iv) g(A0) contains A0.

Then, there exists an element x ∈ A such that d(gx,Tx)= dist(A,B.).

This result was extended in many directions, for more information (see [?, 3,9–11]).

3. Main Results
We first begin our main results by giving the notion of our new mapping. In order to do this, we
need the following lemma:

Lemma 3.1. Let A and B be nonempty subsets of a metric space (X ,d), T : A → CB(B) a
mapping. For each x ∈ A, set Ux = {y ∈ A : D(y,Tx) = dist(A,B)}. If Ux is nonempty then Ux is
closed and bounded.

Proof. To show the closedness of Ux, let {yn} be a sequence in Ux such that yn → y. So,
D(yn,Tx)= dist(A,B) for all n ∈N. Moreover D(yn,Tx)→ D(y,Tx) as n →∞. Hence D(y,Tx)=
dist(A,B), so y ∈Ux which implies Ux is closed.

In order to show Ux is bounded, we suppose, by the contrary, that Ux is unbounded. So,
for each n ∈ N, there exist xn, yn ∈ Ux such that d(xn, yn) ≥ n. Since xn, yn ∈ Ux, we can find
x′n, y′n ∈ Tx such that d(xn, x′n)≤ dist(A,B)+ 1

n and d(yn, y′n)≤ d(A,B)+ 1
n , for all n ∈N. So,

n ≤ d(xn, yn)≤ d(xn, x′n)+d(x′n, y′n)+d(yn, y′n)≤ d(x′n, y′n)+2dist(A,B)+ 2
n

, for all n ∈N,

which implies n − 2dist(A,B) + 2
n ≤ d(x′n, y′n), for all n ∈ N. Hence Tx is unbounded, a

contradiction. Therefore Ux is bounded.

Definition 3.2. Let A,B be subsets of a normed space (X ,‖ · ‖). A mapping T : A → CB(B) is
said to be a proximal multi-valued nonexpansive if for any x1, x2 ∈ A with Ux1 and Ux2 both are
nonempty, we have

H(Ux1 ,Ux2)≤ ‖x1 − x2‖.

As we can see, this mapping reduces to a multi-valued nonexpansive if d(A,B)= 0.

Theorem 3.3. Let A,B be subsets of a normed space (X ,‖ · ‖) satisfying the Opial’s condition.
Assume that A0 is nonempty weakly compact convex subset of A and B0 is nonempty. If
T : A → CB(B) satisfies the following conditions:

(i) T is proximal multi-valued nonexpansive mapping,

(ii) for any x ∈ A0, Tx∩B0 is nonempty,

(iii) Ux is compact, for any x ∈ A0,

then T has a best proximity point.
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Proof. Let x0 be fixed element in A0. From (b), there exists x′0 ∈ Tx0 ∩B0. So, there exists
y0 ∈ A0 such that ‖x0− y0‖ = dist(A,B). Set x1 = (1−α)x0+αy0, where α ∈ [0,1), so x1 ∈ A0. From
(b), Ux1 is nonempty. So, there exists y1 ∈Ux1 such that

‖y1 − y0‖ ≤ H(Ux1 ,Ux0)≤ ‖x1 − x0‖.

Since y1 ∈Ux1 , there exists y1
n ∈ Tx1 such that

dist(A,B)≤ D(y1,B)≤ ‖y1 − y1
n‖ ≤ D(y1,Tx1)+ 1

n
= dist(A,B)+ 1

n
≤ D(y1,B)+ 1

n
,

for all n ∈N. Taking n →∞, we have ‖y1 − y1
n‖→ D(y1,B)= dist(A,B). By the approximatively

compactness with respect to A of B, there exists a subsequence {y1
nk

} of {y1
n} such that y1

nk
→ y1,

for some y1 ∈ B. Hence d(y1, y1)= dist(A,B) which implies y1 ∈ A0. Again set x2 = (1−α)x1+αy1,
we have x2 ∈ A0. So, we can find y2 ∈Ux2 such that

‖y2 − y1‖ ≤ H(Ux2 ,Ux1)≤ ‖x2 − x1‖.

By the same argument, we can show that y2 ∈ A0. Inductively, we can construct sequences {xn}
and {yn} in A0 satisfying the following:

(1) ‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖,

(2) ‖xn+1 − xn‖ = ‖(1−α)xn +αyn − xn‖ =α‖xn − yn‖,

(3) ‖xn+1 − xn‖ = ‖(1−α)xn +αyn − (1−α)xn−1 +αyn−1‖
≤ (1−α)‖xn − xn−1‖+α‖yn − yn−1‖
≤ ‖xn − xn−1‖.

The above inequalities imply that lim
n→∞‖xn− yn‖ exists. Suppose that lim

n→∞‖xn− yn‖ = r, we claim
that r = 0.
To show this, from Lemma 2.5 we have, for all i,n ∈N,

(1+nα)‖xi − yi‖ ≤ ‖yi+n − xi‖+ (1−α)−n(‖yi − xi‖−‖yi+n − xi+n‖) .

Then,

limsup
i→∞

(1+nα)‖xi − yi‖ ≤ limsup
i→∞

(‖xi − yi+n‖+ (1−α)−n[‖yi − xi‖−‖yi+n − xi+n‖]),

(1+nα)r ≤ limsup
i→∞

‖xi − yi+n‖+ (1−α)−n(r− r)

= limsup
i→∞

‖xi − yi+n‖
≤ diam(C), for all n ∈N.

It follows that r = 0. Since A0 is weakly compact, there exists a subsequence {xnk } of {xn} such
that xnk* x, for some x ∈ A0. So, Ux is nonempty. For each k ∈N, there exists zk ∈Ux such that

‖ynk − zk‖ = H(Uxnk
,Ux)≤ ‖xnk − x‖.

From the compactness of Ux, without loss of generality, we can say that zk → z, for some
z ∈Ux. So,

‖xnk − z‖ ≤ ‖xnk − ynk‖+‖ynk − zk‖+‖zk − z‖
≤ ‖xnk − ynk‖+‖xnk − x‖+‖zk − z‖.

So, limsup
k→∞

‖xnk − z‖ ≤ limsup
k→∞

‖xnk − x‖. From Opial’s condition, we have z = x and hence x ∈Ux.

Therefore D(x,Tx)= dist(A,B), and the proof is complete.
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From the proof of Theorem 3.3, we can generated a sequence {xn} by using the following
iterative method:

Algorithm 3.4. Denote PK (x) a metric projection of x onto a subset K of X .

Choose an initial arbitrary point x0 ∈ A0, and α ∈ (0,1).

Step 1. Pick x′0 ∈ Tx0 ∩B0,
set y0 = PUx0

(x′0), and
set x1 = (1−α)x0 +αy0.

Step 2. For n ≥ 1, we know that Uxn is nonempty,
set yn = PUxn (yn−1), and
set xn+1 = (1−α)xn +αyn.

Go to Step 2 until we obtain the appropriate error.

The following theorem shows that a sequence {xn} generated by Algorithm 3.4 converges to
a best proximity point of T under certain conditions.

Theorem 3.5. Let A,B, A0, X ,T be the same as in Theorem 3.3, if T has the best proximity
property then the sequence {xn}, generated by Algorithm 3.4, converges weakly to a best proximity
point of T.

Proof. It suffices to show that {xn} has a unique weak subsequential limit which is a best
proximity point of T. In order to show this, let z1, z2 be weak limits of subsequence {xnk } and
{xmk } of {xn}, respectively. From the proof of Theorem 3.3, z1 and z2 are best proximity points of
T . Since T has the best proximity property, we obtain that Uz1 and Uz2 are singleton. So,

‖xn+1 − z‖ = ‖(1−α)xn +αyn − z1‖
≤ (1−α)‖xn − z1‖+α‖yn − z1‖
≤ (1−α)‖xn − z1‖+αH(Uxn ,Uz1)

≤ (1−α)‖xn − z1‖+α‖xn − z1‖
= ‖xn − z1‖.

Hence, lim
n→∞‖xn − z1‖ exists. By the same argument, we also have lim

n→∞‖xn − z2‖ exists. Suppose,
by the contrary, that z1 6= z2. Using Opial’s condition, we obtain

limsup
k→∞

‖xnk − z1‖ < limsup
k→∞

‖xnk − z2‖ = limsup
k→∞

‖xmk − z2‖
and

limsup
k→∞

‖xmk − z2‖ < limsup
k→∞

‖xmk − z1‖ = limsup
k→∞

‖xnk − z1‖
which is a contradiction. Hence z1 = z2, and the proof is complete.

Example. Let A = [0,1]× [0,1] and B = [2,3]× [0,1]. Both are subsets of R2 under Euclidean
norm.
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Define a mapping T : A → CB(B) by

T((a,b))=



⋃
k∈[

2, 5
2
]
(
{k}×

[
(2x2 −1)(k−2)+ 2b+1

2
,
1
2

])
, if (a,b) ∈ {1}×

[
0,

1
2

]
,

⋃
k∈[

2, 5
2
]
(
{k}×

[
1
2

,
(
3−2b

2

)
(a−2)+ 2x2 +1

4

])
, if (a,b) ∈ {1}×

[
1
2

,1
]

,

{a}× [b,1] otherwise.

As we can see, dist(A,B) = 1, A0 = {1}× [0,1] and B0 = {2}× [0,1]. Moreover, T satisfies all
hypothesis of Theorem 3.3. Hence T has a best proximity point. We also provide the numerical
result showing that a sequence with the initial point (1,1), generated by Algorithm 3.4 converges
to

(
1, 1

2

)
which is a best proximity point for T .

Table 1. The value at each step of iteration with the initial point (1,1) and the estimate error

n (an,bn) Estimate error

1 (1, 1) 0.5
2 (1, 0.775) 0.275
3 (1, 0.65125) 0.15125
4 (1, 0.58318750) 0.08318750
...

...
...

21 (1, 0.50000320) 0.00000320
22 (1, 0.50000176) 0.00000176
23 (1, 0.50000097) 0.00000097
24 (1, 0.50000053) 0.00000053
25 (1, 0.50000029) 0.00000029

Figure of xn = (an,bn) Value at each step

Figure 1. Illustrate that the sequence generated by Algorithm 3.4 converges to the best proximity point
of T
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From Table 1, we observe that (1,0.50000029) is an approximate solution of best proximity
point of T with the iterative number 24 and accuracy of 6 D.P., we also see from Figure 1 that
the iterative sequence {xn} converges to the best proximity point

(
1, 1

2

)
.

4. Conclusion
In this paper, the concept of proximal multi-valued nonexpansive mapping in a Banach space is
introduced and the existence of best proximity point of such mapping is also discussed. We also
introduced an algorithm for finding such point under some appropriate conditions. Moreover,
some numerical experiment of the proposed algorithm is also given. Finally, the readers who
are interested in studying this particular concept may consider modifying the Algorithm 3.4 to
improve its convergence behavior.
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