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On the Solution of Reduced Wave Equation with Damping

Adil Misir

Abstract. In this paper we find particular solutions of Reduced wave equation
with damping in the form ∆u+ k2n(x )u+ µ|∇u| = 0, Rn, µ ∈ R and n(x ) is a
continuous function on Ω, by making use of Fundamental solution u= exp(ikR)

R of
the scalar Helmholtz equation and employing a variation of constant technique.
Moreover, some examples are given to illustrate the importance of our results.

1. Introduction

Let x be an arbitrary point and y a fixed points in a domain Ω ⊂ Rm, m ≥ 2.
Let R = d(x , y) = |x − y | =

Æ∑m
j=1(x j − y j)2 denote the distance between x and

y . Let k > 0 be given such that R 6= nπ
k

, n= 1, 2, 3, . . .
Consider the second-order partial differential equation of the form

∆u+ k2n(x )u+µ|∇u|= 0, x ∈ Ω⊂ Rm, µ ∈ R (1.1)

where µ is an arbitrary constant and n(x ) is a continuous function on Ω.
If µ= 0 and n(x ) = 0 then (1.1) is known Laplace equation, µ= 0 and n(x )≡ 1

for all x in Ω, then (1.1) is known scalar Helmholtz equation and µ = 0 and
n(x ) 6= {0, 1} is a continuous function on Ω, then (1.1) is known reduced wave
equation.

The reduced wave equation (or scalar Helmholtz equation) is an important
partial differential equation that describes a variety of waves, such as sound, light
and water waves. It arises in acoustic, electromagnetic and fluid dynamics for
m = 2, 3. Helmholtz equation naturally appears from general conservation laws
of physics and can be interpreted as a wave equation for monochromatic waves
(wave equation in the frequency domain). Helmholtz equation can also be derived
from the heat conduction equation, Schrödinger equation, telegraph and other
wave type, or evolutionary, equations. In physically applications k and n(x ) are
known wave number and refraction index of media respectively see details [5, 8].
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In [3, 13] some particular solution have been constructed for scalar Helmholtz
equation and reduced wave equation in two dimensions. Although 3-D problems
are more realistic physically, their solutions are found rarely in the literature.
Hence in this paper we investigate the solution of (1.1) for m= 3.

The general solution of the scalar Helmholtz equation with radial and polar
coordinates in three dimensions can be obtained by using separation of variable as
follows

u(r,θ ,ϕ) =
∞∑

n=0

∞∑

l=0

l∑

m=−l

(anlm jn(kr) + bnlm yn(kr))Y m
l (θ ,ϕ) ,

where jn(kr) and yn(kr) are the Bessel functions,and Y m
l (θ ,ϕ) is the spherical

harmonics [1].
Very few elementary or closed-form solutions of the reduced wave equation

are known for m = 3 for the case with variable index of refraction n. For layered
media [n= n(x2)], only two solutions have been found so far. These are (i) Pekeris’
solution [12] for a point source in a medium specified by n= x−1

2 ,

u(x , y)=
2(x2 y2)

1
2

RR′
exp
�

2i
�

k2 − 1

4

� 1
2

tanh−1
�

R

R′

��
,

where i =
p−1 and R′2 = (x1− y1)2+(x2+ y2)2+(x3− y3)2; and (ii) Kormilitsin’s

solution [10] for a line source extending parallel to the x3-axis in a media specified
by n=px2 ,

u(x , y)=

∫ ∞

0

exp
�

ik
�

Q2

2ζ
+ (x2 + y2)

ζ

4
− ζ

3

96

��
dζ

ζ
,

where Q2 = (x1− y1)2+(x2− y2)2. In [9], R. L. Holford shows that an elementary
solution of the reduced wave equation can be found for a line source extending
parallel to the x3-axis in a medium specified by

n(x )=
Æ

A+ Bx1 + C x2 + Dx2
1 + Ex1 y1 + F x2

2 ,

where A, B, C , D and F are arbitrary constants, and for a point source excitation
when n(x ) =

p
A+ C x2 + F x2

2 ; i.e., when the medium is layered. In both cases,
the solution is obtained in the form

u(x , y)=

∫

C

exp[ik f (x , y,ζ)]g(ζ)dζ,

where f and g are elementary functions of complex variable ζ, and C is a path
running from ζ= 0 to∞.

However in recent years a lot of useful numerical methods and numerical
solutions have been presented for the reduced wave equation with variable
coefficient (some times called nonlinear Helmholtz equation) [2, 6, 7].
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Straightforward differentiation shows that for fixed y ∈ R3

u(x , y) :=
1

4π

eikR

R
, x 6= y ,

satisfies Helmholtz equation, which is known as Fundamental solution of the
Helmholtz equation [5, 8].

2. Variation of Constant Method

Separating the fundamental solution of scalar Helmholtz equation into real and
imaginary parts we have

c1
cos kR

R
and c2

sin kR

R
as real solutions.

In this study our aim is to find particular solutions of (1.1) by using the above
solutions of scalar Helmholtz equation. In particular, following the method of
variation of constant we look for solutions of the form

u=
1

f (R)
sin kR

R
, (2.1)

where f (R) is to be determined. We note that if we use u = 1
f (R)

cos kR
f (R)

we do not
obtain any new solution. Therefore, we use only (2.1). Naturally, we assume that
f is a continuous function having first and second derivatives on Ω.

Define

P(x ) := k2(1− n(x ))±µ
�

1

R
− k cot kR

�
,

where n(x ), µ are as defined above.

Lemma 2.1. Let f : Ω ⊂ R3 → R\{0} be a continuous function that has first and
second derivatives and satisfies the equation

P(R) =− f ′′(R)
f (R)

+ 2
( f ′(R))2

f 2(R)
+ (−2k cot kR±µ) f ′(R)

f (R)
(2.2)

then

u(x ) =
sin kR

Rf (R)
, R= |x − y | (2.3)

satisfies (1.1).

Proof. Using the chain rule we get for j = 1, 2, 3

∂ u

∂ x j
=
�

k cos kR

R2 f (R)
− sin kR

R3 f (R)
− f ′(R) sin kR

R2 f 2(R)

�
(x j− y j).
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Moreover,

∂ 2u

∂ x2
j

=
cos kR

Rf (R)

�
k

R

�
− sin kR

Rf (R)

�
1

R2 +
f ′(R)

Rf (R)

�

+
(x j− y j)2

R

�
sin kR

Rf (R)
Ψ1(R) +

cos kR

Rf (R)
Ψ2(R)

�
.

Where

Ψ1(R) =−
k2

R
+

3

R3 +
3 f ′(R)
R2 f (R)

− f ′′(R)
Rf (R)

+
2 f ′2(R)
Rf 2(R)

and

Ψ2(R) =−
3k

R2 −
2k f ′(R)
Rf (R)

.

Then we get

∆u=
3∑

j=1

∂ 2u

∂ x2
i

=
sin kR

r f (R)

�
− k2 − f ′′(R)

f (R)
+ 2

f ′2(R)
f 2(R)

− 2k cot kR
f ′(R)
f (R)

�

and because of

∇u =
�
∂ u

∂ x1
,
∂ u

∂ x2
,
∂ u

∂ x3

�

=
�

k cos kR

R2 f
− sin kR

R3 f
− f ′ sin kR

R2 f 2

�
(x1− y1, x2− y2, x3− y3)

we get

∆u+µ|∇u|= u
�
− k2 ∓µ

�
k cot kR− 1

R

�
+ P
�

.

This completes the proof of lemma because of our assumption. ¤

As an initial simplification, we will choose a constant k such that the (2.2) has
no critical point. We can give an exponential type solution of (1.1) as follow.

Theorem 2.2. Let P and f satisfies (2.2) in Lemma 1 and φ be a continuously
differentiable function, such that φ satisfies the Riccati differential equation

φ′ +φ2 = g , (2.4)

where

g = P − k2 ±µ
�

k cot kR− 1

R

�
± µ

R
+
µ2

4
=−k2n(x )± µ

R
+
µ2

4

then

u= c
�

1

R

�
exp
�
∓ µR

2

�
exp
�∫ R

φ(t)d t
�

, where c is any constant (2.5)

is the solution of (1.1).
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Proof. If we multiply the (2.2) by f 2(R), then we get

f (R) f ′′(R)− 2 f ′2(R)− (2k cot kr ±µ) f (R) f ′(R) + P f 2(R) = 0. (2.6)

If we use the Riccati substitution

f ′(R) =− f (R)ψ, (2.7)

where ψ is a continuously differentiable function, then we have

f ′2(R) = f 2(R)ψ2,

f (R) f ′(R) =− f 2(R)ψ,

f (R) f ′′(R) = f 2(R)(ψ2 −ψ′).



 (2.8)

If we substitute (2.8) in (2.6), we get

ψ′ +ψ2 =−(2k cot kr ±µ)ψ+ P. (2.9)

Again if we consider the change of variables

ψ= φ − k cot kr ∓ µ
2

, (2.10)

where φ is a continuously differentiable function, then (2.9) becomes a classical
Riccati equation in the form φ′ + φ2 = −k2n(x)± µ

2
+ µ2

4
, which completes the

proof of the theorem. ¤

Corollary 2.3. If there exists a continuous function P such that k2n(x ) = k2−P and
f satisfies the differential equation

P(R) =− f ′′(R)
f (R)

+ 2
( f ′(R))2

f 2(R)
− 2k(cot kR)

f ′(R)
f (R)

(2.11)

then

u= c
�

1

R

�
exp
�∫ R

φ(t)d t
�

, where c is any constant (2.12)

satisfies the partial differential equation

∆u+ k2n(x )u= 0, x ∈ Ω⊂ R3 . (2.13)

It is known that the solution of (2.4) is equivalent to an exponential solution of
the linear differential equation

z′′ = gz . (2.14)

Here we note that,in order to construct the solution of (1.1) by using the
Theorem1,we must solve the differential equation (2.4) or equivalently (2.14).
But, in general to solve the differential equation (2.4) or (2.14) is not easy.
Fortunately, we present an alternative solution procedure for differential equation
(2.14) which works under the some condition on k2n(x ).
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3. The Iteration Technique

Let w′0 = h0 ∈ C∞(a, b) and consider the equation

z′′(t) = w0(t)z(t) . (3.1)

For some w0 function we shall give a new method to obtain the particular
solutions of equation (2.14). This method depends on finding some symmetric
structure as in [4] by using asymptotic behavior of equation (2.14).

Thus for this purpose if we differentiate (3.1) with respect to the t, we find that

z′′′ = w0z′ + h0z . (3.2)

Again if we differentiate (3.2) with respect to the t, we find that

z(4) = w1z′ + h1z , (3.3)

where w1 = w′0 + h0 and h1 = h′0 +w0w0 .
If we differentiate again (3.3) with respect to the t, we find that

z(5) = w2z′ + h2z , (3.4)

where w2 = w′1 + h1 and h2 = h′1 +w1w0 .
Thus if we continue in this way,we get for n≥ 0,

z(n+3) = wnz′ + hnz (3.5)

and similarly

z(n+4) = wn+1z′ + hn+1z , (3.6)

where

wi = w′i−1 + hi−1 and hi = h′i−1 +wi−1w0 , for i = 1, 2, . . . , n. (3.7)

From the ratio of the (n+ 4)th and (n+ 3)th derivatives, we get

d

d t
�
ln z(n+3)�= z(n+4)

z(n+3)
=

wn+1

�
z′ + hn+1

wn+1
z
�

wn

�
z′ + hn

wn
z
� . (3.8)

If we have, for sufficiently large n≥ 0,

γ(t) :=
hn+1

wn+1
=

hn

wn
(3.9)

then (3.8) reduces to

d

d t
�
ln z(n+3)�= wn+1

wn

which yields

z(n+3) = c1 exp
�∫ t wn+1(τ)

wn(τ)
dτ
�

. (3.10)
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But in Eq. (2.10) the integrand function is

wn+1

wn
=

w′n
wn
+

hn

wn
=

w′n
wn
+ γ .

Then (3.10) becomes

z(n+3) = c1wn exp
�∫ t

γ(τ)dτ
�

. (3.11)

Substituting (3.11) into (3.5) we obtain the first-order differential equation

z′ + γz = c1 exp
�∫ r

γ(τ)dτ
�

. (3.12)

Thus we get the general solution of (3.12) as

z(t) = exp
�
−
∫ t

γ(τ)dτ
��

c1

∫ t

exp
�∫ v

2γ(τ)dτ
�

dv + c2

�
, (3.13)

where c1 and c2 are arbitrary constants.
Note that in [11] a different method with same procedure has been applied and

same result has been obtained for µ= 0.

Remark 3.1. If we take w0 = g then (3.1) coincide with the (2.14).

Theorem 3.2. Let w′0 = h0 ∈ C∞(a, b). Then the differential equation

z′′ = w0z

has a general solution (3.13) if for some n≥ 0

γ(t)≡ hn+1

wn+1
=

hn

wn

equality holds. Here wi = w′i−1 + hi−1 and hi = h′i−1 +wi−1w0 for i = 1, 2, . . . , n.

Example 3.3. Let k > 0, µ and n(x ) = 1
k2

�
µ2

4
± µ

R
− 20R2

1+R4

�
be given. Then g =

20R2

1+R4 and γ = h4

w4
= h3

w3
= − 1+4R4

R+R5 . If we substitute this value of γ in (3.13) we get
the solution of the partial differential equation (1.1) of the form

u = exp
�
∓ µR

2

�
(1+ R4)

�
c1

32

�−32

R
− 8R3

1+ R4 + 10
p

2 arctan(1−
p

2R)

−10
p

2 arctan(1+
p

2R) + 5
p

2 log

����
1+
p

2R+ R2

1−p2R− R2

����
�
+ c2

�
.
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Example 3.4. Let k > 0, µ and n(x ) = 1
k2

�
µ2

4
± µ

R
+ 12R

3−R3

�
be given, then g = −12R

3−R3

and γ = h3

w3
= h2

w2
= 3−4R3

−3R+R4 . Thus if we use the same procedure of Example 1, we
get the solution of the partial differential equation (1.1) of the form

u = exp
�
∓ µR

2

�
(−3+ R3)

�
c1

243

�
− 27

R
− 9R3

R3 − 3
− (123)

1
6 arctan

�
1p
3
+

2R

(3)
5
6

�

+(23)
2
3 log |3+ (3) 2

3 R+ (3)
1
3 R2| − (43)

2
3 log | − 3+ (3)

2
3 R|+ c2

��
,

where c1 and c2 are arbitrary constants.

Theorem 3.5. Let g ∈ C∞(a, b). If there exists a γ such that the Eq. (3.9) holds,
then the Riccati differential equation (2.4) is solvable and

u=
c

R
exp
�
−
∫ R

γ(τ)dτ
�

, where c is any constant (3.14)

is the solution of (1.1).

Proof. If there exists a γ, which satisfies (2.9), then a solution of (1.1) is

z = exp
�
−
∫ R

γ(τ)dτ
�

. (3.15)

Because of the function (3.15) satisfies the Eq. (3.1), we get

z′′ = (β2 − β ′)exp
�
−
∫ R

γ(τ)dτ
�
= (β2 − β ′)z . (3.16)

If we take β = −φ in (3.16) then (3.16) becomes (2.4). Consequently, the proof
is completed because of Lemma 2. ¤

Example 3.6. Consider the differential equation φ′(t) + φ2(t) = 20t2

5+t4 . Then

g = w0 =
20t2

5+t4 and γ = h5

w5
= h4

w4
= 5(1+t4)

t(5+t4)
. If we substitute this value of γ in

(3.13) we get the solution of the given Riccati differential equation of the form

φ(t) =
c1 t4 + 3c2 t

2c1 t3 − 3c2
,

where c1 and c2 are arbitrary constants.

Example 3.7. Let φ′(t) + φ2(t) = 42t4

7+t6 . Then γ = h1

w1
= h0

w0
= −3t2

1+t3 . Thus the
solution of the given differential equation is

φ(t) =
c1

�
9+ 6

p
3t2 arctan

h
2t−1

3

i
+ 3t2 log

��� 1+2t+t2

1−t+t2

���
�
+ 27c2 t2

c1

�
3t + 2

p
3[1+ t3] arctan

h
2t−1

3

i
+ log

��� (1+t3)2

(1−t+t2)t3+1

���
�
+ c2(1+ t3)

.



On the Solution of Reduced Wave Equation with Damping 121

Remark 3.8. In order to calculate γ in Examples 3.1, 3.2, 3.3 and 3.4 MATHEMATICA

software has been used.

Conclusion 3.9. (1.1) has many application in physics, chemistry and some
branch of engineering. Thus the solution of (1.1) is important in these areas in
the applications. It is shown that if the solution of (1.1) is in the form (2.1) then f
must be solved from (2.2). In Section 3, a functional iteration method of a linear
equation of the form L(z) = z′′ − λ0z = 0 is given. If during the iteration process
(3.9) is obtained at some step, then Theorem 1 gives the particular solutions of
(1.1).

Conclusion 3.10. The boundary value problem which include Helmholtz equation
or reduced wave equation (with damping term) with Dirichlet or Neumann
condition in any domain can represent a physical problem. Some of them can
be given as acoustic scattering, inverse acoustic scattering or inverse conductive
scattering problem in any homogeneous or inhomogeneous media, ocean waves
problem and ext. The arbitrary constants, which are obtained by the iteration
method of general solutions have special importance for each boundary value
problems which are mentioned above.
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