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Abstract. This paper considers the Susceptible-Infected-Vaccinated-Recovered (SIRV) deterministic
model with a non linear force of infection and treatment, where individual humans that are vaccinated
losses their vaccination after some time and become vulnerable to infections. The basic reproduction
number R0 obtained from the model system is an epidemic threshold that determines if a disease will
continue to ravage the human population or not. The model state equations considered in this paper
possess two steady-state solutions such that if R0 < 1, the infection-absent steady-state solutions are
locally and globally asymptotically stable. Also, if R0 > 1, a unique infection-persistent steady-state
solutions are established, which is also locally and globally asymptotically stable. Thus, it leads to the
persistence of infections in the human host population. Finally, numerical simulations were carried
out to validate our theoretical results.
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1. Introduction
In the study of epidemics, vaccination is an indispensable control strategy to prevent and
eliminate diseases in a human host population [3], [16]. Efficacious vaccines protects susceptible
human individual if it is applied on time before exposure to the disease. Many apparent and
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re-appearing diseases have been combated with appropriate vaccinations e.g. rubella, measles,
cholera, malaria, Hepatitis A and B, etc. Mathematical models have been formulated in several
articles to describe how diseases are transmitted within compartments of sub-populations of
human, where individuals are grouped into compartments according to the characteristics and
purpose of the disease being modeled. Some of the authors who have employed mathematical
techniques to describe the transmission dynamics of a disease includes ([1], [4], [5], [6], [7], [8],
[12], [14], [15], [17], [18]).

However, in the model formulation of a classic SIR model, vaccination class is included
so that after the recovery of a sick individual from a disease, appropriate vaccines can be
administered to the recovered and the susceptible individuals in the host population. In
epidemiology, incidence force of infection is simply defined as the rate at which individuals are
being infected per unit time when an infected individual come in contact with a susceptible
individual during his or her period of infections. The law of mass action incidence (βSI), where β
as a transmission parameter is earlier used, but could not take into account of disease outbreak
in larger populations. This has led to the formulations of nonlinear forces of infection by some
authors [10]. Moreover, asymptotic stabilities independent of initial conditions are shifted from
the infection-absent to the infection-present steady-state. To investigate the global properties of
a epidemic model system is non-trivial because there are no known mathematical methods for
constructing Lyapunov functions for epidemic models. Systematic method of direct Lyapunov or
nonlinear Lyapunov function of the Goh-Volterra type are good approaches to obtaining it ([2],
[19]).

Having gone through [9], [11], [13], in our work, we formulated a SIRV model with variable
size population. Instead of the mass action incidence, by extension, we incorporated a non linear
incidence force of infection of the form αSI

1+βS , which account for the contact between susceptible
and infected individual leading to overcrowding because of high level of saturation of the disease.
Also, nonlinear treatment rate (rI) and other parameters are included in the model build up.
The rest of the paper is organized as follows. Section 2 presents the model formulation, existence
and uniqueness of the model solutions, positivity of the system, existence of the state equations
steady-solutions and the basic reproduction number (R0). In Section 3, the local and global
asymptotic stability of the infection absent steady-state is investigated. Section 4 involves the
analysis of the local and global asymptotic stability of the infection persistent steady-state.
Finally, Section 5 presents the numerical simulations and conclusion.

2. Model Formulation and Analysis
In this section, we consider a epidemic transmission model based on a deterministic, non
linear, first order system of ordinary differential equations. The total host population N(t) is
subdivided into sub-populations of state variables of individuals who are susceptible individuals
S(t), infected individuals I(t), recovered individuals R(t), and vaccinated individuals V (t), so
that N(t)= S(t)+ I(t)+R(t)+V (t). Humans are recruited into the population at a rate A. There
is an effective infectious contact between the susceptible and infected individual at a rate
α

1+βS represented by λ. ρ is rate at which a certain fraction of susceptible individuals receives
vaccination, µ is the natural death rate applicable to all compartments. δ1 and δ2 are the rates
at which the recovered and vaccinated compartments losses their immunities to treatment and
vaccination respectively. Also, α is the death rate induced by infections of infected individuals,
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while γ is the natural recovery rates due to other factors and rI is the treatment rate of the
infected class. The following assumptions is made in the model build up that,

i. Birth and death rate is certain.
ii. Susceptible Individuals are infected if they come in contact with an infected individual

except those that are vaccinated.
iii. Vaccine losses its potency leading to waning in individuals after some time.
iv. An infected individual recovers after treatment.
v. There is no permanent recovery.

vi. There is homogenous mixture in the population.

Following the assumptions made, coupled with the state variables and parameters incorporated
into the model, we now have the model system equations as

Ṡ = A−µS−λSI −ρS+δ1R+δ2V ,

İ =λSI − (µ+α+γ)I − rI,

Ṙ = γI −µR−δ1R,

V̇ = ρS−µV −δ2V . (1)

Subject to initial conditions S(0)= S0, I(0)= I0, R(0)= R00, V (0)=V0.

2.1 Existence and Uniqueness of Solutions of (1)
Theorem 2.1 ([5]). Let Ω denote a region

|t− t0| ≤ y, ‖x− x0‖ ≤ z, x = (x1, x2, . . . , xn), x0 = (x10, x20, . . . , xn0). (2)

Also, suppose the Lipschitzian condition ‖ f (t, x1)− f (t, x2)‖ ≤ c‖x1 − x2‖ is satisfied by f (t, x),
whenever (t, x1) and (t, x2) is in Ω, where c is positive. A unique continuous vector solution x(t)
of the system in the interval t− t0 ≤ δ exists, such that δ> 0.

Proof. Let Ω denote the region 0 ≤α≤ R, we want to show that the partial derivatives of (1)
are continuous and bounded in Ω. Let

H1 = A−µS−λSI −ρS+δ1R+δ2V ,

H2 =λSI − (µ+α+γ)I − rI,

H3 = γI −µR−δ1R,

H4 = ρS−µV −δ2V . (3)

Then the partial derivatives of (3) are given below as∣∣∣∂H1

∂S

∣∣∣= |− (µ+λI +ρ)| <∞,
∣∣∣∂H1

∂I

∣∣∣= |−λS| <∞,
∣∣∣∂H1

∂R

∣∣∣= |δ1| <∞,
∣∣∣∂H1

∂V

∣∣∣= |δ2| <∞, (4)∣∣∣∂H2

∂S

∣∣∣= |λI| <∞,
∣∣∣∂H2

∂I

∣∣∣= |λS− (µ+α+γ)− r| <∞,
∣∣∣∂H2

∂R

∣∣∣= |0| <∞,
∣∣∣∂H2

∂V

∣∣∣= |0| <∞, (5)∣∣∣∂H3

∂S

∣∣∣= |0| <∞,
∣∣∣∂H3

∂I

∣∣∣= |γ| <∞,
∣∣∣∂H3

∂R

∣∣∣= |− (µ+δ1)| <∞,
∣∣∣∂H3

∂V

∣∣∣= |0| <∞, (6)∣∣∣∂H4

∂S

∣∣∣= |ρ| <∞,
∣∣∣∂H4

∂I

∣∣∣= |0| <∞,
∣∣∣∂H4

∂R

∣∣∣= |0| <∞,
∣∣∣∂H4

∂V

∣∣∣= |− (µ+δ2)| <∞. (7)

From (4), (5), (6), (7), it is clearly shown that the partial derivatives of (1) exists, are finite and
bounded. Hence (1) has a unique solution.
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2.2 Positivity of (1)
Theorem 2.2. If S(0), I(0), R(0), V (0) are nonnegative, then S(t), I(t), R(t), V (t) are also
nonnegative for all time t > 0.

Proof. The sum of all the system equations in (1) yield

Ṅ = A− (S+ I +R+V )µ−αI − rI, (8)

such that in the absence of infections we have

Ṅ = A−Nµ, (9)

so that upon integration of (9) at both sides yields,

N = A
µ
+Ce−µt, (10)

where C is a constant. Then

N(t)= lim
t→∞

( A
µ
+ C

eµt

)
= A
µ

, (11)

limsup
t→∞

N(t)≤ A
µ

, (12)

such that N(0)≤ A
µ

. Then the feasible region is given by

Ω=
[
(S, I,V ,R) ∈ℜ4

+; N(t)≤ A
µ

,S+ I +R+V ≤ A
µ

]
. (13)

This show that A
µ

is the upper bound while 0 is the lower bound of (1). Therefore, Ω is positively
invariant and the model system (1) is well posed mathematically and realistic in an epidemic
sense.

2.3 Existence of Steady State Solutions
The existence of the steady state-solutions is carried out in order to investigate the long term
behavior of (1) which largely depends on R0 and its steady-state solutions. The model considered
in this paper posses two steady-state solutions. In order to obtain the steady-state, model system
(1) is made static i.e., obtain the time-independent solutions of the model. The steady-state
solutions in the absence of infections i.e., I = 0 is given by

E0 = (S, I,V ,R)=
(( A
ρ+µ

)(
1− λ

R0(µ+α+γ)− r

)
,0,0,

( ρ

µ+δ2

)( 1
R0

))
. (14)

Also, the steady-state solutions when infection is persistent i.e., I 6= 0 is given by,

E∗ = (S∗, I∗,R∗,V∗)=
(( A+δ1R∗+δ2V∗

µ−λI∗+ρ
)( 1

R0

)
,

λ(A+δ1R∗+δ2V∗)
(µ−λI∗+ρ)(µ+α+γ− r)(

1− 1
R0

(δ1R∗+δ2V∗

λI∗
))

,
ρ(A+δ1R∗+δ2V∗)
(µ+δ2)(µ−λ+ρ)

( 1
R0

)
,

γλ(A+δ1R∗+δ2V∗)
(µ+δ1)(µ−λI∗+ρ)(µ+α+γ− r)

(
1− 1

R0

(δ1R∗+δ2V
λI∗

))
. (15)

2.4 Basic Reproduction Number (R0)
The R0 is obtained using the next generation operator matrix method [10]. In order to determine
the number of individuals infected with disease arising when an infective is present in a host
population of susceptible humans during his or her infectious lifetime, R0 will be depending on
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the epidemiological characteristics of the disease and the pattern of behavior of the population.
If the duration last longer than expected, it will lead to a higher transmission of the disease
which in turn increases the R0.

Theorem 2.3 ([6], [18]). Define Xs = {x = 0 | xi, i = 1,2,3, . . .}. In order to compute for R0, we
distinguished new infections from all other changes in the population.
Let Fi(x) be the rate of new clinical manifestations of disease symptoms in compartment i, also,
let V+

i be the rate at which individuals move into compartment i through other means and
V−

i be the rate at which individuals move out of compartment i. Then ẋi = f i(x)= Fi(x)−Vi(x),
i = 1,2,3, . . ., and Vi(x)=V−

i −V+
i , such that F is a non negative matrix and V is a non singular

matrix.

Proof.

F =


0 0 0 0
0 λ

(
A

µ+ρ
)

0 0
0 γ 0 0
0 0 0 0

 (16)

and

V =


(µ+ρ) 0 δ1 δ2

0 (µ+α+γ)− r 0 0
0 0 (µ+δ1) 0
ρ 0 0 (µ+δ2)

 and (17a)

V−1 =


µ+δ2

µ(µ+ρ+δ2) 0 − (µ+δ2)δ1
(µ+δ1)µ(µ+ρ+δ2) − δ2

µ(µ+ρ+δ2)

0 1
(µ+α+γ)−r 0 0

0 0 1
(µ+δ1) 0

− µ+δ
µ(µ+ρ+δ2) 0 ρδ1

(µ+δ)µ(µ+ρ+δ2)
µ+ρ

µ(µ+ρ+δ2)

 . (17b)

Therefore, R0 is the largest eigenvalue of the spectral radius given by

R0(FV−1)= λA
(µ+ρ)(µ+α+γ)− r

. (18)

When R0 < 1, the infections vanishes out of the host population. But if R0 > 1, then the infections
ravages and becomes endemic, which calls for appropriate medical interventions to stop the
disease spread.

3. Local and Global Stability Analysis of Infection
Absent Steady State

3.1 Local Analysis
Theorem 3.1 ([2], [4]). The infection free steady state E0 (14) is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.
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Proof. The Jacobian matrix of (1) at infection free steady state solution (14) is given by

J(E0)=


−(µ+ρ) λ

(
A

µ+ρ
)

δ1 δ2

0 λ
(

A
µ+ρ

)
− (µ+α+γ)− r 0 0

0 γ −(µ+δ1) 0
ρ 0 0 −(µ+δ2).

 . (19)

From (19), the real parts are negative, but λ
(

A
µ+ρ

)
− (µ+α+γ)− r is positive. Then

λA
(µ+ρ)(µ+α+γ)− r

> (µ+α+γ)− r
(µ+α+γ)− r

. (20)

From (20), it implies that

(R0 −1)> 0, −R0 >−1, R0 < 1. (21)

Thus, from (21), the infection free steady state is locally asymptotically stable.

3.2 Global Analysis
Theorem 3.2 ([4], [10]). If R0 < 1, the infection free steady state solutions of (14) is globally
asymptotically stable in Ω.

Proof. We consider the Lyapunov function candidate H(S, I,V ,R) :ℜ4 →ℜ+ defined as

H(S, I,R,V )= ηI η≥ 0. (22)

Differentiating H(S, I,R,V ) with respect to time become

Ḣ = ηİ, (23)

substituting the second state equation of (1) into (23) yields

Ḣ = η(λS− (µ+α+γ)− r)I ≤ η
( Aλ
µ+ρ − (µ+α+γ)− r

)
I. (24)

Since S ≤ S0 = A
µ+ρ , taking η= 1

(µ+α+γ)−r implies that

Ḣ = (R0 −1)I ≤ 0 (25)

from (25), Ḣ = 0, only when I = 0. Then, S → A
µ+ρ and N → A

µ
as t →∞, therefore,

{(S, I,R,V ) ∈Ω | Ḣ ≤ 0} (26)

is the singleton E0. Hence from the La-Salle invariance principle [12], when R0 < 1, the global
stability of infection free steady state is globally asymptotically stable.

4. Local and Global Stability Analysis of Infection Persistent
Steady State

4.1 Local Analysis
Theorem 4.1 ([4], [10]). The infection persistent steady state solution E∗ of (15) is locally
asymptotically stable if R0 > 1.
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Proof. The Jacobian matrix of (1) at infection persistent steady state solutions is given by

J(E∗)=


−(µ+ρ)−λI∗ λS∗ δ1 δ2

λI∗ λS∗− (µ+α+γ)− r 0 0
0 γ −(µ+δ1) 0
ρ 0 0 −(µ+δ2)

 . (27)

The quartic polynomial of (27) is yields

G1λ
4 +G2λ

3 +G3λ
2 +G4λ+G5 , (28)

where

G1 =λ(µ+λ)(µ+λ+δ1)(µ+ρ+λ+δ2)S∗+ (1− I∗),

G2 = ((4−3I∗)µ+ (1− I∗)δ1 + (1− I∗)δ2 +ρ+ (1− I∗)α+ (1− I∗)r+ (1− I∗)γ),

G3 = ((6−3I∗)µ2 + ((3−2I∗)δ1 + (3−2I∗)δ2 +3ρ+ (3−2I∗)α+ (3−2I∗)r+ (3−2I∗)γ)µ

+ ((1− I∗)δ2 +ρ+ (1− I∗)α+ (1− I)r+γ)δ1 − ((−1+ I∗)δ2 −ρ)(r+α+γ))

((4− I∗)µ3 + ((3− I∗)δ1 + (3− I∗)δ2 +3ρ+ (3− I∗)α+ (3− I∗)r+ (3− I∗)γ)µ2

+ (((2− I∗)δ2 +2ρ+ (2− I∗)α,

G4 = (2− I∗)r+2γ)δ1 − ((−2+ I∗)δ2 −2ρ)(r+α+γ))µ−δ1(((−1+ I∗)α+
(−1+ I∗)r−γ)δ2 −ρ(r+α+γ)))

G5 =µ(µ+δ1)(µ+ρ+δ2)(r+µ+α+γ)(1−R0). (29)

Using the Descartes rule of sign [15], the quartic polynomial has unique positive real roots, if
and only if G1 > 0, G2 > 0, G3 > 0, G4 > 0 and G5 < 0. Then the infection persistent steady state
(S∗, I∗,R∗,V∗) is locally asymptotically stable.

4.2 Global Analysis
Theorem 4.2 ([11]). The infection persistent steady state solutions (15) is globally asymptotically
stable in Ω if R0 > 1.

Proof. We Consider a Lyapunov function of the form

H : {(S, I,R,V ) ∈Ω : S, I,R,V > 0}→ℜ+4, (30)

such that

H(S, I,R,V )= (S−S∗)2

2S∗ +
(
I − I∗− I∗ ln

I
I∗

)
+

(
R−R∗−R∗ ln

R
R∗

)
+

(
V −V∗−V∗ ln

V
V∗

)
. (31)

The derivative of H(S, I,R,V ) along the solutions of (1) is given by

Ḣ(S, I,R,V )= (S−S∗)
S∗

dS
dt

+ (I − I∗)
I

dI
dt

+ (R−R∗)
R

dR
dt

+ (V −V∗)
V

dV
dt

. (32)

From the first equation in (1),

A =µS∗+λS∗I∗+ρS∗−δ1R∗−δ2V∗. (33)

Also, the second equation in (1) yields,

(µ+α+γ)− r =λS∗. (34)

Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 717–731, 2019



724 Mathematical Modeling and Stability Analysis of a SIRV Epidemic Model. . . : M. O. Oke et al.

The third equation in (1) yields

(µ+δ1)= γI∗

R∗ , (35)

while the fourth equation in (1) yields

(µ+δ2)= ρS∗

V∗ . (36)

Substituting the above equations into (31) with some simplifications, we obtain

Ḣ(S, I,R,V )= (S−S∗)
S∗

[
µ(S−S∗)+λ(SI −S∗I∗)+ρ(S−S∗)+δ1(R−R∗)

+ (R−R∗)
R

γ
( I
R

− I∗

R∗
)
+ (V −V∗)

V
ρ
( S
V

− S∗

V∗
)]

. (37)

Note that,

SI −S∗I∗ = S∗(I − I∗)+ I(S−S∗) (38)

and

γ
( I
R

− I∗

R∗
)
= γI∗

[ I
I∗

− R
R∗ − R∗I

RI
+1

]
(39)

and

ρ
( S
V

− S∗

V∗
)
= ρS∗

[ S
S∗ − V

V∗ − V∗S
V S∗ +1

]
(40)

Thus, (32) yields

Ḣ(S, I,R,V )= (S−S∗)
S∗ [µ(S−S∗)]+λ[S∗(I − I∗)]+ I[S−S∗]+ρ(S−S∗)

+δ1(R−R∗)+δ2(V −V∗)+ (I − I∗)
I∗

[λS∗− r]+γI∗
[ I

I∗
− R

R∗ − R∗I
RI∗

+1
]

+γI∗
[ R

R∗ − I
I∗

− I∗R
R∗I

+1
]
+ρS∗

[ S
S∗ − V

V∗ − V∗S
V S∗ +1

]
+ρS∗

[ V
V∗ − S

S∗ − S∗V
V∗S

+1
]

(41)

and

(µ+λI +ρ)
(S−S∗)3

S∗ +δ1(R−R∗)+δ2(V −V∗)+ [λS∗− rI∗] (42)

+2γI∗
[
2− R∗I

RI∗
− I∗R

R∗I

]
+2ρS∗

[
2− V∗S

V S∗ − S∗V
V∗S

]
. (43)

Hence, for all S, I,R,V > 0, Ḣ(S, I,R,V ) ≤ 0 holds when S = S∗, I = I∗, R = R∗, V = V∗,
R∗I = RI∗, V∗S =V S∗. This clearly showed that the infection persistent steady state E∗ is the
singleton and the largest invariant set in

{(S, I,R,V ) ∈Ω : Ḣ(S, I,R,V )= 0}. (44)

By the La-Salle’s invariant principle [11], trajectories of (1) with its initial data in Ω→ E∗ as
t →∞, imply that the infection persistent steady state E∗ is globally asymptotically stable in Ω
if R0 > 1.
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5. Numerical Simulations

Table 1. Variables in Model (1) and their Meanings

Variable Descriptions Values Source
S(0) Susceptible individuals 0.95 Estimated
I(0) Infected individuals 0.30 Estimated
R(0) Recovered individuals 0.05 Estimated
V (0) Vaccinated Individuals 0.10 Estimated

Table 2. Parameters in Model (1) and their Meanings

Parameters Descriptions Values Source
A Per Capita Recruitment Rate 500 Assumed
µ Natural death rate 0.112 Assumed
ρ Rate of vaccination of susceptible individuals 0.21 Assumed
δ1 Rate of immunity loss 0.21 Assumed
δ2 Rate at which vaccine wanes 0.34 Assumed
α Disease induced death rate 0.0125 Assumed
γ recovery rate due to other means 0.11 Assumed
r Treatment rate 0.016 Assumed

Figure 1 describes the transmission profile of the susceptible individuals whose immunity is
lost due to the waning of vaccines being administered to them. The decline in the profile shows
that more susceptible individuals will become exposed or infected as a result of loss of immunity
in their system.

Figure 1. S(t) against Time (t) varying δ2

Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 717–731, 2019
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Figure 2 shows the level of treatment of infected individuals by varying r = 0.016−0.119.
Infected individuals becomes recovered when proper treatment is applied to curtail the disease
spread.

Figure 2. I(t) against Time (t) varying r

Figure 3 The gradual rise in the disease profile of infected compartment state variable,
shows that at in the absence of treatment and vaccination, the disease becomes a full blown
epidemic in the human host population thereby leading to mortality.

Figure 3. I(t) against Time (t)

Figure 4 Describes the state variable compartment of the susceptible individual who are
prone to contacting the disease in the presence of infected individual and the absence of
intervention strategies in the human host population.
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Figure 4. S(t) against Time (t)

Figure 5 Illustrates the phase diagram of the interactions between the susceptible and the
infected compartment.

Figure 5. Phase diagram of S(t) against I(t)

Figure 6 Describes the rate at which more susceptible individuals are given vaccinations at
ρ = 0.61−021. When more susceptible individuals are given vaccinations, a level herd immunity
is established, leading to the reduction and elimination of the disease.
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Figure 6. S(t) against Time (t) varying ρ

Figure 7 Describes the gradual decline of infection, leading to a state of well-being in the
compartmental state variable of the recovered class.

Figure 7. R(t) against Time (t)

Figure 8 Shows the state variable of the vaccinated class. The more the susceptible
individuals receives vaccinations, the infections gets eliminated in the human host population.
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Figure 8. V (t) against Time (t)

6. Conclusion
In this paper, we studied a deterministic SIRV model with non linear force of infection and
treatment. It was shown that the solutions of the model exist, it is unique and positive as regards
epidemic transmission and compartmental interactions in human host population. An invariant
region where the model is mathematically well posed and realistic in an epidemic sense is
investigated. However, the basic reproduction number (R0) is determined and the stability of the
model system at their steady state solutions is analyzed. It was shown that if R0 < 1, infections
leave the system, and if R0 > 1, infections persists in the system. Lyapunov techniques were
derived to analyze the model, and it was investigated that the model is locally and globally
asymptotically stable. Also, vaccination and treatment parameters through simulations played
important roles as an intervention strategy to achieve an infection free population. This work
can be extended to incorporate environmental factors such as seasonality, age structure, optimal
control.
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