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Abstract. An algebraic system consisting a nonempty set together with a sequence of operations
and a sequence of relations on this set. The properties of this structure are expressed by terms and
formulas. In this paper we study on linear terms of type (n) for a natural number n ≥ 1 and linear
formulas of type ((n), (m)) for natural numbers n,m ≥ 1. Using the partial clone of linear terms and the
partial clone of linear formulas, we define the new concept of linear hypersubstitutions for algebraic
systems of type ((n), (m)) and proved that the set of all linear hypersubstitutions for algebraic systems
of type ((n), (m)) with a binary operation on this set and the identity element forms a monoid. Finally,
we also interest in studying the semigroup or monoid properties of its. In particular, we investigate
the idempotency and regularity of linear hypersubstitutions for algebraic systems of this monoid.
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1. Introduction
The algebraic system was first introduced by A.I. Malcev in 1951 [9]. We now recall informal
definition of algebraic systems. An algebraic system is a structure consisting a nonempty set
together with a sequence of operations and a sequence of relations on this set.
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The concept of terms is one of the fundamental concepts of universal algebra. Terms may
be considered as words formed by letters. To define terms one needs variables and operation
symbols, let ( f i)i∈I be a sequence of operation symbols, when f i is ni-ary and ni ∈N+ :=N\{0}.
We denote by X := {x1, . . . , xn, . . .} is a countably infinite set of symbols called variables and for
each n ≥ 1 let Xn := {x1, . . . , xn}. The sequence τ : = (ni)i∈I is called a type. Then an n-ary term
of type τ is defined inductively as follows:

(i) Every variable x j ∈ Xn is an n-ary term of type τ.

(ii) If t1, . . . , tni are n-ary terms of type τ and f i is an ni-ary operation symbol, then
f i(t1, . . . , tni ) is an n-ary term of type τ.

Let Wτ(Xn) be the set of all n-ary terms of type τ which contains x1, . . . , xn and is closed under
finite application of (ii) and let Wτ(X ) :=⋃

n∈N+ Wτ(Xn) be the set of all terms of type τ.
The investigation of terms is a relatively new, actively developing field of universal algebra,

computer science and several subjects. For the application of terms in algebras is to defined
identities. We use identities to classify algebras into collections called varieties. Moreover, the
knowledge of the identities valid in algebras could be useful for solving functional equations (see
[7]). Not only the concept of terms which is used to express properties of algebraic systems but
there is the other one which is called formulas, first introduced by A.I. Mal’cev in 1973 (see [9]).

To define quantifier free formulas we need terms, logical connectives and relation symbols.
We now recall the definition of a formula which is defined by K. Denecke and D. Phusanga in
2013 [6]. Let J be an indexed set and A be a nonempty set. An n j-ary relation on A is a relation
γ⊆ An j and call n j the arity of γ. Let (γ j) j∈J be a sequence of relation symbols and τ′ := (n j) j∈J

where γ j has the arity n j for every j ∈ J .

Definition 1 ([10]). Let n ∈N+ and τ,τ′ be the types of operation symbols and relation symbols,
respectively. An n-ary quantifier free formula of type (τ,τ′) (for simply, formula) is defined in the
following way:

(i) If t1, t2 are n-ary terms of type τ, then the equation t1 ≈ t2 is an n-ary quantifier free
formula of type (τ,τ′).

(ii) If j ∈ J and t1, . . . , tn j are n-ary terms of type τ and γ j is an n j-ary relation symbol, then
γ j(t1, . . . , tn j ) is an n-ary quantifier free formula of type (τ,τ′).

(iii) If F is an n-ary quantifier free formula of type (τ,τ′), then ¬F is an n-ary quantifier free
formula of type (τ,τ′).

(iv) If F1 and F2 are n-ary quantifier free formulas of type (τ,τ′), then F1 ∨F2 is an n-ary
quantifier free formula of type (τ,τ′).

Let F(τ,τ′)(Xn) be the set of all n-ary quantifier free formulas of type (τ,τ′) and let
F(τ,τ′)(X ) :=⋃

n∈N+ F(τ,τ′)(Xn) be the set of all quantifier free formulas of type (τ,τ′).
Many mathematicians are interested in a term in which each variable occur at most once

which is called a linear term (see also [2]). The concept of linear terms was introduced by
M. Couceiro and E. Lehtonen [3] in 2012. It is important to do research on linear terms because
it is connected with several other areas of algebras. For example, a linear term may be considered
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on generalization of a linear expression over a vector space (see e.g. [4]).
As we already mentioned above why we are interesting in linear terms, we now recall

a formal definition of linear terms of type τ as follows: let var(t) be the set of all variables
occurring in the term t.

Definition 2 ([3]). An n-ary linear term of type τ is defined in the following inductive way:

(i) Every xi ∈ Xn is an n-ary linear term of type τ.

(ii) If t1, . . . , tni are n-ary linear terms of type τ with var(tl)∩var(tk)=; for all 1≤ l < k ≤ ni

and f i is an ni-ary operation symbol, then f i(t1, . . . , tni ) is an n-ary linear term of type τ.

Let W lin
τ (Xn) be the set of all n-ary linear terms of type τ and let W lin

τ (X ) :=⋃
n∈N+ W lin

τ (Xn)
be the set of all linear terms of type τ.

To study clones, mathematicians have used many several different techniques such as
combinatorics, set theory or topology. One of research directions in clone theory is the clone of
terms which plays an important role in universal algebra and computer science. Clone can be
given an algebraic structure, for example as many-sorted algebra of particular type. In 2016, K.
Denecke [4] published the paper “The Partial Clone of Linear Terms”, which investigate the
concept about the clone of linear terms and their properties. In the recently year, the authors
extended the concept of clone of terms in algebra to clone of linear terms of type (n) and study
clone of linear formulas for algebraic systems (see [8]).

Not only the concept of clone is important in universal algebra, the classification of algebras
by identities into collections called varieties are interesting. We can also use hyperidentities to
classify varieties into collections called hypervarieties. In 1991, K. Denecke, D. Lau, R. Pöschel
and D. Schweigert [5] introduced the concept of a hypersubstitution for algebras which used
to define hyperidentities and hypervarieties mentioned above. A hypersubstitution is a map
which takes every n-ary operation symbol to an n-ary term. Any such map can be uniquely
extended to a map defined on the set of all terms, and then any two such hypersubstitutions
can be composed in a natural way. They proved that the set of all hypersubstitutions forms a
monoid.

A hypersubstitution for algebraic systems was first introduced by K. Denecke and
D. Phusanga [10] in 2008. It is a mapping which maps operation symbols to terms and relation
symbols to quantifier free formulas preserving arities. They defined a binary operation on
the set of all hypersubstitutions for algebraic systems and then proved that this set with the
binary operation and an identity element forms a monoid. Five years later, the definition of a
hypersubstitution for algebraic systems was improved by D. Phusanga (see [10]).

In 2016 Th. Changphas, K. Denecke and B. Pibaljommee [2] restricted to study a
hypersubstitution for algebras which maps any operation symbols to a linear term of the
same arity, called a linear hypersubstitution for algebras. As a consequence, they proved that
the set of all linear hypersubstitutions forms a monoid.

Next, we want to recall some basic concepts for the discussion of our main results.
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2. Preliminaries
We present the concepts about the partial clone of linear terms and the partial clone of linear
formulas and recall some properties of these structures (for more detail see [8]). For the basic
knowledge of hypersubstitutions, the reader is refered to [7].

Definition 3 ([8]). Let n, p ∈N+ with p ≥ n. A p-ary linear term of type (n) is defined in the
following inductive way:

(i) Every xi ∈ X p is a p-ary linear term of type (n).

(ii) If t1, . . . , tn are p-ary linear terms of type (n) with var(tl)∩var(tk)=; for all 1≤ l < k ≤ n
and f is an n-ary operation symbol, then f (t1, . . . , tn) is a p-ary linear term of type (n).

Let W lin
(n) (X p) be the set of all p-ary linear terms of type (n) and let W lin

(n) (X ) :=⋃
p∈N+ W lin

(n) (X p)
be the set of all linear terms of type (n).

Now, we recall the concept of superposition of linear terms of type (n), this leads us to forms
the many-sorted algebra which is called the clone of linear terms.

Definition 4 ([8]). Let p, q ∈ N+ with p ≤ q, t ∈ W lin
(n) (X p) and s1, . . . , sp ∈ W lin

(n) (Xq) with
var(sl)∩var(sk) =; for all 1 ≤ l < k ≤ p. Then we define a superposition operation of linear
terms

Slin p
q : W lin

(n) (X p)× (W lin
(n) (Xq))p (→W lin

(n) (Xq)

inductively by the following steps:

(i) If t = xi for 1≤ i ≤ p, then Slin p
q(xi, s1, . . . , sp) := si .

(ii) If t = f (t1, . . . , tp), then

Slin p
q( f (t1, . . . , tp), s1, . . . , sp) := f (Slin p

q(t1, s1, . . . , sp), . . . ,Slin p
q(tp, s1, . . . , sp)).

On the set W lin
(n) (X p) of all p-ary linear terms of type (n), we establish the many-sorted

algebra of type (p+1, . . . ,0, . . . ,0), by using the (p+1)-ary superposition operation Slin p
q as we

already defined in Definition 4 and adding the variables x1, . . . , xp as nullary operations, call
projections. Then we obtain the many-sorted algebra

PLinClone(n) : = ((W lin
(n) (X p))p∈N+ , (Slin p

q)p≤q,p,q∈N+ , (xi)i≤p,i∈N+),

which is called the partial clone of linear terms of type (n).

Next, some properties of PLinClone(n) will be presented.

Theorem 1 ([8]). The many sorted algebra PLinClone(n) satisfies the following equations:
(LC1) Slin p

q(Slin r
p(t, t1, . . . , tr), s1, . . . , sp)= Slin r

q(t,Slin p
q(t1, s1, . . . , sp), . . . ,Slin p

q(tr, s1, . . . , sp)),

(LC2) Slin p
q(xi, t1, . . . , tp)= ti for 1≤ i ≤ p,

(LC3) Slin p
p(t, x1, . . . , xp)= t,

where p, q, r ∈N+ with r ≤ p ≤ q, t ∈ W lin
(n) (Xr), t1, . . . , tr ∈ W lin

(n) (X p), var(tl)∩var(tk) =; for all
1≤ l < k ≤ r and s1, . . . , sp ∈W lin

(n) (Xq), var(sl)∩var(sk)=; for all 1≤ l < k ≤ p.
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Using the definition of the partial clone of linear terms, we defined the new concepts of the
partial clone of linear formulas.

Let var(F) be the set of all variables occurring in the formula F .

Definition 5 ([8]). Let m,n, p ∈N+ with p ≥ m. A p-ary quantifier free linear formula of type
((n), (m)) (for simply, linear formula) is defined as follows:

(i) If s, t are p-ary linear terms of type (n) and var(s)∩var(t)=;, then the equation s ≈ t is a
p-ary quantifier freelinear formula of type ((n), (m)).

(ii) If t1, . . . , tm are p-ary linear terms of type (n) with var(tl)∩var(tk)=; for all 1≤ l < k ≤ m
and γ is an m-ary relation symbol, then γ(t1, . . . , tm) is a p-ary quantifier free linear
formula of type ((n), (m)).

(iii) If F is a p-ary quantifier free linear formula of type ((n), (m)), then ¬F is a p-ary quantifier
free linear formula of type ((n), (m)).

(iv) If F1 and F2 are p-ary quantifier free linear formulas of type ((n), (m)) and var(F1)∩
var(F2)=;, then F1 ∨F2 is a p-ary quantifier free linear formula of type ((n), (m)).

Let F lin
((n),(m))(W

lin
(n) (X p)) be the set of all p-ary quantifier free linear formulas of type ((n), (m))

and let F lin
((n),(m))(W

lin
(n) (X )) := ⋃

p∈N+ F lin
((n),(m))(W

lin
(n) (X p)) be the set of all quantifier free linear

formulas of type ((n), (m)).

Remark 1. The linear formulas defined by (i) and (ii) are called atomic linear formulas.

Example 1. Let ((n), (m))= ((2), (2)) be a type, i.e., we have one binary operation symbol f and
one binary relation symbol γ and let X2 = {x1, x2}. Then the binary atomic linear formulas
of type ((2), (2)) are x1 ≈ x2, x2 ≈ x1,γ(x1, x2),γ(x2, x1). Moreover, we obtained all other linear
formulas of type ((2), (2)) from binary atomic linear formulas of type ((2), (2)) by using the logical
connections ¬ and ∨.

Lemma 1 ([1]). Suppose F is a formula in F(τ,τ′)(X ). Then the following pair of formula is
equivalent: ¬(¬F)≡ F .

Moreover, we also extended the definition of superposition of linear terms to superposition
of linear formulas as follows:

Definition 6 ([8]). Let p, q ∈ N+ with p ≤ q, F ∈ F lin
((n),(m))(W

lin
(n) (X p)) and s1, . . . , sp ∈ W lin

(n) (Xq)
with var(sl)∩var(sk)=; for all 1≤ l < k ≤ p. Then we define the superposition operation

Rlin p
q : F lin

((n),(m))(W
lin
(n) (X p))× (W lin

(n) (Xq))p (→F lin
((n),(m))(W

lin
(n) (Xq))

by the following steps:

(i) If F has the form s ≈ t, then

Rlin p
q(s ≈ t, s1, . . . , sp) := Slin p

q(s, s1, . . . , sp)≈ Slin p
q(t, s1, . . . , sp).

(ii) If F has the form γ(t1, . . . , tp), then

Rlin p
q(γ(t1, . . . , tp), s1, . . . , sp) := γ(Slin p

q(t1, s1, . . . , sp), . . . ,Slin p
q(tp, s1, . . . , sp)).
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(iii) If F ∈F lin
((n),(m))(W

lin
(n) (X p)) and assume that Rlin p

q(F, s1, . . . , sp) is already defined, then

Rlin p
q(¬F, s1, . . . , sp) :=¬Rlin p

q(F, s1, . . . , sp).

(iv) If F1,F2 ∈F lin
((n),(m))(W

lin
(n) (X p)) and supposed that

Rlin p
q(Fl , s1, . . . , sp) is already defined for all l ∈ {1,2}, then

Rlin p
q(F1 ∨F2, s1, . . . , sp) := Rlin p

q(F1, s1, . . . , sp)∨Rlin p
q(F2, s1, . . . , sp).

Now, we may consider the many-sorted algebra:

PLinFormClone((n), (m)) := ((W lin
(n) (X p))p∈N+ , (F lin

((n),(m))(W
lin
(n) (X p)))p∈N+ ,

(Slin p
q)p≤q,p,q∈N+ , (Rlin p

q)p≤q,p,q∈N+ , (xi)i≤p,i∈N+),

which is called the partial clone of linear formula of type ((n), (m)).

Theorem 2. ([8]) The many sorted algebra PLin FormClone((n), (m)) satisfies the following
properties:
(LFC1) Rlin p

q (Rlin r
p(F, t1, . . . , tr), s1, . . . , sp)= Rlin r

q(F,Slin p
q (t1, s1, . . . , sp), . . . ,Slin p

q (tr, s1, . . . , sp)),

(LFC2) Rlin p
p(F, x1, . . . , xp)= F ,

where p, q, r ∈N+ with r ≤ p ≤ q, F ∈F lin
((n),(m))(W

lin
(n) (Xr)), t1, . . . , tr ∈W lin

(n) (X p), var(tl)∩var(tk)=
; for all 1≤ l < k ≤ r and s1, . . . , sp ∈W lin

(n) (Xq), var(sl)∩var(sk)=; for all 1≤ l < k ≤ p.

After this preliminaries, we will start our main results in the next section.

3. Monoid of Linear Hypersubstitutions for Algebraic Systems of
Type ((n),(m))

The main propose of this section is to introduce the new algebraic structure and consider some
semigroup properties. We will start with giving the concept of linear hypersubstitutions for
algebraic systems of type ((n), (m)) for fixed natural numbers n,m ≥ 1 and n ≥ m by using the
elementary concepts as we recalled in the previous section.

Let us start with the definition of the based set of our new structure.

Definition 7. Let n ∈N+. A linear hypersubstitution for algebraic systems of type ((n), (m)) is a
mapping σ : { f }∪ {γ}→W lin

(n) (Xn)∪F lin
((n),(m))(W

lin
(n) (Xm)) which maps an n-ary operation symbol f

to an n-ary linear term of type (n) and maps an m-ary relation symbol γ to an m-ary quantifier
free linear formula of type ((n), (m)). We denote the set of all linear hypersubstitutions for
algebraic systems of type ((n), (m)) by Hyplin((n), (m)).

From now on, every element in Hyplin((n), (m)) is denoted by σt,F which maps an n-ary
operation symbol f and an m-ary relation symbol γ to a linear term t and a linear formula F ,
respectively. That is σt,F ( f )= t and σt,F (γ)= F .
Let Sn be the set of all permutations on {1, . . . ,n}.
To define a binary operation on Hyplin((n), (m)), we extend a linear hypersubstitution for
algebraic systems σ to a mapping σ̂.
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Definition 8. Let σt,F ∈Hyplin((n), (m)). Then we define a mapping

σ̂t,F : W lin
(n) (Xn)∪F lin

((n),(m))(W
lin
(n) (Xm))→W lin

(n) (Xn)∪F lin
((n),(m))(W

lin
(n) (Xm))

inductively defined as follows:

(i) σ̂t,F [xi] := xi for every i = 1, . . . ,n.

(ii) σ̂t,F [ f (xπ(1), . . . , xπ(n))] := Slin n
n(σt,F ( f ), σ̂t,F [xπ(1)], . . . , σ̂t,F [xπ(n)]) where π ∈ Sn.

(iii) σ̂t,F [xl ≈ xk] := σ̂t,F [xl]≈ σ̂t,F [xl] where l,k ∈ {1, . . . ,m} and l 6= k.

(iv) σ̂t,F [γ(xφ(1), . . . , xφ(m)] := Rlin m
m(σt,F (γ), σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]) where φ ∈ Sm.

(v) σ̂t,F [¬F] :=¬σ̂t,F [F] for F ∈F lin
((n),(m))(W

lin
(n) (Xm)).

(vi) σ̂t,F [F1 ∨F2] := σ̂t,F [F1]∨ σ̂t,F [F2].

Example 2. Let ((n), (m))= ((3), (3)) be a type, i.e., we have one ternary operation symbol and one
ternary relation symbol, say f and γ, respectively. Let σ : { f }∪{γ}→W lin

(3) (X3)∪F lin
((3),(3))(W

lin
(3) (X3))

where σt,F ( f )= f (x2, x1, x3) and σt,F (γ)= x3 ≈ x1. Then, we have

σ̂t,F [ f (x3, x1, x2)]= Slin 3
3(σt,F ( f ), σ̂t,F [x3], σ̂t,F [x1], σ̂t,F [x2])

= Slin 3
3( f (x2, x1, x3), x3, x1, x2)

= f (x1, x3, x2),

and

σ̂t,F [γ(x1, x3, x2)]= Rlin 3
3(σt,F (γ), σ̂t,F [x1], σ̂t,F [x3], σ̂t,F [x2])

= Slin 3
3(x3 ≈ x1, x1, x3, x2)

= Slin 3
3(x3, x1, x3, x2)≈ Slin 3

3(x1, x1, x3, x2)

= x2 ≈ x1.

Now, we define a binary operation ◦r on Hyplin((n), (m)) as follows:

Definition 9. Let t1, t2 ∈ W lin
(n) (Xn),F1,F2 ∈ F lin

((n),(m))(W
lin
(n) (Xm)), σt1,F1 ,σt2,F2 ∈ Hyplin((n), (m))

and ◦ is the usual composition of mappings. Then we define a binary operation ◦r on
Hyplin((n), (m)) by

σt1,F1 ◦r σt2,F2 := σ̂t1,F1 ◦σt2,F2 .

Next, we prove that a binary operation ◦r satisfies the associative law. To get our result, we
need some preparation as follows:

Lemma 2. Let t ∈ W lin
(n) (Xn), β ∈ F lin

((n),(m))(W
lin
(n) (Xm)), π ∈ Sn and φ ∈ Sm. Then for each

σt,F ∈Hyplin((n), (m)), we have
(i) σ̂t,F [Slin n

n(t, xπ(1), . . . , xπ(n))]= Slin n
n(σ̂t,F [t], σ̂t,F [xπ(1)], ..., σ̂t,F [xπ(n)]).

(ii) σ̂t,F [Rlin m
m(β, xφ(1), . . . , xφ(m))]= Rlin m

m(σ̂t,F [β], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]).

Proof. (i) Let t ∈ W lin
(n) (Xn). We give a proof by induction on the complexity of a linear

term t. If t = xi for all 1 ≤ i ≤ n, the proof is obvious. If t = f (xπ(1), . . . , xπ(n)) where
π ∈ Sn and for every l ∈ {1, . . .n} we assume that σ̂t,F[Slin n

n(xπ(l), xπ(1), . . . , xπ(n))] =

Communications in Mathematics and Applications, Vol. 10, No. 1, pp. 1–18, 2019



8 Regularity of Linear Hypersubstitutions for Algebraic Systems. . . : T. Kumduang and S. Leeratanavalee

Slin n
n(σ̂t,F [xπ(l)], σ̂t,F [xπ(1)], . . . , σ̂t,F [xπ(n)]), then by Theorem 1, we get

σ̂t,F [Slin n
n( f (xπ(1), . . . , xπ(n)), xπ(1), . . . , xπ(n))]

= Slin n
n(σt,F ( f ), σ̂t,F [Slin n

n(xπ(1), xπ(1), . . . , xπ(n))], . . . , σ̂t,F [Slin n
n(xπ(n), xπ(1), . . . , xπ(n))])

= Slin n
n(σt,F ( f ),Slin n

n(σ̂t,F [xπ(1)], σ̂t,F [xπ(1)], . . . , σ̂t,F [xπ(n)]), . . . ,

Slin n
n(σ̂t,F [xπ(n)], σ̂t,F [xπ(1)], . . . , σ̂t,F [xπ(n)])

= Slin n
n(Slin n

n(σt,F ( f ), σ̂t,F [xπ(1)], . . . , σ̂t,F [xπ(n)]), σ̂t,F [xπ(1)], . . . , σ̂t,F [xπ(n)])

= Slin n
n(σ̂t,F [ f (xπ(1), . . . , xπ(n))], σ̂t,F [xπ(1)], . . . , σ̂t,F [xπ(n)]).

(ii) Let β ∈F lin
((n),(m))(W

lin
(n) (Xm)). We give a proof by the following steps.

If β has the form xl ≈ xk where l,k ∈ {1, . . . ,m} and l 6= k, then we have

σ̂t,F [Rlin m
m(xl ≈ xk, xφ(1), . . . , xφ(m))]= Slin m

m(σ̂t,F [xl], σ̂t,F [xφ(1)], . . . , , σ̂[xφ(m)])

≈ Slin m
m(σ̂t,F [xk], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)])

= Rlin m
m(σ̂t,F [xl]≈ σ̂t,F [xk], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)])

= Rlin m
m(σ̂t,F [xl ≈ xk], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]).

If β has the form γ(xφ(1), . . . , xφ(m)) where φ ∈ Sm, then by Theorem 2 we have

σ̂[Rlin m
m(γ(xφ(1), . . . , xφ(m)), xφ(1), . . . , xφ(m))]

= Rlin m
m(σt,F (γ), σ̂t,F [Slin m

m(xφ(1), xφ(1), . . . , xφ(m))], . . . ,

= σ̂t,F [Slin m
m(xφ(m), xφ(1), . . . , xφ(m))])

= Rlin m
m(σt,F (γ),Slin m

m(σ̂t,F [xφ(1)], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]), . . . ,

Slin m
m(σ̂t,F [xφ(m)], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]))

= Rlin m
m(Rlin m

m(σt,F (γ), σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]), σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)])

= Rlin m
m(σ̂t,F [γ(xφ(1), . . . , xφ(m))], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]).

If β has the form ¬F and assume that

σ̂t,F [Rlin m
m(F, xφ(1), . . . , xφ(m))]= Rlin m

m(σ̂t,F [F], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]),

then

σ̂t,F [Rlin m
m(¬F, xφ(1), . . . , xφ(m))]=¬(σ̂t,F [Rlin m

m(F, xφ(1), . . . , xφ(m))])

=¬(Rlin m
m(σ̂t,F [F], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]))

= Rlin m
m(σ̂t,F [¬F], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]).

If β has the form F1 ∨F2 and assume that

σ̂t,F [Rlin m
m(Fl , xφ(1), . . . , xφ(m))]= Rlin m

m(σ̂t,F [Fl], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]) for all l = 1,2,

then, we consider

σ̂t,F [Rlin m
m(F1 ∨F2, xφ(1), . . . , xφ(m))]

= σ̂t,F [Rlin m
m(F1, xφ(1), . . . , xφ(m))]∨ σ̂t,F [Rlin m

m(F2, xφ(1), . . . , xφ(m))]

= Rlin m
m(σ̂t,F [F1 ∨F2], σ̂t,F [xφ(1)], . . . , σ̂t,F [xφ(m)]).

Now, we can say that the extension σ̂t,F of a linear hypersubstitution σt,F of type ((n), (m))
is an endomorphism. As a result of Lemma 2, we have the following lemma.
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Lemma 3. Let t1, t2 ∈ W lin
(n) (Xn) and F1,F2 ∈ F lin

((n),(m))(W
lin
(n) (Xm)). Then for any σt1,F1 ,σt2,F2 ∈

Hyplin((n), (m)), we have

(σt1,F1 ◦r σt2,F2 )̂ = σ̂t1,F1 ◦ σ̂t2,F2 .

Proof. Let t ∈W lin
(n) (Xn). We give a proof by induction on the complexity of a linear term t. If

t = xi ; 1≤ i ≤ n, then (σt1,F1 ◦rσt2,F2 )̂ [xi]= xi = σ̂t1,F1[xi]= σ̂t1,F1[σ̂t2,F2[xi]]= (σ̂t1,F1 ◦ σ̂t2,F2)[xi].

If t = f (xπ(1), . . . , xπ(n)) where π ∈ Sn, then we have

(σt1,F1 ◦r σt2,F2 )̂ [ f (xπ(1), . . . , xπ(n))]

= Slin n
n(σ̂t1,F1[σt2,F2( f )], σ̂t1,F1[σ̂t2,F2[xπ(1)]], . . . , σ̂t1,F1[σ̂t2,F2[xπ(n)]])

= σ̂t1,F1[Slin n
n(σt2,F2( f ), σ̂t2,F2[xπ(1)], . . . , σ̂t2,F2[xπ(n)])]

= (σ̂t1,F1 ◦ σ̂t2,F2)[ f (xπ(1), . . . , xπ(n))].

Let β ∈F lin
((n),(m))(W

lin
(n) (Xm)). We give a proof by the following steps.

If β has the form xl ≈ xk where l,k ∈ {1, . . . ,m} and l 6= k, then

(σt1,F1 ◦r σt2,F2 )̂[xl ≈ xk]= σ̂t1,F1[σ̂t2,F2[xl]]≈ σ̂t1,F1[σ̂t2,F2[xk]]

= σ̂t1,F1[σ̂t2,F2[xl]≈ σ̂t2,F2[xk]]

= (σ̂t1,F1 ◦ σ̂t2,F2)[xl ≈ xk].

If β has the form γ(xφ(1), . . . , xφ(m)) where φ ∈ Sm, then by Theorem 2 we have

(σt1,F1 ◦r σt2,F2 )̂ [γ(xφ(1), . . . , xφ(m))]

= Rlin m
m((σ̂t1,F1[σt2,F2(γ)], σ̂t1,F1[σ̂t2,F2[xφ(1)]], . . . , σ̂t1,F1[σ̂t2,F2[xφ(m)]])

= σ̂t1,F1[Rlin m
m(σt2,F2[γ], σ̂t1,F1[xφ(1)], . . . , σ̂t1,F1[xφ(m)])]

= (σ̂t1,F1 ◦ σ̂t2,F2)[γ(xφ(1), . . . , xφ(m))].

If β has the form ¬F and we assume that (σt1,F1 ◦r σt2,F2 )̂ [F]= (σ̂t1,F1 ◦ σ̂t2,F2)[F], then

(σt1,F1 ◦r σt2,F2 )̂ [¬F]=¬(σ̂t1,F1[σ̂t2,F2[F]])

= σ̂t1,F1[¬(σ̂t2,F2[F])]

= σ̂t1,F1[σ̂t2,F2[¬(F)]]

= (σ̂t1,F1 ◦ σ̂t2,F2)[¬(F)].

If β has the form F1 ∨F2 and we assume that (σt1,F1 ◦r σt2,F2 )̂ [Fl] = (σ̂t1,F1 ◦ σ̂t2,F2)[Fl] for all
l = 1,2 , then

(σt1,F1 ◦r σt2,F2 )̂ [F1 ∨F2]= σ̂t1,F1[σ̂t2,F2[F1]]∨ σ̂t1,F1[σ̂t2,F2[F2]]

= σ̂t1,F1[σ̂t2,F2[F1]∨ σ̂t2,F2[F2]]

= σ̂t1,F1[σ̂t2,F2[F1 ∨F2]

= (σ̂t1,F1 ◦ σ̂t2,F2)[F1 ∨F2].

It follows from Lemma 3 that the binary operation ◦r satisfies the associative law. We prove
this fact in the next lamma.

Communications in Mathematics and Applications, Vol. 10, No. 1, pp. 1–18, 2019



10 Regularity of Linear Hypersubstitutions for Algebraic Systems. . . : T. Kumduang and S. Leeratanavalee

Lemma 4. Let t1, t2, t3 ∈W lin
(n) (Xn),F1,F2,F3 ∈F lin

((n),(m))(W
lin
(n) (Xm)). Then for any σt1,F1 ,σt2,F2 ,σt3,F3 ∈

Hyplin((n), (m)), we have

(σt1,F1 ◦r σt2,F2)◦r σt3,F3 =σt1,F1 ◦r (σt2,F2 ◦r σt3,F3).

Proof. Using Lemma 3 and using the fact that ◦ satisfies the associative law, it can be shown
that ◦r satisfies the associative law. In fact, we have

(σt1,F1 ◦r σt2,F2)◦r σt3,F3 = (σt1,F1 ◦r σt2,F2 )̂ ◦σt3,F3

= (σ̂t1,F1 ◦ σ̂t2,F2)◦σt3,F3

= σ̂t1,F1 ◦ (σ̂t2,F2 ◦σt3,F3)

= σ̂t1,F1 ◦ (σt2,F2 ◦r σt3,F3)

=σt1,F1 ◦r (σt2,F2 ◦r σt3,F3).

Let σid be a linear hypersubstitution for algebraic systems which maps the operation
symbol f to the linear term f (x1, . . . , xn) and maps the relational symbol γ to the linear formula
γ(x1, . . . , xm), i.e. σid( f )= f (x1, . . . , xn) and σid(γ)= γ(x1, . . . , xm).

Lemma 5. For any linear term t ∈W lin
(n) (Xn) and linear formula β ∈F lin

((n),(m))(W
lin
(n) (Xm)), we have

σ̂id[t]= t and σ̂id[β]=β.

Proof. The proof is straightforward and hence omitted.

A linear hypersubstitution σid is claimed to be an identity, which we will prove this fact in
the next lemma.

Lemma 6. Let σid ∈Hyplin((n), (m)). Then σid is an identity element with respect to ◦r .

Proof. First, we prove that σid is a left identity element by using Lemma 5. Let σt,F ∈
Hyplin((n), (m)). Then we have (σid ◦r σt,F)( f ) = (σ̂id ◦σt,F)( f ) = σ̂id[σt,F( f )] =σt,F( f ). Now, we
show that σid is a right identity element. Let σt,F ∈Hyplin((n), (m)). By Theorem 1, we obtain
that (σt,F ◦r σid)( f ) = σ̂t,F[ f (x1, . . . , xn)] = Slin n

n(σt,F( f ), x1, . . . , xn) = σt,F( f ) and by Theorem 2
we have (σt,F ◦r σid)(γ) = σ̂t,F[γ(x1, . . . , xm)] = Rlin m

m(σt,F(γ), x1, . . . , xm) = σt,F(γ). Therefore,
σt,F ◦r σid =σt,F =σid ◦r σt,F .

Theorem 3. H yplin((n), (m)) := (Hyplin((n), (m)),◦r,σid) is a monoid.

Proof. From Lemma 4 and 6, the conclusion holds.

Next, we study some semigroup properties of H yplin((n), (m)), especially we characterize
idempotency and regularity of σt,F ∈Hyplin((n), (m)).

4. Regularity of H yplin((n), (m))
Firstly, we separate the classes of all linear hypersubstitutions of type ((n), (m)) by considering
the image of a mapping σt,F in several forms. Since the set W lin

(n) (Xn) contains elements in
following forms: xi ∈ Xn and f (xπ(1), . . . , xπ(n)) where π ∈ Sn and the set F lin

((n),(m))(W
lin
(n) (Xm))
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contains all m-ary linear formulas in four forms as follows: xl ≈ xk, γ(xφ(1), . . . , xφ(m)) with
φ ∈ Sm, these lead us to use the connective “negation” and “or” for the first and second forms. So
we can separate the class of linear hypersubstitutions into sixteen classes and we denote by the
following notations:

For any σt,F ∈ Hyplin((n), (m)),π ∈ Sn,φ ∈ Sm, l,k, i1, i2, i3, i4 ∈ {1, . . . ,m} with l 6= k and
i1, i2, i3, i4 are all distinct we denote:

C1 := {σt,F | t = xi ∈ Xn,F = xl ≈ xk},
C2 := {σt,F | t = xi ∈ Xn,F = γ(xφ(1), . . . , xφ(m))},
C3 := {σt,F | t = xi ∈ Xn,F =¬(xl ≈ xk)},
C4 := {σt,F | t = xi ∈ Xn,F =¬γ(xφ(1), . . . , xφ(m))},
C5 := {σt,F | t = xi ∈ Xn,F = (xi1 ≈ xi2)∨ (xi3 ≈ xi4)},
C6 := {σt,F | t = xi ∈ Xn,F =¬(xi1 ≈ xi2)∨ (xi3 ≈ xi4)},
C7 := {σt,F | t = xi ∈ Xn,F = (xi1 ≈ xi2)∨¬(xi3 ≈ xi4)},
C8 := {σt,F | t = xi ∈ Xn,F =¬(xi1 ≈ xi2)∨¬(xi3 ≈ xi4)},
C9 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F = xl ≈ xk},
C10 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F = γ(xφ(1), . . . , xφ(m))},
C11 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F =¬(xl ≈ xk)},
C12 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F =¬γ(xφ(1), . . . , xφ(m))},
C13 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F = (xi1 ≈ xi2)∨ (xi3 ≈ xi4)},
C14 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F =¬(xi1 ≈ xi2)∨ (xi3 ≈ xi4)},
C15 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F = (xi1 ≈ xi2)∨¬(xi3 ≈ xi4)},
C16 := {σt,F | t = f (xπ(1), . . . , xπ(n)),F =¬(xi1 ≈ xi2)∨¬(xi3 ≈ xi4)}.

We note that P = {C1, . . . ,C16} is a partition of Hyplin((n), (m)).
We now introduce definitions of idempotent and regular elements for Hyplin((n), (m)) with

respect to ◦r . An element σt,F ∈Hyplin((n), (m)) is said to be idempotent if σt,F ◦rσt,F =σt,F , that
is, (σt,F ◦r σt,F)( f ) = σt,F( f ) and (σt,F ◦r σt,F)(γ) = σt,F(γ) and σt,F ∈ Hyplin((n), (m)) is called
regular if there is an element σt′,F ′ ∈ Hyplin((n), (m)) such that σt,F = σt,F ◦r σt′,F ′ ◦r σt,F .
The semigroup Hyplin((n), (m)) is called regular if every element in Hyplin((n), (m)) is regular.
Furthermore, we denote the set of all idempotent and regular elements in Hyplin((n), (m)) by
E(Hyplin((n), (m))) and Reg(Hyplin((n), (m))), respectively.

First, we introduce the following lemma which is an important tool to study the idempotent
elements in H yplin((n), (m)).

Lemma 7. For each σt,F ∈Hyplin((n), (m)). Then σt,F is idempotent in

H yplin((n), (m)) if and only if σ̂t,F [t]= t and σ̂t,F [F]= F.

Proof. Assume that σt,F is idempotent. We now consider

σ̂t,F [t]= σ̂t,F [σt,F ( f )]= (σ̂t,F ◦σt,F )( f )= (σt,F ◦r σt,F )( f )

=σt,F ( f )= t
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and

σ̂t,F [F]= σ̂t,F [σt,F (γ)]= (σ̂t,F ◦σt,F )(γ)
= (σt,F ◦r σt,F )(γ)=σt,F (γ)
= F.

Conversely, let σ̂t,F [t]= t and σ̂t,F [F]= F . Then, we have

(σt,F ◦r σt,F )( f )= (σ̂t,F ◦σt,F )( f )= σ̂t,F [σt,F ( f )]
= σ̂t,F [t]= t
=σt,F ( f )

and

(σt,F ◦r σt,F )(γ)= (σ̂t,F ◦σt,F )(γ)= σ̂t,F [σt,F (γ)]
= σ̂t,F [F]= F
=σt,F (γ).

This shows that σt,F is idempotent.

Theorem 4. Let σt,F ∈Hyplin((n), (m)). Then the following statements hold.

(i) Every σt,F ∈ C1 is idempotent.

(ii) Every σt,F ∈ C3 is idempotent.

(iii) Every σt,F ∈ C4 is not idempotent.

(iv) Every σt,F ∈ C5 is idempotent.

(v) Every σt,F ∈ C6 is idempotent.

(vi) Every σt,F ∈ C7 is idempotent.

(vii) Every σt,F ∈ C8 is idempotent.

Proof. (i) We first prove that σt,F ∈ C1 is idempotent. To do this, let σt,F ∈ B1. Then t = xi ,
F = xl ≈ xk. We consider σ̂t,F[xi] = xi and σ̂t,F[xl ≈ xk] = σ̂t,F[xl] ≈ σ̂t,F[xk] = xl ≈ xk. By
Lemma 7, σt,F is idempotent.

(ii) Let σt,F ∈ C3. Then t = xi,F =¬(xl ≈ xk) so that σ̂t,F [xi]= xi and σ̂t,F [¬(xl ≈ xk)]=¬(σ̂t,F [xl ≈
xk])=¬(σ̂t,F [xl]≈ σ̂t,F [xk])=¬(xl ≈ xk). By Lemma 7, σt,F is idempotent.

(iii) Let σt,F ∈ C4. Then t = xi,F = ¬γ(xφ(1), . . . , xφ(m)). To show that it is not idempotent, we
consider

σ̂t,F [¬γ(xφ(1), . . . , xφ(m))]=¬(Rlin m
m(¬γ(xφ(1), . . . , xφ(m)), xφ(1), . . . , xφ(m)))

=¬(¬(γ(xφ(φ(1)), . . . , xφ(φ(m)))))
= γ(xφ(φ(1)), . . . , xφ(φ(m)))
6= ¬γ(xφ(1), . . . , xφ(m)).

Therefore, every σt,F ∈ C4 is not idempotent.

(iv) Let σt,F ∈ C5. Then t = xi and F = (xi1 ≈ xi2)∨ (xi3 ≈ xi4). Clearly, σ̂t,F[xi] = xi . Next, we
consider

σ̂t,F [(xi1 ≈ xi2)∨ (xi3 ≈ xi4)]= σ̂t,F [xi1 ≈ xi2]∨ σ̂t,F [xi3 ≈ xi4]
= σ̂t,F [xi1]≈ σ̂t,F [xi2]∨ σ̂t,F [xi3]≈ σ̂t,F [xi4]
= (xi1 ≈ xi2)∨ (xi3 ≈ xi4).
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Thus σt,F ∈ C5 is idempotent.

(v)-(vii) Similarly to the proof of (iv) .

The following example shows that there is an element in C2 which is not idempotent.

Example 3. Let ((4), (3)) be a type, i.e., we have one quaternary operation symbol and one
ternary relation symbol, say f and γ, respectively. If σt,F ∈ B2 with t = x4 and F = γ(x2, x3, x1),
then σ̂t,F[F] = σ̂t,F[γ(x2, x3, x1)] = Rlin 3

3(σt,F(γ), x2, x3, x1) = Rlin 3
3(γ(x2, x3, x1), x2, x3, x1) =

γ(x3, x1, x2, ) 6= F. So, σt,F in this form is not idempotent.

We have to find some necessary conditions for the elements in C2 which are idempotent.
The next theorem shows such condition.

Theorem 5. Let σt,F ∈ C2. Then σt,F is idempotent if and only if φ( j)= j for all j = 1, . . . ,m.

Proof. Let σt,F ∈ C2. Then we have t = xi,F = γ(xφ(1), . . . , xφ(m)). Assume that φ(i) 6= i for some
i = 1, . . . ,m. We now consider σ̂t,F[γ(xφ(1), . . . , xφ(m))] = Rlin m

m(γ(xφ(1), . . . , xφ(m)), xφ(1), . . . , xφ(m)) =
γ(xφ(φ(1)), . . . , xφ(φ(m))) and by assumption we have that σ̂t,F [γ(xφ(1), . . . , xφ(m))]= γ(xφ(φ(1)), . . . , xφ(φ(m)))
6= γ(xφ(1), . . . , xφ(m)) and thus σt,F is not idempotent. Conversely, assume that the condition holds.
Clearly, σ̂t,F[xi] = xi and it is not hard to verify that σ̂t,F[γ(xφ(1), . . . , xφ(m))] = γ(xφ(1), . . . , xφ(m)).
Thus by using Lemma 7, we get that σt,F is idempotent.

Now, it comes to characterize the idempotent elements in C9, . . . ,C16. We first show that all
elements in C12 are not idempotent and then show that the idempotency of C9, . . . ,C16 need the
some conditions. In fact, we have the following results.

Theorem 6. Every σt,F ∈ C12 is not idempotent.

Proof. Let σt,F ∈ C12 with t = f (xπ(1), . . . , xπ(n)),F = ¬γ(xφ(1), . . . , xφ(m)). Suppose the contrary
that σt,F is idempotent, by Lemma 7, we obtain that σ̂t,F[t] = t and σ̂t,F[F] = F . Obviously,
σ̂t,F[¬γ(xφ(1), . . . , xφ(m))] ¬γ(xφ(1), . . . , xφ(m)) since we have already shown this inequality holds
in Theorem 4(iii). It contradicts to the result of our assumption. Therefore, σt,F is not
idempotent.

We remark here that if σt,F ∈ C9, . . . ,C16, then σ̂t,F [F] has the same situation in the previous
theorems. So, we are interesting in the way to find some conditions for the idempotency of
σ̂t,F [t]. The next theorem shows that if we set some conditions, then we get the characterization
of idempotent elements in C9, . . . ,C16.

Theorem 7. Let σt,F ∈Hyplin((n), (m)). Then the following statements hold.
(i) σt,F ∈ C9 is idempotent if and only if π(i)= i for all i = 1, . . . ,n.

(ii) σt,F ∈ C10 is idempotent if and only if π(i) = i for all i = 1, . . . ,n and φ( j) = j for all
j = 1, . . . ,m.

(iii) σt,F ∈ C11 is idempotent if and only if π(i)= i for all i = 1, . . . ,n.

(iv) σt,F ∈ C13 is idempotent if and only if π(i)= i for all i = 1, . . . ,n.
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(v) σt,F ∈ C14 is idempotent if and only if π(i)= i for all i = 1, . . . ,n.

(vi) σt,F ∈ C15 is idempotent if and only if π(i)= i for all i = 1, . . . ,n.

(vii) σt,F ∈ C16 is idempotent if and only if π(i)= i for all i = 1, . . . ,n.

Proof. (i) Let σt,F ∈ B9. Then t = f (xπ(1), . . . , xπ(n)),F = xl ≈ xk. Now we may assume that π(i) 6=
i for some i = 1, . . . ,n. Then σ̂t,F[ f (xπ(1), . . . , xπ(n))] = Slin n

n( f (xπ(1), . . . , xπ(n)), xπ(1), . . . , xπ(n)) =
f (xπ(π(1)), . . . , xπ(π(n))). By our assumption,

f (xπ(π(1)), . . . , xπ(π(n))) 6= f (xπ(1), . . . , xπ(n))

and thus σt,F is not idempotent. Conversely, assume that the condition holds. We now consider
σ̂t,F [ f (xπ(1), . . . , xπ(n))]= σ̂t,F [ f (x1, . . . , xn)]= f (x1, . . . , xn)= f (xπ(1), . . . , xπ(n)) so that σ̂t,F [t]= t. We
can prove similarly to the proof of Theorem 4 (i) that σ̂t,F [F]= F . Therefore, σt,F is idempotent.

(ii) Let σt,F ∈ C10. Then t = f (xπ(1), . . . , xπ(n)),F = γ(xφ(1), . . . , xφ(m)). We first assume that π(i) 6= i
for some i = 1, . . . ,n or φ( j) 6= j for some j = 1, . . . ,m. Then by the same manner as in the proof of
(i) we can show that σt,F is not idempotent. Conversely, assume that the condition holds. Clearly,
σ̂t,F[ f (xπ(1), . . . , xπ(n))] = f (x1, . . . , xn) = f (xπ(1), . . . , xπ(n)) and thus σ̂t,F[t] = t. Moreover, we have
that σ̂t,F [γ(xφ(1), xφ(2))]= σ̂t,F [γ(x1, . . . , xm)]= γ(x1, . . . , xm), that is σ̂t,F [F]= F . By Lemma 7, σt,F

is idempotent.

(iii) By using Lemma 1, we can prove similarly to the proof of (i) that this statement holds.

(iv)-(vii) It is easy to verify that these statements hold.

Now, the characterization of idempotent linear hypersubstitutions are completed. Next,
we study the regularity of linear hypersubstitutions. In general semigroups, we known that
every idempotent element is regular. To characterize which linear hypersubstitutions in
Hyplin((n), (m)) are regular, we consider only for the case σt,F which is not idempotent. The
characterization of regularity in Hyplin((n), (m)) can be shown in the next theorem.

Theorem 8. Let σt,F ∈Hyplin((n), (m)). Then the following statements hold.

(i) Every σt,F ∈ C2 is regular.

(ii) Every σt,F ∈ C4 is regular.

(iii) Every σt,F ∈ C9 is regular.

(iv) Every σt,F ∈ C10 is regular.

(v) Every σt,F ∈ C11 is regular.

(vi) Every σt,F ∈ C12 is regular.

(vii) Every σt,F ∈ C13 is regular.

(viii) Every σt,F ∈ C14 is regular.

(ix) Every σt,F ∈ C15 is regular.

(x) Every σt,F ∈ C16 is regular.

Proof. (i) Let σt,F ∈ C2 with t = xi,F = γ(xφ(1), . . . , xφ(m)). We consider regularity of σt,F ∈ C2

only the case of φ( j) 6= j for some j = 1, . . . ,m. To do this, we choose σt′,F ′ ∈ C2 with t′ = xi and
F ′ = γ(xφ−1(1), . . . , xφ−1(m)) such that (σt,F ◦r σt′,F ′ ◦r σt,F )( f )= xi = (σt,F )( f ) and

(σt,F ◦r σt′,F ′ ◦r σt,F )(γ)= σ̂t,F [σ̂t′,F ′[γ(xφ(1), . . . , xφ(m))]]

= σ̂t,F [γ(xφ(φ−1(1)), . . . , xφ(φ−1(m)))]

= σ̂t,F [γ(x(φ◦φ−1)(1), . . . , x(φ◦φ−1)(m))]

= σ̂t,F [γ(x1, . . . , xm)]
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= Rlin m
m(γ(xφ(1), . . . , xφ(m)), x1, . . . , xm)

=σt,F (γ).

This implies that σt,F is regular.

(ii) Similarly to the proof of (i) and by using Lemma 1, we can show that every σt,F ∈ C4 is
regular.

(iii) Let σt,F ∈ C9 with t = f (xπ(1), . . . , xπ(n)),F = xl ≈ xk. We consider in the case of π(i) 6= i for
some i = 1, . . . ,n, then there exists σt′,F ′ ∈ C5 with t′ = f (xπ−1(1), . . . , xπ−1(n)) and F ′ = xl ≈ xk such
that

(σt,F ◦r σt′,F ′ ◦r σt,F )( f )= σ̂t,F [Slin n
n( f (xπ−1(1), . . . , xπ−1(n)), xπ(1), . . . , xπ(n))]

= σ̂t,F [ f (x(π◦π−1)(1), . . . , x(π◦π−1)(n))]

= σ̂t,F [ f (x1, . . . , xn)]

= Slin n
n( f (xπ(1), . . . , xπ(n)), x1, . . . , xn)

= f (xπ(1), . . . , xπ(n))

=σt,F ( f )

and

(σt,F ◦r σt′,F ′ ◦r σt,F )(γ)= σ̂t,F [σ̂t′,F ′[xl ≈ xk]]

= σ̂t,F [σ̂t′,F ′[xl]≈ σ̂t′,F ′[xk]]

= σ̂t,F [xl ≈ xk]

= (xl ≈ xk).

Thus σt,F is regular.

(iv) Let σt,F ∈ C10. Then t = f (xπ(1), . . . , xπ(n)),F = γ(xφ(1), . . . , xφ(m)). To prove that σt,F is regular,
we consider into three cases.

Case 1: If π(i) = i for all i = 1, . . . ,n and φ( j) 6= j for some j = 1, . . . ,m. Then there exists
σt′,F ′ ∈ C10 with t′ = f (xπ(1), . . . , xπ(n)) and F ′ = γ(xφ−1(1), . . . , xφ−1(m)) such that

(σt,F ◦r σt′,F ′ ◦r σt,F )( f )= σ̂t,F [Slin n
n( f (xπ(1), . . . , xπ(n)), xπ(1), . . . , xπ(n))]

= σ̂t,F [ f (xπ(1), . . . , xπ(n))]

= Slin n
n( f (xπ(1), . . . , xπ(n)), xπ(1), . . . , xπ(n))

= f (xπ(1), . . . , xπ(n))

=σt,F ( f ),

and similar to (i), it is easy to verify that (σt,F ◦r σt′,F ′ ◦r σt,F )(γ)=σt,F (γ).

Case 2: π(i) 6= i for some i = 1, . . . ,n and φ( j)= j for all j = 1, . . . ,m. Then there exists σt′,F ′ ∈ C10

with t′ = f (xπ−1(1), . . . , xπ−1(n)) and F ′ = γ(xφ(1), . . . , xφ(m)) such that (σt,F ◦rσt′,F ′ ◦rσt,F )( f )=σt,F ( f )
which follows from (iii) and we have

(σt,F ◦r σt′,F ′ ◦r σt,F )(γ)= σ̂t,F [Rlin m
m(γ(xφ(1), . . . , xφ(m)), xφ(1), . . . , xφ(m))]

= σ̂t,F [γ(xφ(1), . . . , xφ(m))]

= Rlin m
m(γ(xφ(1), . . . , xφ(m)), xφ(1), . . . , xφ(m))
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= γ(xφ(1), . . . , xφ(m))

=σt,F (γ).

Case 3: π(i) 6= i for some i = 1, . . . ,n and φ( j) 6= j for some j = 1, . . . ,m. Then there exists
σt′,F ′ ∈ C10 with t′ = f (xπ−1(1), . . . , xπ−1(n)) and F ′ = γ(xφ−1(1), . . . , xφ−1(m)) such that (σt,F ◦r σt′,F ′ ◦r

σt,F )( f )=σt,F ( f ) and (σt,F◦rσt′,F ′◦rσt,F )(γ)=σt,F (γ). Therefore, we conclude that σt,F is regular.

(v) This statement can be proved by using Lemma 1 and the same process as we proved in (iii).

(vi) This statement can be proved by using Lemma 1 and the same process as we proved in (iv).

(vii) Let σt,F ∈ C13. Then t = f (xπ(1), . . . , xπ(n)),F = (xi1 ≈ xi2)∨ (xi3 ≈ xi4). If π(i) 6= i for some i =
1, . . . ,n, then there exists σt′,F ′ ∈ C13 with t′ = f (xπ−1(1), . . . , xπ−1(n)) and F ′ = (xi1 ≈ xi2)∨(xi3 ≈ xi4)
such that (σt,F ◦r σt′,F ′ ◦r σt,F )( f )=σt,F ( f ) which follows from (iii) and we consider

(σt,F ◦r σt′,F ′ ◦r σt,F )(γ)= σ̂t,F [σ̂t′,F ′[xi1 ≈ xi2]∨ σ̂t′,F ′[xi3 ≈ xi4]]

= σ̂t,F [xi1 ≈ xi2 ∨ xi3 ≈ xi4]

= (xi1 ≈ xi2 ∨ xi3 ≈ xi4)

=σt,F (γ).

Hence σt,F is regular.

(viii) Let σt,F ∈ C14. Then t = f (xπ(1), . . . , xπ(n)),F =¬(xi1 ≈ xi2)∨ (xi3 ≈ xi4). If π(i) 6= i for some
i = 1, . . . ,n, then there exists σt′,F ′ ∈ C14 with t′ = f (xπ−1(1), . . . , xπ−1(n)) and F ′ =¬(xi1 ≈ xi2)∨(xi3 ≈
xi4) such that (σt,F ◦r σt′,F ′ ◦r σt,F )( f )=σt,F ( f ) which follows from (iii) and we consider

(σt,F ◦r σt′,F ′ ◦r σt,F )(γ)= σ̂t,F [σ̂t′,F ′[¬(xi1 ≈ xi2)]∨ σ̂t′,F ′[xi3 ≈ xi4]]

= σ̂t,F [¬(xi1 ≈ xi2)∨ xi3 ≈ xi4]

= σ̂t,F [¬(xi1 ≈ xi2)]∨ σ̂t,F [xi3 ≈ xi4]

=¬(xi1 ≈ xi2)∨ (xi3 ≈ xi4)

=σt,F (γ).

Hence σt,F is regular.

(ix) Let σt,F ∈ C15. Then t = f (xπ(1), . . . , xπ(n)),F = (xi1 ≈ xi2)∨¬(xi3 ≈ xi4). If π(i) 6= i for some
i = 1, . . . ,n, then there exists σt′,F ′ ∈ B15 with t′ = f (xπ−1(1), . . . , xπ−1(n)) and F ′ = (xi1 ≈ xi2)∨¬(x j1 ≈
x j2) such that (σt,F ◦r σt′,F ′ ◦r σt,F )( f )=σt,F ( f ) which follows from (iii) and we consider

(σt,F ◦r σt′,F ′ ◦r σt,F )(γ)= σ̂t,F [σ̂t′,F ′[xi1 ≈ xi2]∨ σ̂t′,F ′[¬(xi3 ≈ xi4)]]

= σ̂t,F [σ̂t′,F ′[xi1 ≈ xi2]∨¬(σ̂t′,F ′[xi3 ≈ xi4])]

= σ̂t,F [xi1 ≈ xi2 ∨¬(xi3 ≈ xi4)]

= σ̂t,F [xi1 ≈ xi2]∨¬(σ̂t,F [xi3 ≈ xi4])

= (xi1 ≈ xi2)∨¬(xi3 ≈ xi4)

=σt,F (γ).

Hence σt,F is regular.
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(x) Let σt,F ∈ C16. Then t = f (xπ(1), . . . , xπ(n)),F = ¬(xi1 ≈ xi2)∨¬(xi3 ≈ xi4). If π(i) 6= i for
some i = 1, . . . ,n, then there exists σt′,F ′ ∈ C16 with t′ = f (xπ−1(1), . . . , xπ−1(n)) and F ′ = ¬(xi1 ≈
xi2)∨¬(x j1 ≈ x j2) such that (σt,F ◦r σt′,F ′ ◦r σt,F)( f ) = σt,F( f ) which follows from (iii) and we
consider

(σt,F ◦r σt′,F ′ ◦r σt,F )(γ)= σ̂t,F [σ̂t′,F ′[¬(xi1 ≈ xi2)]∨ σ̂t′,F ′[¬(xi3 ≈ xi4)]]

= σ̂t,F [¬(σ̂t′,F ′[xi1 ≈ xi2])∨¬(σ̂t′,F ′[xi3 ≈ xi4])]

= σ̂t,F [¬(xi1 ≈ xi2)∨¬(xi3 ≈ xi4)]

=¬(σ̂t,F [xi1 ≈ xi2])∨¬(σ̂t,F [xi3 ≈ xi4])

=¬(xi1 ≈ xi2)∨¬(xi3 ≈ xi4)

=σt,F (γ).

Hence σt,F is regular.

We have now characterized all idempotent and regular elements of linear hypersubstitutions
for algebraic systems of type ((n), (m)). As we remarked earlier, we separated and described
the classes of linear hypersubstitutions into sixteen classes and given the charaterization of
idempotent elements in these classes. The situation is more comfortable than to consider the
set of all linear hypersubstitutions. We applied these results to investigate the regularity. As
a consequence of this section, we can describe the regularity of Hyplin((n), (m)). Every linear
hypersubstitution is regular and then H yplin((n), (m)) is a regular semigroup.

5. Conclusion
We use the concepts of the partial clone of linear terms and the partial clone of linear formulas
to define a mapping which is called a linear hypersubstitution for algebraic systems of type
((n), (m)).
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