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1. Introduction
Random fixed point theorems are stochastic generalization of a classical fixed point theorems.
Random fixed point theorems for contraction mapping in a Polish space, i.e., a separable
complete metric space, were proved by Špaček [36], Hanš [10, 11]. Some random fixed point
theorems play a main role in developing theory of random differential and random integral
equations (see, [5, 14, 23]). Thereafter, many authors have focused on varions existence and
uniqueness theorems of random fixed point and applications (see, [2,3,6,13,17–20,22,26,27,33]).

In 2004, Ran and Reurings [31] proved the existence of fixed points of nonlinear contraction
mappings in partially ordered metric space presented applications of their results to matrix
equations. In 2006, Bhaskar and Lakshmikantham [9] proved some coupled fixed point theorems
for mixed monotone mappings in ordered metric space. In 2009, Lakshmikantham and Ćirić [21]
introduced the concept of mixed g-monotone mapping and proved coupled coincidence and
coupled common fixed point theorems in ordered metric space. Following this initial paper,
many authors produced remarkable results in this direction, (see [1,7,24,28,29,35]). In 2011,
Berinde [4] extended the coupled fixed point theorems for mixed monotone operators in partially
ordered metric spaces.

Recently, Ćirić and Lakshmikantham [8] proved random couple coincidence and random
coupled fixed point theorem in partially ordered complete separable metric space. Thereafter,
many researchers have obtained random coupled coincidence and random coupled fixed point
theorem in partially ordered complete separable metric space, for details, (see [15,16,34]).

The aim of this paper is to prove some random coupled coincidence and coupled random
fixed point theorems for a pair of random mappings F :Ω× (X × X )→ X and g :Ω× X → X . Our
result is a generalization of main result of Ćirić and Lakshmikantham [8].

2. Preliminaries
In this section, we give some definitions which are useful for main results in this paper.

Definition 2.1 ([9]). Let (X ,¹) be a partially ordered set and F : X × X → X . The mapping F is
said to have the mixed monotone property if F is monotone non-decreasing in its first argument
and is monotone non-increasing in its second argument, that is, for any x, y ∈ X ,

x1, x2 ∈ X , x1 ¹ x2 ⇒ F(x1, y)¹ F(x2, y) (2.1)

and

y1, y2 ∈ X , y1 ¹ y2 ⇒ F(x, y1)º F(x, y2). (2.2)

Definition 2.2 ([21]). Let (X ,¹) be a partially ordered set and F : X × X → X and g : X → X .
The mapping F is said to have the mixed g-monotone property if F is monotone g-non-decreasing
in its first argument and is monotone g-non-increasing in its second argument, that is, for any
x, y ∈ X ,

x1, x2 ∈ X , g(x1)¹ g(x2)⇒ F(x1, y)¹ F(x2, y) (2.3)

and

y1, y2 ∈ X , g(y1)¹ g(y2)⇒ F(x, y1)º F(x, y2). (2.4)
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Clearly, if g is the identity mapping, then Definition 2.2 reduces to Definition 2.1.

Definition 2.3 ([9]). Let X be a nonempty set. An element (x, y) ∈ X × X is called a coupled
fixed point of the mapping F : X × X → X if x = F(x, y) and y= F(y, x).

Let (Ω,Σ) be a measurable space with Σ a sigma algebra of subsets of Ω and let (X ,d) be
a metric space. A mapping T :Ω→ X is called Σ-measurable if for any open subset U of X ,
T−1(U) = {ω : T(ω ∈ U)} ∈ Σ. In what follows, when we speak of measurability we will mean
Σ-measurability. A mapping T :Ω× X → X is said to be a random operator if and only if for
each fixed x ∈ X , the mapping T(·, x) :Ω→ X is measurable. A random operator T :Ω× X → X
is continuous if for each ω ∈Ω, the mapping S(ω, ·) : X → X is continuous.

Definition 2.4. A mapping T :Ω× X → X is called a random operator if for any x ∈ X , T(·, x) is
measurable. A measursble mapping ξ :Ω→ X is said to be

(a) a random fixed point of a random function T :Ω× X → X , if for each ω ∈Ω
ξ(ω)= T(ω,ξ(ω)).

(b) A random coincidence of a random function T :Ω× X → X and g :Ω× X → X , if for each
ω ∈Ω

g(ω,ξ(ω))= T(ω,ξ(ω)).

Definition 2.5 ([8]). Let (X ,d) be a separable metric space, (Ω,Σ) be a measurable space and
F :Ω× (X × X )→ X and g :Ω× X → X be mappings. We say F and g are commutative if

F(ω, (g(ω, x), g(ω, y)))= g(ω,F(ω, (x, y))),

for all ω ∈Ω and x, y ∈ X .

Definition 2.6. Let (Ω,Σ) be a measurable space, X and Y be two metric spaces. A mapping
f :Ω× X →Y is called Carathéodory if, for all x ∈ X , the mapping ω→ f (ω, x) is Σ-measurable
and, for all ω ∈Ω, the mapping x → f (ω, x) is continuous.

Let M, N be two locally compact metric spaces and f :Ω×M → N . By C(M, N), we denote
the space of continuous functions from M into N endowed with the compact-open topology.

Lemma 2.7 ([30]). f is a Carathéodory function if and only if ω→ r(ω)(·)= f (ω, ·) is a measurable
function from Ω to C(M, N).

3. Main Results
Denote with Φ the set of all function ϕ : [0,∞)→ [0,∞) satisfying
(iϕ) ϕ(t)< t for all t ∈ (0,∞),

(iiϕ) lim
r→t+

ϕ(r)< t for all t ∈ (0,∞).

Theorem 3.1. Let (X ,¹) be a partially ordered set, (X ,d) be a complete separable metric space,
(Σ,Ω) be a measurable space and F :Ω× (X × X )→ X and g :Ω× X → X mappings such that

(1) F(ω, ·) and g(ω, ·) are continuous for all ω ∈Ω,
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(2) F(·,v) and g(·, x) are measurable for all v ∈ X × X and x ∈ X , respectively,

(3) F :Ω× (X ×X )→ X and g :Ω×X → X are such that F has the mixed g-monotone property
and

d(F(ω, (x, y)),F(ω, (u,v)))+d(F(ω, (y, x)),F(ω, (v,u)))

≤ 2ϕ
(d(g(ω, x), g(ω,u))+d(g(ω, y), g(ω,v))

2

)
(3.1)

for all x, y,u,v ∈ X with g(ω, x) ¹ g(ω,u) and g(ω, y) º g(ω,v) for all ω ∈Ω, where ϕ ∈ Φ.
Suppose F(ω× (X × X ))⊆ g(ω× X ), for each ω ∈Ω, g is continuous and commutes with F
and also suppose that either

(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn}∞n=0 ⊂ X converges to x, then xn ¹ x for all n;
(ii) if a non-increasing sequence {xn}∞n=0 ⊂ X converges to x, then xn º x for all n.

If there exist measurable mapping ξ0,η0 :Ω→ X such that

g(ω,ξ0(ω))¹ F(ω, (ξ0(ω),η0(ω))) and g(ω,η0(ω))º F(ω, (η0(ω)ξ0(ω))) (3.2)

or

g(ω,ξ0(ω))º F(ω, (ξ0(ω),η0(ω))) and g(ω,η0(ω))¹ F(ω, (η0(ω),ξ0(ω))) (3.3)

for all ω ∈Ω, then there are measurable mappings ξ,η :Ω→ X such that

F(ω, (ξ(ω),η(ω)))= g(ω,ξ(ω)) and F(ω, (η(ω),ξ(ω)))= g(ω,η(ω))

for all ω ∈Ω, that is, F and g have a random coupled coincidence.

Proof. Let Θ= {ξ :Ω→ X } be a family of measurable mapping. Define a function h :Ω× X →R+

as follows:

h(ω, x)= d(x, g(ω, x)).

Since x → g(ω, x) is continuous for all ω ∈Ω, we conclude that h(ω, ·) is continuous for all ω ∈Ω.
Also, since ω→ g(ω, x) is measurable for all x ∈ X , we conclude that h(·,ω) is measurable for
all ω ∈Ω (see [37]). Thus, h(ω, x) is the Caratheéodory function. Therefore, if ξ :Ω→ X is a
measurable mapping, then ω→ h(ω,ξ(ω)) is also measurable (see [32]). Also, for each ξ ∈Θ the
function η :Ω→ X defined by η(ω)= g(ω,ξ(ω)) is measurable, that is, η ∈Θ.

Now we shall construct two sequences of measurable mappings {ξn} and {ηn} in Θ and two
sequences {g(ω,ξn(ω))} and {g(ω,ηn(ω))} in X as follows:

Let ξ0,η0 ∈Θ be such that

g(ω,ξ0(ω))¹ F(ω, (ξ0(ω),η0(ω)))

and

g(ω,η0(ω))º F(ω, (η0(ω),ξ0(ω))),

for all ω ∈Ω. Since F(ω, (ξ0(ω),η0(ω))) ∈ X = g(ω× X ), by a sort of Filippov measurable implicit
function theorem [3,12,13,25] there is ξ1(ω) ∈Θ such that

g(ω,ξ1(ω))= F(ω, (ξ0(ω),η0(ω))).
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Similarly, as F(ω, (η0(ω),ξ0(ω))) ∈ g(ω× X ), there is η1(ω) ∈Θ such that

g(ω,η1(ω))= F(ω, (η0(ω),ξ0(ω))).

Now, F(ω, (ξ1(ω),η1(ω))) and F(ω, (η1(ω),ξ1(ω))) are well defined. Again from

F(ω, (ξ1(ω),η1(ω))),F(ω, (η1(ω),ξ1(ω))) ∈ g(ω× X ),

there are ξ2(ω),η2(ω) ∈Θ such that

g(ω,ξ2(ω))= F(ω, (ξ1(ω),η1(ω)))

and

g(ω,η2(ω))= F(ω, (η1(ω),ξ1(ω))).

Continuing this process we can construct sequences {ξn(ω)} and {ηn(ω)} in X such that

g(ω,ξn+1(ω))= F(ω, (ξn(ω),ηn(ω))) (3.4)

and

g(ω,ηn+1(ω))= F(ω, (ηn(ω),ξn(ω))). (3.5)

for all n ≥ 0.

Step I. We shall prove that

g(ω,ξn(ω))¹ g(ω,ξn+1(ω)), for all n ≥ 0, (3.6)

and

g(ω,ηn(ω))º g(ω,ηn+1(ω)), for all n ≥ 0. (3.7)

Assume (3.2) holds (the case (3.3) is similar). We have

g(ω,ξ0(ω))¹ F(ω, (ξ0(ω),η0(ω))),

and

g(ω,η0(ω))º F(ω, (η0(ω),ξ0(ω))).

Since g(ω,ξ1(ω))= F(ω, (ξ0(ω),η0(ω))) and g(ω,η1(ω))= F(ω, (η0(ω),ξ0(ω))), we have g(ω,ξ0(ω))¹
g(ω,ξ1(ω)) and g(ω,η0(ω)) º g(ω,η1(ω)). Therefore, (3.6) and (3.7) hold for all n = 0. Suppose
now that (3.6) and (3.7) hold for some fixed n ≥ 0. Then, since g(ω,ξn(ω)) ¹ g(ω,ξn+1(ω)) and
g(ω,ηn+1(ω))¹ g(ω,ηn(ω)) and as F is g-mixed monotone, we have

F(ω, (ξn(ω),ηn(ω)))¹ F(ω, (ξn+1(ω),ηn+1(ω))) (3.8)

and

F(ω, (ηn+1(ω),ξn(ω)))¹ F(ω, (ηn(ω),ξn+1(ω))). (3.9)

Similarly, from (2.4), (3.4), and (3.5) as g(ω,ηn+1(ω))¹ g(ω,ηn(ω) and g(ω,ξn(ω))¹ g(ω,ξn+1(ω)),

F(ω, (ξn+1(ω),ηn+1(ω)))º F(ω, (ξn+1(ω),ηn(ω))) (3.10)

and

F(ω, (ηn+1(ω),ξn(ω)))º F(ω, (ηn+1(ω),ξn+1(ω))). (3.11)

Now from (3.8), (3.9), (3.10), (3.11), (3.4), and (3.5), we get

g(ω,ξn+1(ω))¹ g(ω,ξn+2(ω)) (3.12)
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and

g(ω,ηn+1(ω))º g(ω,ηn+2(ω)). (3.13)

Thus, by the mathematical induction we conclude that (3.6) and (3.7) hold for all n ≥ 0.

Step II. Denote

δn+1 = d(g(ω,ξn(ω)), g(ω,ξn+1(ω)))+d(g(ω,ηn(ω)), g(ω,ηn+1(ω))).

Since from (3.6) and (3.7) we have g(ω,ξn(ω)) ¹ g(ω,ξn+1(ω)) and g(ω,ηn(ω)) º g(ω,ηn+1(ω)),
the from (3.4), (3.5), and (3.1) we get

d(g(ω,ξn+1(ω)), g(ω,ξn(ω)))+d(g(ω,ηn+1(ω)), g(ω,ηn(ω)))

= d(F(ω, (ξn(ω),ηn(ω))),F(ω, (ξn−1(ω),ηn−1(ω))))

+d(F(ω, (ηn(ω),ξn(ω))),F(ω, (ηn−1(ω),ξn−1(ω))))

≤ 2ϕ
(d(g(ω,ξn(ω)), g(ω,ξn−1(ω)))+d(g(ω,ηn(ω)), g(ω,ηn−1(ω)))

2

)
= 2ϕ

(δn

2

)
.

Therefore, the sequence {δn}∞n=1 satisfies

δn+1 ≤ 2ϕ
(δn

2

)
, for all n ≥ 0. (3.14)

From (3.14) and (ϕi) it follows that the sequence {δn}∞n=0 is non-increasing. Therefore, there
exists some δ> 0 such that

lim
n→∞δn = lim

n→∞[d(g(ω,ξn(ω)), g(ω,ξn−1(ω)))+d(g(ω,ηn(ω)), g(ω,ηn−1(ω)))]= δ.

We shall prove that δ= 0. Assume, to the contrary, that δ> 0. Then bt letting n →∞ in (3.14),
in view of (ϕii) we have

δ= lim
n→∞δn+1 ≤ 2 lim

n→∞ϕ
(ηn

2

)
= 2 lim

δn→δ+
ϕ

(ηn

2

)
< δ,

a contradiction. Thus δ= 0 and hence

lim
n→∞δn = 0. (3.15)

Step III. Now, we prove that {g(ω,ξω)} and {g(ω,ηω)} are Cauchy sequences. Suppose, to
the contrary, that at least one of sequences {g(ω,ξω)}∞n=0 and {g(ω,ηω)}∞n=0 is not a Cauchy
sequences. Then there exists ε > 0 for which we can find subsequences {g(ω,ξn(k)(ω))},
{g(ω,ξm(k)(ω))} of {g(ω,ξω)}∞n=0 and {g(ω,ηn(k)(ω))}, {g(ω,ηm(k)(ω))} of {g(ω,ηω)}∞n=0, respectively,
which n(k)> m(k)≥ k such that, k = 1,2, · · · .

rk = d(g(ω,ξn(k)(ω)), g(ω,ξm(k)(ω)))+d(g(ω,ηn(k)(ω)), g(ω,ηm(k)(ω)))≥ ε, (3.16)

Note that we can choose n(k) to be the smallest integer with property n(k) > m(k) ≥ k and
satisfying (3.16). Then

d(g(ω,ξn(k)−1(ω)), g(ω,ξm(k)(ω)))+d(g(ω,ηn(k)−1(ω)), g(ω,ηm(k)(ω)))< ε. (3.17)

By (3.16) and (3.17) and the triangle inequality, we have

ε≤ rk

≤ d(g(ω,ξn(k)(ω)), g(ω,ξn(k)−1(ω)))+d(g(ω,ηn(k)(ω)), g(ω,ηn(k)−1(ω)))

Communications in Mathematics and Applications, Vol. 10, No. 2, pp. 215–229, 2019



Coupled Random Fixed Point Theorems for Mixed Monotone Nonlinear Operators: C. Kongban et al. 221

+d(g(ω,ξn(k)−1(ω)), g(ω,ξm(k)(ω)))+d(g(ω,ηn(k)−1(ω)), g(ω,ηm(k)(ω)))

≤ d(g(ω,ξn(k)(ω)), g(ω,ξn(k)−1(ω)))+d(g(ω,ηn(k)(ω)), g(ω,ηn(k)−1(ω)))+ε.
Letting k →∞ in the above inequality and using (3.15), we get

lim
k→∞

rk = ε. (3.18)

On the other hand

rk ≤ d(g(ω,ξn(k)(ω)), g(ω,ξn(k)+1(ω)))+d(g(ω,ξn(k)+1(ω)), g(ω,ξm(k)(ω)))

+d(g(ω,ηn(k)(ω)), g(ω,ηn(k)+1(ω)))+d(g(ω,ηn(k)+1(ω)), g(ω,ηm(k)(ω)))

= δn(k) +d(g(ω,ξn(k)+1(ω)), g(ω,ξm(k)(ω)))+d(g(ω,ηn(k)+1(ω)), g(ω,ηm(k)(ω)))

= 2δn(k) +2δm(k) +d(g(ω,ξn(k)+1(ω)), g(ω,ξm(k)+1(ω)))

+d(g(ω,ηn(k)+1(ω)), g(ω,ηm(k)+1(ω))). (3.19)

Since n(k)> m(k), by (3.12) and (3.13), we have

g(ω,ξn(k)(ω))¹ g(ω,ξm(k)(ω))

and

g(ω,ηn(k)(ω))º g(ω,ηm(k)(ω)),

and hence by (3.1) one obtains

d(g(ω,ξn(k)+1(ω)), g(ω,ξm(k)(ω)))+d(g(ω,ηn(k)+1(ω)), g(ω,ηm(k)(ω)))

= d(F(ω, (ξn(k)(ω),ηn(k)(ω))),F(ω, (ξm(k)(ω),ηm(k)(ω))))

+d(F(ω, (ηn(k)(ω),ξn(k)(ω))),F(ω, (ηm(k)(ω),ξm(k)(ω))))

≤ 2ϕ
(d(g(ω,ξn(k)(ω)), g(ω,ξm(k)(ω)))+d(g(ω,ηn(k)(ω)), g(ω,ηm(k)(ω)))

2

)
≤ 2ϕ

( rk

2

)
which, by (3.19), yields

rk ≤ 2δn(k) +2δm(k) +2ϕ
( rk

2

)
.

Letting k →∞ in the above inequality and using (3.18), we get

ε≤ 2 lim
k→∞

ϕ
( rk

2

)
= 2 lim

rk→ε
ϕ

( rk

2

)
< ε,

a contradiction. Therefore, our supposition (3.16) was wrong. Thus, we proved that {g(ω,ξn(ω))}
and {g(ω,ηn(ω))} are Cauchy sequences in X . Since X is complete any g(ω× X )= X , there exist
β,γ ∈Θ such that

lim
n→∞ g(ω,ξn(ω))= g(ω,β0(ω))

and

lim
n→∞ g(ω,ηn(ω))= g(ω,γ0(ω)).

Since g(ω,β0(ω)) and g(ω,γ0(ω)) are measurable, then the functions β(ω) and γ(ω), defined by
β(ω)= g(ω,β0(ω)) and γ(ω)= g(ω,γ0(ω)) are measurable. Thus

lim
n→∞ g(ω,ξn(ω))=β(ω) (3.20)
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and

lim
n→∞ g(ω,ηn(ω))= γ(ω). (3.21)

From (3.20) and (3.21) and continuity of g

lim
n→∞ g(ω, g(ω,ξn(ω)))= g(ω,β(ω)) (3.22)

and

lim
n→∞ g(ω, g(ω,ηn(ω)))= g(ω,γ(ω)). (3.23)

On the other hand, by the commutativity of F and g

F(ω, (g(ω,ξn(ω)), g(ω,ηn(ω))))= g(ω,F(ω, (ξn(ω),ηn(ω))))

= g(ω, g(ω,βn+1(ω))) (3.24)

and

F(ω, (g(ω,ηn(ω)), g(ω,ξn(ω))))= g(ω,F(ω, (ηn(ω),ξn(ω))))

= g(ω, g(ω,γn+1(ω))). (3.25)

Step IV. We now prove that

g(ω,β(ω))= F(ω, (β(ω),γ(ω)))

and

g(ω,γ(ω))= F(ω, (γ(ω),β(ω))).

Suppose first that assumption (a) holds. By letting n →∞ in (3.24) and (3.25), in view of (3.22)
and (3.23), and continuity of F , we get

g(ω,β(ω))= lim
n→∞ g(ω,ξn+1(ω))

= lim
n→∞F(ω, (g(ω,ξn(ω)), g(ω,ηn(ω))))

= F(ω, ( lim
n→∞ g(ω,ξn(ω)), lim

n→∞ g(ω,ηn(ω))))

= F(ω, (β(ω),γ(ω))),

g(ω,γ(ω))= lim
n→∞ g(ω,ηn+1(ω))

= lim
n→∞F(ω, (g(ω,ηn(ω)), g(ω,ξn(ω))))

= F(ω, ( lim
n→∞ g(ω,ηn(ω)), lim

n→∞ g(ω,ξn(ω))))

= F(ω, (γ(ω),β(ω))),

that is, (β(ω),γ(ω)) ∈ X × X is coupled random coincidence of F and g. Suppose now assumption
(b) holds. Since {g(ω,ξn(ω))} is non-decreasing and as g(ω,ξn(ω)) → g(ω,β(ω)) we have that
g(ω,ξn(ω)) ¹ g(ω,β(ω)) for all n. Also, {g(ω,ηn(ω))} is non-increasing and as g(ω,ηn(ω)) →
g(ω,γ(ω)), we have that g(ω,ηn(ω)) º g(ω,γ(ω)) for all n. Then, by triangle inequality and
contractive conditions (3.1)

d(g(ω,β(ω)),F(ω, (β(ω),γ(ω))))+d(g(ω,γ(ω)),F(ω, (γ(ω),β(ω))))

≤ d(g(ω,β(ω)), g(ω, g(ω,ξn+1(ω))))+d(g(ω, g(ω,ξn+1(ω))),F(ω, (β(ω),γ(ω))))
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+d(g(ω,γ(ω)), g(ω, g(ω,ηn+1(ω))))+d(g(ω, g(ω,ηn+1(ω))),F(ω, (γ(ω),β(ω))))

= d(g(ω,β(ω)), g(ω, g(ω,ξn+1(ω))))+d(g(ω,γ(ω)), g(ω, g(ω,ηn+1(ω))))

+d(F(ω, (g(ω,ξn(ω)), g(ω,ηn(ω)))),F(ω, (β(ω),γ(ω))))

+d(F(ω, (g(ω,ηn(ω)), g(ω,ξn(ω)))),F(ω, (γ(ω),β(ω))))

≤ d(g(ω,β(ω)), g(ω, g(ω,ξn+1(ω))))+d(g(ω,γ(ω)), g(ω, g(ω,ηn+1(ω))))

+2ϕ
(d(g(ω, g(ω,ξn(ω))), g(ω,β(ω)))+d(g(ω, g(ω,ηn(ω))), g(ω,γ(ω)))

2

)
.

Letting now n →∞, in the above inequality and taking into account that, by property (iϕ),
lim

r→0+
ϕ(r)= 0, we obtain

d(g(ω,β(ω)),F(ω, (β(ω),γ(ω))))+d(g(ω,γ(ω)),F(ω, (γ(ω),β(ω))))= 0,

which implies that

d(g(ω,β(ω)),F(ω, (β(ω),γ(ω))))= 0

and

d(g(ω,γ(ω)),F(ω, (γ(ω),β(ω))))= 0.

Example 3.2. Let X = R with the usual ordering and usual metric. Let Ω = [0,1] and let σ
be the sigma algebra of Lebesgue’s measurable subset of [0,1]. Define g : Ω× X → X and
F :Ω× (X × X )→ X as follows,

g(ω, x)= 5
6

(1−ω)x

and

F(ω, (x, y))= 1
4

(1−ω)(x−2y),

(x, y) ∈ X , ω ∈Ω, and ϕω(t) = 3
10 t for all t ∈ [0,∞). We will check that the contraction (3.1) is

satisfied for all x, y,u,v ∈ X satisfying g(ω, x)¹ g(ω,u) and g(ω, y)º g(ω,v), for all ω ∈Ω. Then,
from (3.1) we have,

d(F(ω, (x, y)),F(ω, (u,v)))+d(F(ω, (y, x)),F(ω, (v,u)))

=
∣∣∣1
4

(1−ω)(x−2y)− 1
4

(1−ω)(u−2v)
∣∣∣+ ∣∣∣1

4
(1−ω)(y−2x)− 1

4
(1−ω)(v−2u)

∣∣∣
≤ 1

4
(1−ω)[|x−u|+ |v− y|]

≤ 3
4

t(1−ω)[|x−u|+ |v− y|]

= 9
10

t · 5
6

(1−ω)[|x−u|+ |v− y|]
=ϕ[d(g(ω, x), g(ω,u))+d(g(ω, y), g(ω,v))],

that is, contraction (3.1) is satisfied.

If we take g(ω, x)= x in Theorem 3.1, then we get the following:
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Corollary 3.3. Let (X ,¹) be a partially ordered set, (X ,d) be a complete separable metric space,
(Σ,Ω) be a measurable space and F :Ω× (X × X )→ X mapping such that

(1) F(ω, ·) is continuous for all ω ∈Ω,
(2) F(·,v) is measurable for all v ∈ X × X and x ∈ X ,
(3) F :Ω× (X × X )→ X has the mixed monotone property and

d(F(ω, (x, y)),F(ω, (u,v)))+d(F(ω, (y, x)),F(ω, (v,u)))≤ 2ϕ
(d(x,u)+d(y,v)

2

)
for all x, y,u,v ∈ X with x ¹ u and yº v for all ω ∈Ω, where ϕ ∈Φ. Also, suppose that either

(a) F is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn}∞n=0 ⊂ X converges to x, then xn ¹ x for all n;
(ii) if a non-increasing sequence {xn}∞n=0 ⊂ X converges to x, then xn º x for all n.

If there exist measurable mapping ξ0,η0 :Ω→ X such that
ξ0(ω)¹ F(ω, (ξ0(ω),η0(ω))) and η0(ω)º F(ω, (η0(ω),ξ0(ω)))

or
ξ0(ω)º F(ω, (ξ0(ω),η0(ω))) and η0(ω)¹ F(ω, (η0(ω),ξ0(ω)))

for all ω ∈Ω, then there are measurable mappings ξ,η :Ω→ X such that
F(ω, (ξ(ω),η(ω)))= ξ(ω) and F(ω, (η(ω),ξ(ω)))= η(ω)

for all ω ∈Ω, that is, F has a random coupled fixed point.

If we take g(ω, x)= x and ϕω(t)= k(t), 0≤ k < 1 in Theorem (3.1), then we get the following

Corollary 3.4. Let (X ,¹) be a partially ordered set, (X ,d) be a complete separable metric space,
(Σ,Ω) be a measurable space and F :Ω× (X ×X )→ X has the mixed monotone property and such
that

(1) F(ω, ·) is continuous for all ω ∈Ω.
(2) F(·,v) is measurable for all v ∈ X × X .
(3) There exists a k ∈ [0,1) such that F satisfies the following condition:

d(F(ω, (x, y)),F(ω, (u,v)))+d(F(ω, (y, x)),F(ω, (v,u)))≤ kd(x,u)+d(y,v)

for all x, y,u,v ∈ X with x ¹ u and yº v for all ω ∈Ω. Also suppose either

(a) F is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn}∞n=0 ⊂ X converges to x, then xn ¹ x for all n;
(ii) if a non-increasing sequence {xn}∞n=0 ⊂ X converges to x, then xn º x for all n.

If there exist measurable mapping ξ0,η0 :Ω→ X such that
ξ0(ω)¹ F(ω, (ξ0(ω),η0(ω))) and η0(ω)º F(ω, (η0(ω),ξ0(ω)))

or
ξ0(ω)º F(ω, (ξ0(ω),η0(ω))) and η0(ω)¹ F(ω, (η0(ω),ξ0(ω)))

for all ω ∈Ω, then there are measurable mappings ξ,η :Ω→ X such that
F(ω, (ξ(ω),η(ω)))= ξ(ω) and F(ω, (η(ω),ξ(ω)))= η(ω)

for all ω ∈Ω, that is, F has a random coupled fixed point.
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4. Application
In this section, we study the existence of the solution to a random integral equation using
Corollary 3.3. Consider the random integral equations

x(ω, t)=
∫ 1

0
f (ω, t, x(s), y(s))ds, t ∈ [0,1],

y(ω, t)=
∫ 1

0
f (ω, t, y(s), x(s))ds, t ∈ [0,1], (4.1)

where f :Ω× [0,1]×R×R→R and Ω is a nonempty set. Let C([0,1],R) denote the space of all
continuous functions defined on [0,1].

The space C([0,1],R), endowed with metric

d∞(x, y)= ‖x− y‖∞ = sup
t∈[0,1]

|x(t)− y(t)|, for all x, y ∈ X ,

is a complete metric space.

Definition 4.1. An element α,β ∈ C([0,1],R)×C([0,1],R) is called a random coupled lower and
upper solution of the integral equation (4.1) if α(t)≤β(t) and

α(t)=
∫ 1

0
f (ω, t,α(s),β(s))ds

and

β(t)=
∫ 1

0
f (ω, t,β(s),α(s))ds,

for all t ∈ [0,1] and ω ∈Ω.

Then hypotheses are the following:
(A1) f :Ω× [0,1]×R×R→R be a carathéodory function.
(A2) For each ω ∈Ω, for all t ∈ [0,1], and for all x, y,u,v ∈R for which x º u and y¹ v, we have

0≤ f (ω, t, x, y)− f (ω, t,u,v)≤ϕω(x−u+2v−2y),

where ϕω : [0,∞) → [0,∞) is continuous, non-derreasing and satisfies 0 =ϕ(0) <ϕ(t) < t
and lim

n→t+
ϕ(r)< t for each t > 0.

Theorem 4.2. If hypotheses (A1) and (A2) hold, then tha random operator equation (4.1) have
the random solution (x̄, ȳ) ∈ C([0,1],R)×C([0,1],R) if there exists a random coupled lower and
upper solution for (4.1).

Proof. Define the mapping F :Ω×C([0,1],R)×C([0,1],R)→ C([0,1],R),

F(ω, x, y)(t)
∫ 1

0
f (ω, t, x(s), y(s))ds, x, y ∈ C([0,1],R), t ∈ [0,1].

Step I. We show that F is a random operator on C([0,1],R). Given (x, y) ∈ C([0,1],R)×C([0,1],R),
since f is Carathéodory function, then ω → f (ω, t, x(t), y(t)) is measurable map in view of
Lemma 2.7. Further, the integral is a limit of a finite sum of measurable function, therefore, the
map ω→ F(ω, x, y)(t) is measurable and hence F is a random operator.

Step II. We show that F is a continuous. For fixed ω ∈ Ω, let (xn, yn) be a sequence in
C([0,1],R)×C([0,1],R), as n →∞ there exist [a,b]× [a,b]⊂R such that (xn(s), yn(s)), (x(s), y(s) ∈
[a,b]× [a,b] for all s ∈ [0,1]. In addition, the function f (ω, ·, ·, ·) is uniformly continuous in
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[0,1]× [a,b]× [a,b]. Thus, for fixed ε> 0, there exists δ> 0 such that

| f (ω, s1, x1, y2)− f (ω, s2, x2, y2)| < ε,
for all s1, s2 ∈ [0,1] and x1, x2, y1, y2 ∈ [a,b] such that

|s1 − s2|+ |x1 − x2|+ |y1 − y2| < δ.

Now, let n(δ) ∈N such that ‖(x)n, yn)− (x, y)‖∞ < δ, whenever n ≥ n(δ). Then, for every n ≥ n(δ),
we have

| f (ω, s, xn, yn)− f (ω, s, x, y)| < ε.
Consequently, for t ∈ [0,1] and n ≥ n(δ), we have

|F(ω, xn, yn)(t)−F(ω, x, y)(t)| ≤
∫ 1

0
| f (ω, s, xn(s), yn(s))− f (ω, t, x, y)|ds

≤ ε.
Then

‖F(ω, xn, yn)(t)−F(ω, x, y)(t)‖∞ ≤ ε.
So, ‖F(ω, xn, yn)(t)−F(ω, x, y)(t)‖→ 0 as n →∞. Thus, F is continuous operator for each fixed
ω ∈Ω.

Step III. We show that F is a monotone operator. For each ω ∈ Ω, then function F(ω, ·, ·)
is monotone operator. Let ω ∈Ω be fixed. Let (x, y), (u,v) ∈ C([0,1],R)×C([0,1],R) such that
(x, y)¹ (u,v), that is,

x(t)¹ u(t), y(t)¹ v(t), for all t ∈ [0,1].

If, for every t ∈ [0,1], f (ω, t, ·, ·) is nondecreasing opertor, then

f (ω, t, x(t), y(t))≤ f (ω, t,u(t),v(t)), for all t ∈ [0,1],

this implies that

F(ω, x, y)(t)≤ F(ω,u,v)(t), for all t ∈ [0,1].

Hence

F(ω, x, y)(t)≤ F(ω,u,v)(t), for all t ∈ [0,1].

On the other hand, if, for every t ∈ [0,1], f (ω, t, ·, ·) is nonincreasing operators, then

F(ω, x, y)(t)≥ F(ω,u,v)(t), for all t ∈ [0,1].

Step IV. We prove that F has random coupled lower and upper solution. Let (x̄, ȳ) ∈ C([0,1],R)×
C([0,1],R) such that (x, y)¹ (x̄, ȳ).
Using (A2) for all t ∈ [0,1], we have

|F(ω, x, y)(t)|− |F(ω,u,v)(t)|+ |F(ω, y, x)(t)|− |F(ω,v,u)(t)|

=
∫ 1

0
[ f (ω, t, x(s), y(s))− f (ω, t,u(s), s(s))]ds+

∫ 1

0
[ f (ω, t, y(s), x(s))− f (ω, t,v(s),u(s))]ds

≤
∫ 1

0
ϕω(x(s)−u(s)+2v(s)−2y(s))ds+

∫ 1

0
ϕω(y(s)−v(s)+2u(s)−2x(s))ds

≤
∫ 1

0

[
ϕω

(
sup

z∈[0,1]
|x(z)−u(z)|

)
+ϕω

(
sup

z∈[0,1]
|y(z)−v(z)|

)]
ds

=ϕω
(
supz∈[0,1]|x(z)−u(z)|+ sup

z∈[0,1]
|y(z)−v(z)|

)
,
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which implies that

sup
t∈[0,1]

|F(ω, x, y)(t)−F(ω,u,v)(t)|+ sup
t∈[0,1]

|F(ω, y, x)(t)−F(ω,v,u)(t)|

≤ϕω
(
supz∈[0,1]|x(z)−u(z)|+ sup

z∈[0,1]
|y(z)−v(z)|

)
.

Therefore, we get

d(F(ω, x, y),F(ω,u,v))+d(F(ω, y, x),F(ω,v,u))≤ϕ(d(x,u)+d(y,v)).

Then, from Lemma 2.7, there exists a random solution of (4.1).

5. Conclusion
We introduced the new concept and the new nation of random coupled coincidence and coupled
random fixed point theorems in complete separable metric spaces and also proved random
coupled coincidence and coupled random fixed point theorems for a pair of random mappings
F :Ω× (X ×X )→ X and g :Ω×X → X and proved random solution of random integral equation.
The presented theorems extend and improve the corresponding results which given in the
literature. In particular, Theorem 3.1 extend, generalize and improve the results given of Ćirić
and Lakshmikantham [8].
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