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1. Introduction

Let H, and Hs be two real Hilbert spaces. Suppose that f : H; — Ru{+oc}, g : Ho — RU{+0o0} are
two proper, convex and lower semi-continuous functions and A : H; — Hy is a bounded linear
operator. In this research, we shall consider the following Proximal Split Feasibility Problem
(PSFP):
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Find a solution x* € H1 such that

min f(x)+ g1(Ax), (1.1)
x€H1

where g, : Hy — RU{+00}, is the Moreau-Yosida approximate [11] defined by
. 1 2
= +—llu—yll*.
gAy) min g(u) 57 lu -yl
Problem (1.1)) includes many nonlinear problems in applied sciences, engineering and economics.
For example, if we take f = 6¢ [defined as d¢(x) =0 if x € C and +oo otherwise], the indicator
function of nonempty, closed and convex subset C of H; and g = §¢q, the indicator function of
nonempty, closed and convex subset @ of Hg, then Problem (1.1)) reduces to the following Split
Feasibility Problem (SFP):
Find
x € C such that Ax € Q. (1.2)
The SPFP attracts the attention of many authors due to its application in signal processing,
medical image reconstruction and modeling inverse problems which arise from phase retrievals.
Various algorithms have been invented to solve it (see, e.g., [1-5(10,13-17,(19-21]] and references

therein). If A=1, Hy = He = H and g be differentiable, where [ is an identity mapping on H,
then Problem (1.1) reduces to the following minimization problem:

min f(x) + g(x). (1.3)
Suppose that the problem has at least a solution and denote by I' the solution set of (1.1).
Set 0(x) := VIIVA@)I2 + | VI(x)[? with h(x) = $1(I - prox; )Ax|?, I(x) = 3T — prox; £)x|12,

x € Hy, where prox,(y) = argmin {g(u) + ﬁ lu — yIIQ}. Moudafi and Thakur [|8] introduced the

ueH,

following split proximal algorithm for solving (1.1):

Split Proximal Algorithm. Given an initial point x; € H;{. Assume that x, has been
constructed and 0(x,) # 0, then compute x, .1 via the rule

Xn+1=Pproxy,, (n — pnA™(I —prox)g)Ax,), n=1, (1.4)

where step size u, := pn% and 0 < p, <4. If 6(x,) =0, then x,,1 = x, is a solution of

(1.1) and the iterative process stop. Otherwise, we set n := n+1 and go to (1.4). Using the
split proximal algorithm (1.4), Moudafi and Thakur [8] proved a weak convergence theorem for
approximating a solution of (1.1) under the condition that € < p, < h(4h(x”)

el € for some € > 0.

Remark 1.1. It is observed in Shehu and Iyiola [12] that the above condition means that
the convergence is ensured only in the very restrictive case when a condition imposed on the
sequence {x,} itself is fulfilled. Thus, it is of practical computational importance to introduce
a new iterative scheme in which this condition is avoided and replaced with a much simple
condition on the step size and convergence result is still achieved.

Ochs et al. [9] proposed the following forward-backward splitting algorithm by using the
inertial technique for solving convex minimization problem for the sum of a smooth convex
function g and a non-smooth convex function f :x¢,x1 € Hy

Xn+1=Pproxqe(x, —aVgle,)+ play, — xn-1)), (1.5)
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where a >0 and g €[0,1). Recently, Shehu and Iyiola [12] obtained weak convergence results
for solving PSFP by replacing the condition imposed in with a much simpler condition on the
step size. They studied convergence analysis for the proximal split feasibility problem using an
inertial extrapolation term method. They introduced the following inertial extrapolation split
proximal algorithm:
Given initial points xg,x; € Hi. Assume that x, has been constructed and 6(y,) # 0, then
compute x,.1 via the rule
Yn =Xn + Pn(xn —xp-1),
Zn :yn_pn%ﬁf)}%)(v}l(yn)‘l'vuyn)), (1.6)
Xn+1 =1 —an)yn+aAnzpn, n=1
where 0 < p, < 4. If VA(y,) =0 =VI(y,) and y, = x,, then the sequence {x,} is a solution of
PSFP and the iterative process stops. Otherwise, we set n :=n +1 and go to (1.6).
In this research, we introduce a new algorithm for solving the proximal split feasibility
problem. We prove strong convergence theorems under some suitable conditions. Some
numerical experiments are shown in Section

2. Preliminaries and Lemmas

In this section, we give some preliminaries which will be used in our proof. Let H be a real
Hilbert space with inner product ¢{-,-) and norm || - || and let C be a nonempty, closed and convex
subset of H. A mapping T : C — C is said to be nonexpansive if

ITx-Tyl<llx—yl, Vx,yeC.
For any point u € H, there exists a unique point Pcu € C such that
lu—-Peull <llu-yl, VyeC.

P¢ is called the metric projection of H onto C. We know that P is a nonexpansive mapping of
H onto C. It is also known that P satisfies

(x = y,Pcx—Pcy) = |Pcx—Pcyl” 2.1)
for all x,y € C. Furthermore, Pcx is characterized by the properties Pcx € C and
(x—Pcx,Pcx—y)=0 (2.2)

for all y e C. A mapping T : H — H is said to be firmly nonexpansive if and only if 27 -1 is
nonexpansive, or equivalently
(x—Tx,Tx—y) = ITx-Tyl%?, Vax,ycH.

For example, projections and proximal mappings are firmly nonexpansive.

Let the proximal operator of the scaled function Af, where A > 0, which can be expressed as
f :H — RuU{+o0o} be a proper, convex and lower semicontinuous.

prox,(v) = argr;llin {f(x)+@/20)llx —vlI3}. (2.3)

This is also called the proximal operator of f with parameter A. In a real Hilbert space H, we
have the following equality:

1 1 1
<x,y>=§||x||2+§llyll2—§le—yll2 (2.4)
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and the subdifferential inequality
e+ 1% <l +2¢y, 2 + ) (2.5)
for all x,y e H.

Lemma 2.1 ([7]). Let {I',;} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {I';,;} of {I'y,} which satisfies I',,, <I'y, 41 for all i € N. Define
the sequence {¢y(n)},=n, of integers as follows:

w(n)=max{k<n:Tp <Tpi1}. (2.6)
where ng € N such that {k <ng:Tp <T'pi1} # @. Then, the following hold:
1) I'rg)<I'(ng+1)<...and I'(n) — oo;
(i) Tyn) < Tymys1 and T <Tynys1, ¥V 72 no.

Lemma 2.2 ([6,/18]]). Let {a,} and {c,} be sequences of nonnegative real numbers such that

ans1<1-06,)a,+b,+c,, n=1, 2.7

o0
where {6,} is a sequence in (0,1) and {b,} is a real sequence. Assume Y c, < oco. Then the
n=1

following results hold:
() If b, <6, M for some M =0, then {a,} is a bounded sequence.

G1) If Z 0, <ooand limsupb,/6, <0, then hm D an =0.
n=1 n—00
3. Main Results

In this section, we give strong convergence result using inertial extrapolation for solving
(1.1), which is the main result of this paper. Now, set 6(x) := \/ IVA(x)+ VI(x)||2 with A(x) =
%ll(I —prox/lg)Axllz, I(x) = %II(I —proxlf)xIIZ, x € H1 and we introduce the following inertial

extrapolation split proximal algorithm:

Algorithm 3.1. Given initial points xy,x1,u € H. Assume that x, has been constructed and and
0(y,) #0, then compute x, .1 by the following manner:
Yn =%n + Pn(xn —xp-1)
~ pn 2O (TR y,) + Vi(yn)) (3.1)
Xn+1=apu+(1—ap)z,, n=1
where 0<a, <1, 0< B, <1and 0< p, <4. If Vh(y,) =0 =Vi(y,) and y, = x, then x, is a
solution of and then iterative process stops. Otherwise, we set n:=n+ 1 and go to (3.1).

Theorem 3.2. Assume that {a,} < (0,1), {p,} < (0,4), {B,} < [0,B], where B €[0.1) satisfy the
following conditions:

(C1) hm a, =0and Z a,=o00; (C2) 1nfpn(4 en)>0; (C3) hm ||xn Xn-1ll =
Then the sequence {xn} generated by (3.1] strongly converges to x* = Pru thch is a solutionin I'.

Proof. Let x* = Pru € I'. Observe that Vi(x) = A*(I —prox, )Ax and VI(x) = (I —prox,)x. Since
prox,q is firmly nonexpansive, the mapping (I —prox,) is also firmly nonexpansive. It follows
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that
(Vh(yn), yn —x*) = (I —prox) ) Ayn, Ay, — Ax*) = || — prox; ) Aynll” = 2h(yn).
From (3.1), we obtain

* h(yn)+1(yn) 2

n—X —Pn
' o 62y,

g |2 4 o2 PO L) IVRG) + VIGm) |2
o ST 62(y,)

%;gyn)wit(yn) +VI(yn),yn —x")
*”2 pz(h(yn)+l(yn))2
" Hz(yn)

o hm)+1yn)
P02y,

Iz, —x*1% = (VA(Yn) + Vi(yn))

—2pn

=llyn—x

(A™(I = prox) ) A(y,) + (I = proxy £)yn, yn — ")

2
h(yg;(; ,ll ()yn)[2 hym) + 201+ 2 (h(yz)zryl:)yn))
(R(yn) +1(yn))? 5 (R(yn) +1(yn))?
6%(yn) P02y,
(h(yn)+l(yn))2)
02(y»)
< llyn —x* % (3.2)

So, we obtain ||z, —x*|| < ||y, —x*| for all n = 0. Moreover, we have

< llyn —x*1%-2pp

= lyn, —x* 1% —4py,

= ||y, —x* 2 _pn(4_Pn)(

lyn —2* 1 = l2n =2 + Bn(an — 2p DIl < 1 =" | + Brllxn — xn-1ll. (3.3)
It follows that, by
%p+1 =271 = [(apu +(1—an)z,) —x"|
<apllu—x* |+ A —a)ly, —x"|
<apllu—x" |+ A= ap)lllxg —x* | + Brllxn —xp-1ll]

=apllu—x" I+ 1 —ap)llx, —x" I+ (1 — an)Bnllxn — xn-1ll
=(A-aplx, —x" I+ ay IIu—x*II+(1—Oén)%llxn—xn—1ll . (3.4)
n

By Lemma we conclude that {x,} is bounded. By (2.4), we have

1 1 1
2 2 2
<xn_x*>xn_xn—1>:§”xn_x*” +§||xn_xn—1” _§”xn_x*_xn +Xp-1ll

1 1
* 12 2 * 12
=§len—x | +§len—xn_1ll _§”xn—1_x =

Therefore, we get
lyn —x* 1% = llatp — 2™ + B (an — 2

2 2 2
= |lxn —x" | +,5n”xn | +2,Bn<xn _x*,xn —Xn-1)
1 1 1
2 2 2 2 2 2
= [lcy — 2" 1“ + B7 12y — xn—111“ + 2B, Ellxn—x*ll +§|lxn_xn—1” _éllxn—l_x*”

2 2 2 2 2 2
:”xn_x*” +,Bn”xn_xn—1” +,Bn”xn_x*” +,6n”xn_xn—1” _ﬁn”xn—l_x*”
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< lloep = * 1% + By — 2117 = l2n—1 — %" 1) + 2B 12 — 2111 (3.5)
Now, using and (3.1), we obtain
lacns1 =212 = lan(u — %)+ (1= ay)(z, — )|
< (1—ap)?llzn — "1+ 2an (W —x*, X1 —x*)

<(—a)lzn —x* 12+ 200 (U —x*, Xns1 — 1)

h n l n2 * *
< (1- an)lyn - 2" 12— (1 - a)pnd—py)" (y0)2(+y<)y U PR
<1 —ap)lxy —x* 12+ (1= an)Bplla, —x* I = llxp—1 —*1I%)
h(y,)+1 n2
+2(1— @) lltn — o112 — (L — @p)py(d - pgy 2 LR
0 (yn)
+2a,{u—x",xp41—x"). (3.6)

We next consider two cases. Set '), = [, —x* |2

Case 1: Suppose that there exists a natural number N such that I',,1 <TI', for all n = N.
In this case, {I',} is convergent. From and we can find a constant ¢ such that
(1-ay)pn(d—p,)=0>0 for all n €N, it follows that, by
Tni1 < (1= an)lp+ (1= @n)fn(Tn —Tpo1) +2(1 = @p)Bplln —%n-1”
(h(yn) +1(yn))?
0%(y,)

—(1—an)pn(4—pn) +2a,{u—x",xp41—x"), (8.7

which gives
(R(yn) +1(yn))?
6%(yn)

<Q-a ), +(1- an)ﬁn(rn I —-Thit

+2(1 = @) llxn = xp-1 11 +2an (- 5", 2p 41 — %)
< (T =Tns1) + (1= @p)Ba(ln = Tpo1) + 2(1 = @) Bl = %n -1l
+2a,(u—x",x,41—x"). 3.8)
We see that implies B, llx, —x,-112 — 0 since {a,} is bounded. Since {I',} converges and
an — 0,
(h(yn) +1(yn))? .

6%(yn)
Consequently, we have

0. (3.9)

lim (A(y,) +1(y,))=0< lim A(y,)=0and lim I(y,)=0,
n—oo n—oo n—oo
since 02(x,) = [|VA(x,) + Vi(x,)||? is bounded. This follows from the fact that VA is Lipschitz
continuous with constant ||A|2, VI is nonexpansive and {y,} is bounded. Indeed
IVR(y)I = IVA(yR) = VRG] < A%y, —2* | and [VI(y)Il = IVI(yn) = VIO <y, —x* .

Now, let z be a weak cluster point of {x,}. So there exists a subsequence {x, ;} which weakly

converges to z. Since Xn; =2, ] — 00 and lim |y, —x,|l =0, we have Yn; = 2, ] — 00. The lower-
n—oo

semicontinuity of 2 implies that

0 = A(2) < liminfA(y,,) = lim h(y,)=0.
J—00 n—oo

This shows that h(z) = %II(I —prox,g)Az| =0. Thus Az is a minimizer of g.
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Also, the lower-semicontinuity of / implies that

0 <1(2) = liminfl(y,;) = nli}olol(yn) =0.

j—oo
Hence I(z) = %II(I —proxun;tf)zll =0 and z€T. From (2.6) it follows that

limsup{u —x*,x,4+1 —x*) = limsup{u —x*,x, —x*)
n—oo n—oo

= lim (u —x",x,, —x")
j—oo

=(u—-x%,z—x")
<0. (3.10)
From (3.7), it follows that
i1 = (L= )Ty +2(1— an) Bl — X1 11% + 20, (w — 2%, 201 — ™). (3.11)

Applying Lemma|[2.2[ii) and using (3.10) and (3.11) and the conditions (C1) and (C3), we conclude
that T, = ||lx,, —x* | — 0 and thus x, — x* as n — oco.

Case 2: Suppose that there exists a subsequence {I';,} of the sequence {I',} such that I',, <T'y, 41
for all i € N. In this case, we define ¥ : N — N as in (2.6). Then, by Lemma we have
Lyn) < Tymy+1. From (3.9), it follows that

2
Cymy+1 = A=y yn) + (1= aym) By) Ty —Tyn)-1)+2(1 = ay) By 1€y () — Xy -1l

(R(yym) + Ly
-0 +2aym{u—x",x 1—xY,
02(yy(n)) vin) vt
which gives
(R (Yyn) + L(ym)?
wenz(y ( );” L <- Ay(n) Byn) Ty =T yn)-1)+ 21— @ yn) By |1 Xyn) _xw(n)—1”2
wn

+ 20y () (U — X, Xy(n)+1 — &)

= (1= aym)Bymllxym) = Lym)-1l (\/ Lyny + \/ Fyy-1 )

2
+2(1 = ay() By) |1 Xy(n) — Xyy-1l
+ 2au,(n)(u —x* »Xy(n)+1 — x*) — 0.

This shows that A(yy)) — 0 and I(yy(»)) — 0 as n — co. Moreover, we have
1yyn) = Xy Il = 1Xy(n) = By Xy(n) = Xyn)-1) — Xyl
= ﬁw(n)”xu/(n) —Xy(n)-1 I
— 0 asn—oo. (3.12)
From (3.1), we have
h(yu/(n)) + l(yu/(n))
ez(yw(n))
— 0 as n — oo. (3.13)

12y (n) — Xy | < 1Y) — Xyl + Py IVA(Yyn) + VIyym)ll

It follows that

Xy n)+1 — Xy | < @yl — 2yl + (1= @y Z2ym) — Xyl

— 0 asn—oo.

Commaunications in Mathematics and Applications, Vol. 10, No. 2, pp.[325 , 2019



332 Iterative Methods for Solving the Proximal Split Feasibility Problems: M. Mamat et al.

From (3.7), we have
2 2
Lyny+1 < (1= @)y + (L= Ay) By Xpn) = 1% = 1y )-1 — 2 1%)
2
+2(1 = Ay(n) By | Xy(n) = Xyn)-1 1 + 20y () (U — 7, Xy ()1 — %7,
which implies
2 2
ym) Ly < (1= ay) By 1y = 1% = 12y (n)—1 — 217
2
+2(1 = ay) By 1%yn) = Xyy-117 + 2@y ) (U =27, Xymy+1 = 7).

Hence
(1= aym)Bym)
Cy(n) < P Uy (ny =2 1% = 12y my—1 — 2 1%)
w(n
2(1 - aym)p

w(n)/Py(n)

+ — 12 yn) = Tyey-11% + 2w — 5, 2yrys1 — ). (3.14)
w(n

Now repeating the argument of the proof in Case 1, we obtain

limsup(u —x™,xy(n) —x*) < 0.
n—oo

Since [|Xy(n)+1 —Xyn)ll — 0, we obtain limsup(u —x™*, xy(n)+1 — %) < 0. From (3.14) it follows that

n—00
limsupT'y,) <0.
n—00
This implies that
lim Tyn) = i —x*|I* = 0.
lim Ty r) = lim ey ) =717 =0
Hence xy(,) — x* as n — co. On the other hand, we see that
Iy ry+1 = %" 1| < 1Xyn)+1 — Xyl + 1y — 2" — 0
as n — oo. By Lemma we have I';, < T'y(n)+1 and thus
Ty =[xy — %" 1% < lxy(ny+1 — 212 — 0.

So we conclude that x,, — x* as n — oco. This completes the proof. O

4. Examples and Numerical Results

In this section, we give numerical experiments to support our main result this paper.

5
Example 4.1. Let H; = Hy =R®. Let f(x):= |lx]l2 and g(x) := — ¥ logx;, x = (x1,%s,...,x5) € R5.
=1

1=

5 7 10 5 8

3 10 7 2 4
LetA=|6 7 8 9 11{.

13 7 5 9 11

11 13 15 3 7

We aim to find x* € argmin f such that Ax™ € argming.

Choose «a,, = m, on =3.95 and B, = min{0.5,m} if x, # x,—1 and B, = 0.5 if
%, = %n—1. The stopping criteria is defined by E,, = ||, — %n—1ll2 < 107°.

Then, we obtain the following results.
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Table 1. Numerical results of Example

Number of iterations CPU time
Bn=0 | Ba#0 Brn=0 | Bn#0
x0=(1,3,5,7,9), x1 = (1(13?55,‘33,113,7), u=(3,5,11,7,11) 2434 2259 0.1977 | 0.1802
x0 =(11,15,5,7,19), x1 = (1(iaf5e 52 13,3), u = (13,25,11,6,11) 2271 1994 0.1801 | 0.1629
x0 =(25,13,27,3,23), x1 = ((ig,s2e5,37, 15,5), u =(9,11,15,8,17) 2262 1589 0.1714 | 0.1301
x0=1(13,13,11,7,15), x1 = ((2:;,55(3, 2;13,31,5), u=(11,13,9,8,21) 2234 1640 0.1723 | 0.1339

The convergence behavior of error E,, for each cases are shown in Figures |14} respectively.

T T
Algorithm 3.1 with Bn=0
Algorithm 3.1 with B";tO H

1 1 1 1
1000 1500 2000 2500 3000
Number of iterations

T T
Algorithm 3.1 with Bn:O

7 Algorithm 3.1 with Bn;tO al

1 1 1 1 1
1000 1200 1400 1600 1800 2000
Number of iterations

Figure 2. Error plotting E,, for Case 2 in Example
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T T T
T Algorithm 3.1 with B =0

Algorithm 3.1 with Bnto

1 1 1 1 1 1 1 1 1
750 800 850 900 950 1000 1050 1100 1150 1200
Number of iterations

T T T
3.2 ——— Algorithm 3.1 with B =0
—— Algorithm 3.1 with Bn?-o

281 b

26 b

221 b

18 B

16 L L 1

=] 1 1 1 1 1 l
1150 1200 1250 1300 1350 1400 1450 1500 1550 1600
Number of iterations

Figure 4. Error plotting E,, for Case 4 in Example
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