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1. Introduction
Let C and Q be nonempty closed convex sets in real Hilbert spaces H1 and H2, respectively,
and A : H1 → H2 a bounded linear operator. The problem in solving

x∗ ∈ C with Ax∗ ∈Q, (1.1)

is called the split feasibility problem (SFP) which was introduced by Censor and Elfving [7].
We denote by S the solution set of (1.1). This problem has a variety of specific applications in
real world, such as medical care, image reconstruction, and signal processing [1,10,13,16,17].
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Byrne [5,6] suggested a projection method called the CQ algorithm for solving the SFP that
does not involve matrix inverses as follows:

xn+1 = PC(xn −αn A∗(I −PQ)Axn), (1.2)

where PC and PQ denote the metric projection onto C and Q, respectively and A∗ is the adjoint
operator of A. However, in some cases it is impossible or needs too much work to exactly compute
the orthogonal projection. In [22], by using the relaxed projection technology, Yang presented
a relaxed CQ algorithm of solving the SFP. This method employs two half spaces Cn and Qn
instead of C and Q, respectively. It is very convenient in practice because the formula can be
easily computed.

In 2008, Mainge [14] introduced Mann type algorithm involving the inertial term for the
fixed point problem of nonexpansive mappings in Hilbert spaces.

In 2015, Bot et al. [4] proposed an inertial Douglas-Rachford splitting algorithm for finding
the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and
investigate its convergence properties.

Qu and Xiu [15] introduced the stepsize self-adaptively by adopting Armijo-line searches as
follows:

Algorithm 1. For any γ> 0, ` ∈ (0,1) and µ ∈ (0,1), take arbitrarily x1 ∈RN and calculate

xn+1 = PC(xn −αn AT(I −PQ)Axn), (1.3)

where αn = γ`mn and mn is the smallest nonnegative integer m such that

f (PC(xn −σρm AT(I −PQ)Axn))

≤ f (xn)−µ〈AT(I −PQ)Axn, xn −PC(xn −σρm AT(I −PQ)Axn)〉, (1.4)

where f (x)= 1
2‖Ax−PQ Ax‖2.

Recently, Gibali et al. [12] modified relaxation CQ algorithm with the Armijo-linesearch of
Qu and Xiu [15] in real Hilbert spaces as follows:

Algorithm 2. Given constants γ > 0, ` ∈ (0,1) and µ ∈ (0,1). Let x1 be arbitrary. For n ≥ 1,
calculate

yn = PCn(xn −αnFn(xn)), (1.5)

where αn = γ`mn and mn is the smallest nonnegative integer such that

αn‖Fn(xn)−Fn(yn)‖ ≤µ‖xn − yn‖. (1.6)

Construct the next iterative step xn+1 by

xn+1 = PCn(xn −αn fn(yn)). (1.7)

In this work, we propose an inertial relaxation CQ algorithm for the split feasibility problem.
We prove weakly convergence of our algorithm and present numerical examples comparing
algorithm of Gibali et al. [12]. There have been some iterative methods invented for solving the
SFP in the literature (see, e.g. [8,18–20]).
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2. Preliminaries
In this section, we give some definitions and lemma, which will be used in the main results.
Throughout this paper, we recall the following definitions:

A mapping T : H1 → H1 is said to be firmly nonexpansive if, for all x, y ∈ H1,

〈x− y,Tx−T y〉 ≥ ‖Tx−T y‖2. (2.1)

F is said to be monotone on C if

〈F(x)−F(y), x− y〉 ≥ 0, ∀x, y ∈ C; (2.2)

In a real Hilbert space H, we have the following equality:

〈x, y〉 = 1
2
‖x‖2 + 1

2
‖y‖2 − 1

2
‖x− y‖2. (2.3)

A differentiable function f is convex if and only if there holds the inequality:

f (z)≥ f (x)+〈∇ f (x), z− x〉 (2.4)

for all z ∈ H1.
An element g ∈ H1 is called a subgradient of f : H1 →R at x if

f (z)≥ f (x)+〈g, z− x〉 (2.5)

for all z ∈ H1, which is called the subdifferentiable inequality.
A function f : H1 →R is said to be subdifferentiable at x if it has at least one subgradient

at x.
The set of subgradients of f at the point x is called the subdifferentiable of f at x, which is

denoted by ∂ f (x).
A function f is said to be subdifferentiable if it is subdifferentiable at all x ∈ H1. If a function

f is differentiable and convex, then its gradient and subgradient coincide.
A function f : H1 →R is said to be weakly lower semi-continuous (shortly, w-lsc) at x if xn* x

implies

f (x)≤ liminf
n→∞ f (xn). (2.6)

We know that the orthogonal projection PC from H1 onto a nonempty closed convex subset
C ⊂ H1 is a typical example of a firmly nonexpansive mapping, which is defined by

PCx := argmin
y∈C

‖x− y‖2 (2.7)

for all x ∈ H1.

Lemma 1 ([2]). Let C be a nonempty closed convex subset of a real Hilbert space H1. Then, for
any x ∈ H1, the following assertions hold:

(1) 〈x−PCx, z−PCx〉 ≤ 0 for all z ∈ C;

(2) ‖PCx−PC y‖2 ≤ 〈PCx−PC y, x− y〉 for all x, y ∈ H1;

(3) ‖PCx− z‖2 ≤ ‖x− z‖2 −‖PCx− x‖2 for all z ∈ C.

From Lemma 1, the operator I−PC is also firmly nonexpansive, where I denotes the identity
operator, i.e., for any x, y ∈ H1,

〈(I −PC)x− (I −PC)y, x− y〉 ≥ ‖(I −PC)x− (I −PC)y‖2. (2.8)
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Lemma 2 ([14]). Assume xn ∈ [0,∞) and δn ∈ [0,∞) satisfy:
(i) xn+1 − xn ≤ θn(xn − xn−1)+δn,

(ii)
+∞∑
n=1

δn <∞,

(iii) {θn}⊂ [0,θ], where θ ∈ [0,1). Then the sequence {xn} is convergent with
+∞∑
n=1

[xn+1− xn]+ <∞,

where [t]+ :=max{t,0} (for any t ∈R).

Lemma 3 ([3]). Let S be a nonempty subset of a real Hilbert space H1 and {xn} be a sequence in
H1 that satisfies the following properties:

(i) lim
n→∞‖xn − x‖ exists for each x ∈ S;

(ii) every sequential weak limit point of {xn} is in S.
Then {xn} converges weakly to a point in S.

3. Inertial Relaxation CQ Algorithm with Armijo-line Search
In this section, we introduce an inertial relaxation CQ algorithm with Armijo-line search, in
which the closed convex subsets C and Q have particular structure.

For the SFP, we assume that the convex sets C and Q satisfy the following conditions:
(A1) The set C is given by

C = {x ∈ H1 : c(x)≤ 0}, (3.1)

where c : H1 →R is a convex function and C is a nonempty set. The set Q is given by

Q = {y ∈ H2 : q(y)≤ 0}, (3.2)

where q : H2 → R is a convex function and Q is a nonempty set. Assume that c and q are
subdifferentiable on C and Q, respectively, and c and q are bounded on bounded sets. Note that
this condition is automatically satisfied in finite dimensional spaces.

For any x ∈ H1 , at least one subgradient ξ ∈ ∂c(x) can be calculated, where∂c(x) is defined
as follows:

∂c(x)= {z ∈ H1 : c(u)≥ c(x)+〈u− x, z〉, ∀u ∈ H1}. (3.3)

For any y ∈ H2, at least one subgradient η ∈ ∂q(y) can be calculated, where

∂q(x)= {w ∈ H2 : q(v)≥ q(y)+〈v− y,w〉, ∀v ∈ H2}. (3.4)

Define the sets Cn and Qn by the following half-spaces:

Cn = {x ∈ H1 : c(xn)+〈ξn, x− xn〉 ≤ 0}, (3.5)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn)+〈ηn, y− Axn〉 ≤ 0}, (3.6)

where ηn ∈ ∂q(Axn).
By the definition of the subgradient, it is clear that C ⊆ Cn and Q ⊆Qn. The projections onto

Cn and Qn are easy to compute since Cn and Qn are two half-spaces.
We define the function Fn : H1 → H1 by

Fn(x)= A∗(I −PQn)A(x). (3.7)

where A : H1 → H2 a bounded linear operator, and A∗ is the adjoint operator of A.
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Algorithm 3. Given constant γ> 0, ` ∈ (0,1), µ ∈ (0,1) and {θn}⊂ [0,θ), where θ ∈ [0,1). Let x1
be arbitrary and let

wn = xn +θn(xn − xn−1), (3.8)

yn = PCn(wn −αnFn(wn)), (3.9)

where αn = γ`mn and mn is the smallest nonnegative integer such that

αn‖Fn(wn)−Fn(yn)‖ ≤µ‖wn − yn‖. (3.10)

Construct the next iterative step xn+1 by

xn+1 = PCn(wn −αnFn(yn)). (3.11)

Lemma 4 ([12]). The Armijo-line search (3.10) terminates after a finite number of steps. In
addition,

µ`

L
<αn ≤ γ, for all n ≥ 1 (3.12)

where L = ‖A‖2.

In what follows, we denote S by the solution set of the problem (SFP) and also assume that
S is nonempty.

Theorem 1. Assume that the solution set S is nonempty and
∞∑

n=1
θn‖xn − xn−1‖2 <∞. Then any

sequence {xn} generated by Algorithm 3 converges weakly to a solution in S.

Proof. Let z ∈ S. Since C ⊆ Cn, Q ⊆ Qn, then z = PC(z) = PCn(z) and Az = PQ(Az) = PQn(Az).
This implies that Fn(z)= 0. By Lemma 1 (iii), we obtain

‖xn+1 − z‖2 = ‖PCn(wn −αnFn(yn))− z‖2

≤ ‖wn −αnFn(yn)− z‖2 −‖xn+1 −wn +αnFn(yn)‖2

= ‖wn − z‖2 −2αn〈wn − z,Fn(yn)〉+‖αnFn(yn)‖2 −‖xn+1 −wn‖2

−2αn〈xn+1 −wn,Fn(yn)〉−‖αnFn(yn)‖2

= ‖wn − z‖2 −2αn〈wn − yn + yn − z,Fn(yn)〉−‖xn+1 −wn‖2

−2αn〈xn+1 −wn,Fn(yn)〉
= ‖wn − z‖2 −2αn〈wn − yn,Fn(yn)〉−2αn〈yn − z,Fn(yn)〉−‖xn+1 −wn‖2

−2αn〈xn+1 −wn,Fn(yn)〉
= ‖wn − z‖2 −2αn〈yn − z,Fn(yn)〉−2αn〈xn+1 − yn,Fn(yn)〉
−‖xn+1 − yn + yn −wn‖2

= ‖wn − z‖2 −2αn〈yn − z,Fn(yn)〉−2αn〈xn+1 − yn,Fn(yn)〉
−‖xn+1 − yn‖2 −2〈xn+1 − yn, yn −wn〉−‖yn −wn‖2

= ‖wn − z‖2 −2αn〈yn − z,Fn(yn)〉−‖xn+1 − yn‖2 −‖yn −wn‖2

−2〈xn+1 − yn, yn −wn +αnFn(yn)〉. (3.13)
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On the other hand, we have

‖wn − z‖2 = ‖xn +θn(xn − xn−1)− z‖2

= ‖xn − z‖2 +2〈xn − z,θn(xn − xn−1)〉+‖θn(xn − xn−1)‖2

= ‖xn − z‖2 +2θn〈xn − z, xn − xn−1〉+θ2
n‖xn − xn−1‖2. (3.14)

By (2.3), we obtain

〈xn − z, xn − xn−1〉 = 1
2
‖xn − z‖2 + 1

2
‖xn − xn−1‖2 − 1

2
‖xn−1 − z‖2. (3.15)

Combining (3.14) and (3.15), we have

‖wn − z‖2 = ‖xn − z‖2 +θn‖xn − z‖2 +θn‖xn − xn−1‖2 −θn‖xn−1 − z‖2 +θ2
n‖xn − xn−1‖2

≤ ‖xn − z‖2 +θn(‖xn − z‖2 −‖xn−1 − z‖2)+2θn‖xn − xn−1‖2. (3.16)

From (2.8) and Fn(z)= 0, we have

2αn〈yn − z,Fn(yn)〉 = 2αn〈yn − z,Fn(yn)−Fn(z)〉
= 2αn〈yn − z, A∗(I −PQn)A yn − A∗(I −PQn)Az〉
= 2αn〈A yn − Az, (I −PQn)A yn − (I −PQn)Az〉

≥ 2
µ`

L
‖(I −PQn)A yn‖2. (3.17)

Using Lemma 1 (i) and the definition of yn(yn ∈ Cn), we obtain

〈xn+1 − yn, yn −wn +αnFn(wn)〉 ≥ 0. (3.18)

We see that

−2〈xn+1 − yn, yn −wn +αnFn(yn)〉 ≤ 2〈xn+1 − yn,wn − yn −αnFn(yn)〉
+2〈xn+1 − yn, yn −wn +αnFn(wn)〉

= 2αn〈xn+1 − yn,Fn(wn)−Fn(yn)〉
≤ 2αn‖xn+1 − yn‖‖Fn(wn)−Fn(yn)‖
≤α2

n‖Fn(wn)−Fn(yn)‖2 +‖xn+1 − yn‖2

≤µ2‖wn − yn‖2 +‖xn+1 − yn‖2. (3.19)

Combining (3.13), (3.16), (3.17) and (3.19) we have

‖xn+1 − z‖2 ≤ ‖xn − z‖2 +θn(‖xn − z‖2 −‖xn−1 − z‖2)+2θn‖xn − xn−1‖2

−2
µ`

L
‖(I −PQn)A yn‖2 −‖xn+1 − yn‖2 −‖yn −wn‖2

+µ2‖wn − yn‖2 +‖xn+1 − yn‖2

= ‖xn − z‖2 +θn(‖xn − z‖2 −‖xn−1 − z‖2)+2θn‖xn − xn−1‖2

−2
µ`

L
‖(I −PQn)A yn‖2 − (1−µ2)‖yn −wn‖2. (3.20)

Lemma 2 gives lim
n→∞‖xn − z‖ exists and {xn} is bounded.

From (3.20), it follows that

lim
n→∞‖yn −wn‖ = 0, (3.21)
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lim
n→∞‖(I −PQn)A yn‖ = 0. (3.22)

From (3.8), we have

lim
n→∞‖wn − xn‖ = 0. (3.23)

Using (3.21) and (3.23), we get

‖xn − yn‖ = ‖xn −wn +wn − yn‖
≤ ‖xn −wn‖+‖wn − yn‖
→ 0 as n →∞. (3.24)

From (3.9), (3.10), (3.11) and (3.24), we obtain

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+‖yn − xn‖
= ‖PCn(wn −αnFn(yn))−PCn(wn −αnFn(wn))‖+‖yn − xn‖
≤αn‖Fn(yn)−Fn(wn)‖+‖yn − xn‖
=µ‖yn −wn‖+‖yn − xn‖
→ 0 as n →∞. (3.25)

By (3.23) and (3.25), we get

‖xn+1 −wn‖ ≤ ‖xn+1 − xn‖+‖xn −wn‖
→ 0 as n →∞. (3.26)

Since {xn} is bounded, set ωw(xn) is nonempty. Let x∗ ∈ωw(xn), then there exists a subsequence
{xnk } of {xn} such that xnk* x∗. Now, we show that x∗ is a solution of the SFP, which will show
that ωw(xn)⊆ S. Since xnk+1 ∈ Cnk , then by the definition of Cnk , we obtain

c(xnk )+〈ξnk , xnk+1 − xnk〉 ≤ 0 (3.27)

where ξnk ∈ ∂c(xnk ). Since ∂c is bounded and (3.25), we have

c(xnk )≤ 〈ξnk , xnk − xnk+1〉
≤ ‖ξnk‖‖xnk − xnk+1‖
→ 0 as k →∞. (3.28)

From the w-lsc and since xnk* x∗, it implies that

c(x∗)≤ liminf
k→∞

c(xnk )≤ 0, (3.29)

hence, x∗ ∈ C. Since PQnk
(A ynk ) ∈Qnk , we have

q(A ynk )+〈ηnk ,PQnk
(A ynk )− A ynk〉 ≤ 0, (3.30)

where ηnk ∈ ∂q(A ynk ). Since ∂q is bounded and (3.22), we obtain

q(A ynk )≤ 〈ηnk , A ynk −PQnk
(A ynk )〉

≤ ‖ηnk‖‖A ynk −PQnk
(A ynk )‖

→ 0 as k →∞. (3.31)

We note that xnk* x∗ and ‖xnk − ynk‖→ 0. So ynk* x∗ and thus A ynk* Ax∗ as k →∞.
By the w-lsc, we get

q(Ax∗)≤ liminf
k→∞

q(A ynk )≤ 0. (3.32)
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So, Ax∗ ∈Q. Using Lemma 3, we conclude that the sequence {xn} converges weakly to a solution
of the SFP. This completes the proof.

4. Numerical Experiments
Example 1. Consider the following LASSO problem [21]:

min
{

1
2
‖Ax−b‖2 : x ∈R3,‖x‖1 ≤ τ

}
, (4.1)

where A =
(3 3 −1

5 4 0
2 −5 1

)
, b = (0,2,0). We define C = {x ∈R3 : ‖x‖1 ≤ τ} and Q = {b}. Since the projection

onto the closed convex C does not have a closed form solution and so we make use of the
subgradient projection. Define a convex function c(x)= ‖x‖1 −τ and denote the level set Cn by:

Cn = {x ∈R3 : c(xn)+〈ξn, x− xn〉 ≤ 0}, (4.2)

where ξn ∈ ∂c(xn). Then the orthogonal projection onto Cn can be calculated by the following:

PCn(x)=
{

x, if c(xn)+〈ξn, x− xn〉 ≤ 0,
x− c(xn)+〈ξn,x−xn〉

‖ξn‖2 ξn, otherwise.
(4.3)

It is worth noting that the subdifferential ∂c at xn is

∂c(xn)=


1, if xn > 0,
[−1,1], if xn = 0,
−1, if xn < 0.

(4.4)

The iteration process is stopped when the following criteria satisfied ‖xn+1 − xn‖ < 10−4.

We let θ = 0.5 and θn =min
{
θ, 1

n2‖xn+1−xn‖2

}
.

We consider four cases as follows:
Case 1: x1 = (−1,2,0), x0 = (−2,0,−9), γ= 1

‖A‖2 , `= 0.4 and µ= 0.8.

Case 2: x1 = (1,−9,4), x0 = (−5,2,1), γ= 1.6
‖A‖ , `= 0.9 and µ= 0.9.

Case 3: x1 = (7,9,−4), x0 = (4,6,−3), γ= 2
‖A‖ , `= 0.3 and µ= 0.1.

Case 4: x1 = (5,4,0), x0 = (3,5,−2), γ= 3
‖A‖2 , `= 0.2 and µ= 0.5.

Table 1. Algorithm 3 with different cases

Algorithm 2 Algorithm 3

Case 1 No. of Iter. 215 187
cpu (Time) 0.0153 0.0145

Case 2 No. of Iter. 140 122
cpu (Time) 0.1657 0.1248

Case 3 No. of Iter. 403 362
cpu (Time) 0.0983 0.0759

Case 4 No. of Iter. 253 208
cpu (Time) 0.0637 0.0357

The convergence behavior of the error En for each Cases is shown in Figure 1-4, respectively.
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Figure 1. Error plotting En for Case 1 in Example 1
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Figure 2. Error plotting En for Case 2 in Example 1
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Figure 3. Error plotting En for Case 3 in Example 1
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Figure 4. Error plotting En for Case 4 in Example 1

5. Conclusions
In this paper, we introduce the inertial relaxation CQ algorithm to solve the split feasibility
problem in real Hilbert spaces. We focus on the relaxation CQ algorithm with the Armijo-
linesearch for the SFP. The numerical experiments show that our algorithm converges faster
than that of Gibali et al. [12].
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