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Abstract. In this paper, a mathematical model consisting of the prey-predator model with SI
infectious disease in prey is proposed and analyzed. The model includes harvesting on the infected
prey population, it is assume that the disease is not transmitted from prey to predator. In addition,
the disease spread by contact between susceptible individuals and infected individuals, the mature
predator only can predate the susceptible and infected prey which are outside refuge according to
Lotka-Volterra type of functional response. While, the immature predator depends completely in
it’s feeding on the mature predator. The existence, uniqueness and boundedness of the solution are
discussed. The stability analysis of all possible equilibrium points is studied. Also, Lyapunove function
is used to study the global dynamics of the model. Further, the effect of the disease, refuge and harvest
on the dynamical of the system is discussed using numerical simulation.
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1. Introduction
The explanation of stage structure of people in the period life history of an alluring of the
population dynamics, since in real world, there are many species whose individual members
exhibit excessive diversity. Stage structure models have received much interest in recent years.
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There has been case amount of previous work on modeling with various ages of life history
using continuous and discrete models for example [3,10,24].

The relation between densities of a predator and its prey is an essential topic in ecology. The
mixture of disease into this predator-prey relationship is a fundamental factor to be investigated
in the relatively new field of eco-epidemiology, which comprises aspects of both epidemiology
and ecology, to study of how diseases communicate [6].

Many studies have examined how diseases grow with variations of the classic SIR model
(including populations of susceptible, infected and recovered or resistant individuals) first
considered by Kermack and Mckendrick (1927). Some of these studies have been dedicated to
the interactions between prey, predator, and parasite or pathogen, such as the models proposed
by Roy and Holt [18] and Xiao and Chen [23].

So in the last years, mathematical models have become extremely fundamental tools in
understanding and analyzing the communicate and control of infectious disease. Through the
study the various types from disease for example SI, SIS, SIR, SEIR, and SEIRS. Whereas
many diseases are transmitted in the species not only through contact, but also directly from
environment, Majeed and Shawka [14] studied prey-predator model involving SI and SIS
infectious disease in prey population and the disease transmitted within the same species by
contact and external source. In addition to Khalaf, Majeed and Naji [13] proposed and analyzed
a prey-predator model involving SIS infectious disease in prey population this disease passed
from a prey to predator through attacking of predator to prey and the disease transmitted
within the same species by external source and contact, while Naji and Mustafa [16] proposed a
prey-predator model involving SI infectious disease in prey and the disease transmitted within
the same species by connection.

On the other hand, the harvest rate has a strong effect on the dynamic advancement
of the population perhaps one of the most important hunting the fish or disease removal,
Bhattacharyya and Mukhopadhyay [8] studied prey-predator model with harvest and disease,
and he assumed that the harvest can disease eradication, also Bairagi et al. [7] studied prey-
predator model with harvest and disease, and he assumed that the harvest can remove a
parasite.

Some studies that address the population contain the harvest, Brauer and Soudack [9]
studied a predator-prey model under constant rate of harvesting. On other hand, there are many
studies includes disease and proportional harvesting, Abdul Satar [19] studied a prey-predator
model with disease SIS-type and harvesting on prey and predator, while Wuhaih [22] and
Agnihotri [1] proposed a prey-predator model with disease SIS-type, SI-type and harvesting
in prey only. In addition, many researchers have considered a predator-prey systems with
nonlinear harvesting functions [11,15], while some of the studies using time delay with harvest
were considered by Aiello and Freedman [2], and Rosen [17].

In spite of the influence of prey refuges on the dynamical behavior of the system is very
complex in the reality, but it has been considered and analysis in this paper. Many authors have
considered the dynamic behaviors of prey-predator model with prey refuge for example [4,5] .

Recently, Sujatha and Gunasekarana [21] had proposed and analyzed a non-linear
mathematical model to study the dynamics of a disease transmission among the prey population,
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the model includes the harvesting of infected prey. While, Shashi and Vivek [20] proposed a
stage structured eco-epidemiological model with linear functional response, in this model the
stages for prey and predator have been considered. Infection occurs in the prey population only.

In this paper, an eco-epidemiological mathematical model consisting of prey-predator model
involving SI infectious disease in prey and stage structured predator species with harvest in
infectious population has been proposed and analyzed. Further, in this model, linear types of
functional responses for the predation of susceptible and infected prey which are outside refuge
as well as linear incidence rate for describing the transition of disease are used. Our aim is to
study the role of harvesting on the dynamics of disease propagation and/or eradication.

2. Mathematical Model
In this section, an eco-epidemiological model is proposed for study. The model consists of a prey,
whose total population density at time T is denoted by N(T), interacting with stag-structured
predator. It is assumed that the prey population is infected by infectious disease. Now, the
following assumptions are adopted in formulating the basic eco-epidemiology model:

1. There is an SI epidemic disease in the prey population divides the prey population into
two classes namely S(T) that represents the density of susceptible prey at time T and
I(T) which represents the density of infected prey at time T . Therefore, at any time T we
have N(T)= S(T)+ I(T). The predator population is divided into two classes namely X (T)
that represents the density of immature predator at time T and Y (T) which represents
the density of mature predator at time T .

2. It is assumed that only susceptible prey S is capable of reproducing in logistic growth
with carrying capacity K > 0 and intrinsic growth rate constant r > 0, the infected prey
I is removed before having the possibility of reproducing. However, the infected prey
population I still contribute with S to population growth toward the carrying capacity.

3. The disease is transmitted within the same species by contact with an infected individual
at infection rates l > 0 for the prey.

4. The mature predator consumes the susceptible and infected prey which are outside refuge
according to Lotka-Volterra of functional response with maximum attack rates c1 > 0 and
c2 > 0 for susceptible and infected respectively.

5. There is type of protection of prey species from facing predation by the mature predator
with refuge rates constants m1 ∈ (0.1) and m2 ∈ (0,1) for susceptible and infected prey
respectively.

6. The immature predator depends completely in its feeding on his parents, so that it feeds
on the portion of up taken food by mature predator from the susceptible and infected prey
with portion rates 0 < n1 < 1 and 0 < n2 < 1 with uptake rates 0 < e1 < 1 and 0 < e2 < 1
respectively. The immature predator individuals grown up and become mature predator
individuals with grown up rate g > 0.

7. In the absence of the prey the immature and mature predator decay exponentially with
natural death rates d1 > 0 and d2 > 0, respectively.
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8. The disease may causes mortality with a constant mortality rate α> 0 for the prey.

9. Finally, the infected population is harvest with constant rate h > 0 for the prey.

According to the above assumptions, the proposed mathematical model can be represented
mathematically by the following set of first order non-linear differential equations, while the
block diagram of this model can be illustrated in Figure 2.1.

dS
dT

= rS
(
1− S+ I

K

)
− lSI − c1(1−m1)SY ,

dl
dT

= lSI − c2(1−m2)IY −αI −hI,

dX
dT

= n1e1c1(1−m1)SY +n2e2c2(1−m2)IY − gX −d1X ,

dY
dT

= gX + (1−n1)e1c1(1−m1)SY + (1−n2)e2c2(1−m2)IY −d2Y .



(2.1)

Figure 2.1. Block diagram for prey-predator model given by system (2.1)

Note that the above proposed model has 16 parameters which makes the mathematical
analysis of the system difficult. So in order to reduce the number of parameters and determine
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which parameter represents the control parameter, the following dimensionless variables are
used:

t = rT, s = S
k

, i = I
k

, x = X
k

, y= Y
k

.

Then system (2.1) can be written in the following dimensionless form:
ds
dt

= s(1− (s+ i))−a1si−a2sy= f1(s, i, x, y),

di
dt

= a1si−a3i y−a4i−a5i = f2(s, i, x, y),

dx
dt

= a6sy+a7i y− (a8 +a9)x = f3(s, i, x, y),

d y
dt

= a8x+a10sy+a11i y−a12 y= f4(s, i, x, y)


(2.2)

where

a1 = lk
r

, a2 = c1(1−m1)K
r

, a3 = c2(1−m2)K
r

, a4 = h
r

, a5 = α

r
,

a6 = e1c1n1(1−m1)K
r

, a7 = e2c2n2(1−m2)K
r

, a8 = g
r

, a9 = d1

r
,

a10 = e1c1(1−n1)(1−m1)K
r

, a11 = e2c2(1−n2)(1−m2)K
r

, a12 = d2

r
.

Represent the dimensionless parameter of system (2.2). It is observed that the number of
parameters have been reduced from sixteen in the system (2.1) to twelve in the system (2.2).

Since the density of any species cannot be negative, therefore we will solve system (2.2) with
the following initial condition s(0)≥ 0, i(0)≥ 0, x(0)≥ 0 and y(0)≥ 0.

It is easy to verify that all the interaction functions f1, f2, f3 and f4 on the right hand side
of system (2.2) are continuous and have continuous partial derivatives on R4+ with respect to
dependent variables s, i, x and y. Accordingly they are Lipschitzian functions and hence system
(2.2) has a unique solution for each non-negative initial condition. Further, the boundedness of
the system is shown in the following theorem:

Theorem 2.1. All the solutions of system (2.2) which initiate in R4+ are uniformly bounded.

Proof. Let (s(t), i(t), x(t), y(t)) be any solution of the system (2.2) with non-negative initial
condition (s(0), i(0), x(0), y(0)). According to the first equation of system (2.2), we have:

ds
dt

≤ s(1− s).

Clearly according to the theory of differential inequality, we get:

lim
t→∞sup s(t)≤ 1.

Define the function Z(t)= s(t)+ i(t)+ x(t)+ y(t). Therefore,
dZ
dt

< 2s− (a2 − (a6 +a10))sy− (a3 − (a7 +a11))i y− (s+ (a4 +a5)i+a9x+a12 y).

Now, since the conversion rate constant from prey population to predator population can not
be exceeding the maximum predation rate constant of predator population to prey population,
hence from the biological point of view, always a6 + a10 < a2, and a7 + a11 < a3, hence it is
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obtained that:
dZ
dt

≤ 2−mZ ,

where m =min{1,a4 +a5,a9,a12}.
Now, by using the comparison theorem [12] on the above differential inequality, we get that:

Z(t)≤ 2
m

+
(
Z(0)− 2

m

)
e−mt .

Thus 0 ≤ Z(t) ≤ 2/m as t →∞. Hence all the solutions of system (2.2) are uniformly bounded
and the proof is complete

3. Existence of Equilibrium Points
In this section, the conditions for the existence of all possible equilibrium points of the system
(2.2) are discussed. System (2.2) results in the following six equilibrium points.

1. The trivial equilibrium point E0 = (0,0,0,0) always exist.

2. The axial equilibrium point E1 = (1,0,0,0). This disease and predator free equilibrium
also exists unconditionally.

3. The predator-free equilibrium point E2 = (s̄, ı̄,0,0) exists if and only if there is a positive
solution to the following set of equations:

s(1− (s+ i))−a1si = 0 , (3.1a)

a1si− (a4 +a5)= 0 . (3.1b)

From equation (3.1b) we have

s̄ = a4 +a5

a1
(3.1c)

Now, by substituting equation (3.1c) in equation (3.1a) we get:

ı̄ = a1 − (a4 +a5)
a1(1−a1)

(3.1d)

Note that equation (3.1d) is positive, provided that:

a4 +a5 < a1 < 1 (3.1e)

4. The disease-free equilibrium point exists if and only if there is a positive solution to the
following set of equations:

s(1− s)−a2sy= 0, (3.2a)

a6sy− (a8 +a9)x = 0, (3.2b)

a8x+a10sy−a12 y= 0, (3.2c)

From equation (3.2a) we have,

y= 1− s
a2

. (3.2d)

Note that equation (3.2d) is a positive, provided that:

s < 1. (3.2e)
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By substitute equations (3.2d) in (3.2b) we get,

x = a6s(1− s)
a2(a8 +a9)

. (3.2f)

Note that x is positive under condition (3.2e).

Now, by substituting equations (3.2d) and (3.2f) in eq. (3.2c) we get:

−[a6a8 +a10(a8 +a9)]s2 + [a6a8 + (a8 +a9)(a10 +a12)]s−a12(a8 +a9)= 0 . (3.2g)

Clearly, due to discard rule equation (3.2g) has either two positive roots or else there are no
positive roots depending on the following condition whether it hold or violate respectively,

[a6a8 + (a8 +a9)(a10 +a12)]2 > 4a12(a6a8 +a10(a8 +a9))(a8 +a9). (3.2h)

That is there are two disease free equilibrium points E3 = (s1,0, x1, y1) and E4 =
(s2,0, x2, y2) provided conditions (3.2e) and (3.2h) are hold.

5. The coexistence equilibrium point E5 = (s∗, i∗, x∗, y∗) exists if and only if there is a positive
solution to the following set of equations:

1− (s+ i)−a1i−a2 y= 0, (3.3a)

a1s−a3 y− (a4 +a5)= 0, (3.3b)

a6sy+a7i y− (a8 +a9)x = 0, (3.3c)

a8x+a10sy+a11i y−a12 y= 0. (3.3d)

From equation (3.3b) we have,

y= a1s− (a4 +a5)
a3

. (3.3e)

By substituting equations (3.3e) in equation (3.3a) we get:

i = a3 +a2(a4 +a5)− (a3 +a2a1)s
a3 +a1a2

(3.3f)

Also, by substituting equations (3.3e) and (3.3f) in equation (3.3c) we get:

x = 1
(a8 +a9)

{(
a1s− (a4 +a5)

)(a6s
a3

+ a7

a2
3(1+a1)

(
(a3 +a2(a4 +a5)

)
− (a3 +a1a2)s

)}
(3.3g)

Now, by substituting equations (3.3e), (3.3f) and (3.2g in equation (3.3d) we get:

M1s2 +M2s+M3 = 0 , (3.3h)

where:

M1 = a1[a3a6a8 + (a8 +a9)((a3a10(1+a1)−a11(a3 +a1a2))]
a2

3(1+a1)(a8 +a9)
,

M2 = a8(a4 +a5)(a7(a1a2 +a3)−a3a6)−a1a7a8

+ (a8 +a9)(a11(a1a3 + (a4 +a5)(a3 +2a1a2))−a3(1+a1)(a10(a4 +a5)+a1a12),

M3 = (a4 +a5)
(

a12

a3

)
− (a3 +a2(a4 +a5))

(
a7 + a11

a2
3(1+a1)

)
.

Note that eq. (3.3h) has a unique positive root, namely s∗ provided that M1 > 0, M2 < 0
and M3 < 0.
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That is the following conditions are hold:

(a3 +a1a2)< a3a10(1+a1)
a11

, (3.3i)

a11(a1a3 + (a4 +a5)(a3 +2a1a2)< a3(1+a1a2)(a10(a4 +a5)+a1a12) , (3.3j)

a12

a3
< (a3 +a2(a4 +a5))

(
a7 + a11

a2
3(1+a1)

)
. (3.3k)

Substituting the value of s∗ in (3.3e), (3.3f) and (3.3g) yield that y(s∗)= y∗, i(s∗)= i∗ and
x(s∗)= x∗ which are positive if the following condition hold:

a4 +a5

a1
< s∗ < a3 +a2(a4 +a5)

a3 +a1a2
. (3.3l)

4. Local Stability Analysis
In this section, we analyzed the local stability of the system (2.2) around each equilibrium
point and discussed through computing the Jacobian matrix J(s, i, x, y) and determined the
eigenvalues of system (2.2) at each of them. The Jacobian matrix J(s, i, x, y) of the system (2.2)
at each of them can be written:

J =



∂ f1

∂s
∂ f1

∂i
∂ f1

∂x
∂ f1

∂y
∂ f2

∂s
∂ f2

∂i
∂ f2

∂x
∂ f2

∂y
∂ f3

∂s
∂ f3

∂i
∂ f3

∂x
∂ f3

∂y
∂ f4

∂s
∂ f4

∂i
∂ f4

∂x
∂ f4

∂y


(4.1)

where f i , i = 1,2,3,4 are given in system (2.2) and
∂ f1

∂s
= 1−2s− i−a1i−a2 y,

∂ f1

∂i
=−(1+a1)s,

∂ f1

∂x
= 0,

∂ f1

∂y
=−a2s,

∂ f2

∂s
= a1i,

∂ f2

∂i
= a1s−a3 y− (a4 +a5),

∂ f2

∂x
= 0,

∂ f2

∂y
=−a3i,

∂ f3

∂s
= a6 y,

∂ f3

∂i
= a7 y,

∂ f3

∂x
=−(a8 +a9),

∂ f3

∂y
= a6s+a7i,

∂ f4

∂s
= a10 y,

∂ f4

∂i
= a11 y,

∂ f4

∂x
= a8,

∂ f4

∂y
= a10s+a11i−a12.

4.1 Local stability of equilibrium point E0 = (0,0,0,0)
At E0 the Jacobian matrix become

J(E0)=


1 0 0 0
0 −(a4 +a5) 0 0
0 0 −(a8 +a9) 0
0 0 a8 −a12

 . (4.1a)

Then the eigenvalues of J(E0) are λ0s = 1, λ0i = −(a4 + a5), λ0x = −(a8 + a9) and λ0y = −a12.
Thus, the equilibrium point E0 is unstable.
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4.2 Local stability of equilibrium point E1 = (1,0,0,0)
At E1 the Jacobian matrix become

J(E1)=


−1 −(1+a1) 0 −a2
0 a1 − (a4 +a5) 0 0
0 0 −(a8 +a9) a6
0 0 a8 a10 −a12

 (4.2a)

Then the characteristic equation of J(E1) is given by

(−1−λ)(a1 − (a4 +a5)−λ)(λ2 − ((a8 +a9)+ (a10 −a12))λ− ((a8 +a9)(a10 −a12)+a6a8)= 0.

Therefore, the eigenvalues J(E1) are λ1s =−1, λ1i = a1−(a4+a5), λ1x+λ1y = (a8+a9)+(a10−a12)
and λ1xλ1y =−((a8 +a9)(a10 −a12)+a6a8).

Thus, the equilibrium point E1 becomes stable, provided that:

a4 +a5 > a1, (4.2b)

a12 > a10, (4.2c)

a12 −a10 >max
{

a8 +a9,
(a6a8)

(a8 +a9)

}
(4.2d)

otherwise, E1 is unstable.

4.3 Local stability of equilibrium point E2 = (s̄, ı̄,0,0)
At E2 the Jacobian matrix become:

J(E2)= [ki j]4×4 (4.3a)

Here

k11 = 1−2s̄− ı̄(1+a1), k12 =−s̄−a1 s̄, k13 = 0, k14 =−a2 s̄,

k21 = a1 ı̄, k22 = a1 s̄− (a4 +a5), k23 = 0, k24 =−a3 ı̄,

k31 = 0, k32 = 0, k33 =−(a8 +a9), k34 = a6 s̄+a7 ı̄,

k41 = 0, k42 = 0, k43 = a8, k44 = a10 s̄+a11 ı̄−a12.

Then the characteristic equation of J(E2) is given by:

[λ2 + A1λ+ A2][λ2 +B1λ+B2]= 0

where:

A1 =−(k11 +k22)> 0, A2 = k11k22 −k12k21 > 0,

B1 =−(k33 +k44) and B2 = k33k44 −k34k43.

So, either

λ2s +λ2i =−A1 = (1+a1 s̄)− (2s̄+ (1+a1) ı̄+a4 +a5 (4.3b)

and

λ2sλ2i = A2 = s̄(a1 +2(a4 +a5))+ ı̄(1+a1)(a4 +a5)− [(a4 +a5)+2a1 s̄2] (4.3c)

or

λ2x+λ2y =−B1 =−(a8 +a9)+a10 s̄+a11 ı̄−a12 , (4.3d)
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λ2xλ2y = B2 =−(a8 +a9)(a10 s̄+a11 ı̄−a12)− (a6 s̄+a7 ı̄)a8. (4.3e)

Hence the eigenvalues of J(E2) are negative if the following conditions hold:

2s̄+ (1+a1) ı̄+ (a4 +a5)> 1+a1 s̄ , (4.3f)

s̄(a1 +2(a4 +a5))+ (1+a1)(a4 +a5)> (a4 +a5)+2a1 s̄2 , (4.3g)

a10 s̄+a11 ı̄ < a12 , (4.3h)

(a8 +a9)(a12 − (a10 s̄+a11 ı̄))> a8(a6 s̄+a7 ı̄). (4.3i)

Therefore, E2 is stable equilibrium point if conditions (4.3e)-(4.3i) are hold. However, it is
unstable otherwise.

4.4 Local stability of equilibrium point E3 = (s1,0, x1, y1) and E4 = (s2,0, x2, y2)
The Jacobian matrix of system (2.2) at the free disease equilibrium point E3 = (s1,0, x1, y1),
similarly for E4 = (s2,0, x2, y2) can be written as:

J(E5)= [r i j]4×4, (4.4a)

here

r11 = 1−2s1 −a2 y1, r12 =−(1+a1)s1, r13 = 0, r14 =−a2s1,

r21 = 0, r22 = a1s1 −a3 y1 − (a4 +a5), r23 = 0, r24 = 0,

r31 = a6 y1, r32 = a7 y1, r33 =−(a8 +a9), r34 = a6s1,

r41 = a10 y1, r42 = a11 y1, r43 = a8, r44 = a10s1 −a12.

Then the characteristic equation of J(E3) is given by:

[λ3 +M1λ
2 +M2λ+M3](r22 −λ)= 0 (4.4b)

where:

M1 =−(r11 + r33 + r44),

M2 = r11(r33 + r44)+ r33r44 − r14r41 > 0,

M3 =−r11r33 − r14(r31r43 − r41r33).

So, either

(r22 −λ)= 0,

that is

λ22 = r22 < 0, (4.4c)

provided that:

s1 > a3 y1 +a4 +a5

a1
(4.4d)

However by using Routh Hurwitz criterion all the other eigenvalues, which represent the roots
of first part of (4.4b), have negative real parts if and only if M1 > 0, M3 > 0 and M1M2 −M3 > 0.
Straightforward computation shows that:

M1M2 −M3 =−r2
11(r33 + r44)− r33r44(r11 + r33 + r44)− r11((r33 + r44)2

− (r14r41 − r33)+ r14(r31r43 + r41r44). (4.4e)
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Now, M1 > 0 and M3 > 0 provided that:
1−a2 y1

2
< s1 < a12

a10
with y1 < 1

a2
. (4.4f)

Moreover, the first four terms of (4.4e) are positive under condition (4.4f), the last term is
positive provided that:

a10a12 > a6a8 +a2
10s1 . (4.4g)

So, all the eigenvalues of J(E3) have negative real part under the given conditions and hence
E3 is locally asymptotically stable. However, it is unstable otherwise.

4.5 Local stability of equilibrium point E5 = (s∗, i∗, x∗, y∗)
At E5 the Jacobian matrix become:

J(E5)= [l i j]4×4, (4.5a)

here

l11 = 1−2s∗− (1+a1)i∗−a2 y∗, l12 =−(1+a1)s∗ < 0, l13 = 0, l14 =−a2s∗ < 0,
l21 = a1i∗ > 0, l22 = a1s∗−a3 y∗− (a4 +a5), l23 = 0, l24 =−a3i∗ < 0,
l31 = a6 y∗ > 0, l32 = a7 y∗ > 0, l33 =−(a8 +a9)< 0, l34 = a6s∗+a7i∗ > 0,
l41 = a10 y∗ > 0, l42 = a11 y∗ > 0, l43 = a8 > 0, l44 = a10s∗+a11i∗−a12.

Then the characteristic equation of J(E5) is given by:

λ4 +C1λ
3 +C2λ

2 +C3λ+C4 = 0 (4.5b)

where:

C1 =−(∝0 +∝1)
C2 =∝0∝1 +∝2 +∝3 −(∝4 +∝5 +∝6 +∝7)
C3 =−[(∝0 (∝2 −∝4)+∝1 (∝3 −∝6)− l24(∝8 −∝9 +∝10)+∝6∝11 +l14(∝12 −∝13 +∝14)]
C4 = (∝2 −∝4)(∝3 −∝6)+ (∝9 −∝10)(∝15 −∝16)+∝17 (∝14 −∝18)+∝19 (∝13 −∝14).

with

∝0= l11 + l22, ∝1= l33 + l44, ∝2= l33l44, ∝3= l11l22,
∝4= l34l43 > 0, ∝5= l24l42 < 0, ∝6= l12l21 < 0, ∝7= l14l41 < 0, ∝8= l11l42,
∝9= l32l43 > 0, ∝10= l42l33 < 0, ∝11= l41 + l14, ∝12= l22l41 < 0, ∝13= l31l42 > 0,
∝14= l41l33 < 0, ∝15= l11l24, ∝16= l14l21 < 0, ∝17= l12l24 > 0, ∝18= l31l43 > 0
∝19= l14l22

Now by using Routh Hurwitz criterion all the eigenvalues, which represent the roots of (4.5b),
have negative real parts if and only if C1 > 0, C3 > 0, C4 > 0 and ∆= (C1C2 −C3)C3 −C2

1C4 > 0.
Now, Ci > 0, i = 1,3 and 4, provided that

max
{1− (1+a1)i∗−a2 y∗

2
,R

}
< s∗ <min

{a3 y∗+a4 +a5

a1
,
a12 −a11i∗

a10
,
a10 y∗

a2

}
, (4.5c)

(a8 +a9)(a12 − (a10s∗+a11i∗))> (a6s∗+a7i∗)a8, (4.5d)

a3(1+a1)s∗i∗(a6a8 y∗+a10(a8 +a9)y∗)
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<−a2s∗(a1s∗−a3 y∗− (a4 +a5))(a6a11 y∗
2 +a10(a8 +a6)y∗) (4.5e)

with

i∗ <min
{a12

a11
,
1−a2 y∗

1+a1
,
(1+a3 +a9 +a12)− ((a4 +a5)+ (a2 +a3)y∗)

1+a1 +a11

}
, (4.5f)

y∗ < 1
a2

, (4.5g)

1+a8 +a9 +a12 > (a4 +a5)+ (a2 +a3)y∗, (4.5h)

a1 < a10 +2 (4.5i)

where:

R = 1+a8 +a9 +a12 − (a4 +a5)− (a2 +a3)y∗− (1+a1 +a11)i∗

a1 − (a10 +2)
(4.5j)

Further, it is easy to check that:
∆= N1 −N2, where

N1 = (∝0∝1 −∝5 −∝7)(∝0 +∝1)[∝0 (∝2 −∝4)+∝1 (∝3 −∝6)− l24(∝8 −∝9 +∝10)

+∝6∝11 −l14(∝12 −∝13 +∝14)]+∝0∝1 (∝2 −∝4)2 + l24(∝0 −∝1)(∝8 −∝9 +∝10)

(∝2 −∝3 −∝4 +∝6)+∝6∝11 (∝0 −∝1)(∝3 −∝2 −∝6 +∝4)+ l14(∝2 −∝4)

(∝12 −∝13 +∝14)[∝2 (∝12 −∝13 +∝14)−∝1]+∝0∝1 (∝3 −∝6)2 − l14(∝0 −∝1)

(∝3 −∝6)(∝12 −∝13 +∝14),

N2 = l2
24(∝8 −∝9 +∝10)2 + l2

14(∝12 −∝13 +∝14)2+∝2
6∝2

11 +(∝12 −∝13 +∝14)[2l14l24

(∝8 −∝9 +∝10)−2l14 ∝6∝11]−2l24 ∝6∝11 (∝8 −∝9 +∝10)

+2∝0∝1 (∝2 −∝4)(∝3 −∝6)+ (∝0 +∝1)2[(∝9 −∝10)(∝15 −∝16)

+∝17 (∝14 −∝18)+∝19 (∝13 −∝14)].

Clearly, Ni , for i = 1,2 are positive under conditions (4.5c)-(4.5i), with the following condition

N1 > N2 . (4.5k)

Hence ∆= (C1C2 −C3)C3 −C2
1C4 > 0. So, all the eigenvalues of J(E5) have negative real part

under the given conditions and hence E5 is locally asymptotically stable. However, it is unstable
otherwise.

5. Global Stability Analysis
In this section, the global stability analysis for the equilibrium points, which are locally
asymptotically stable of system (2.2) is studied analytically by use the suitable of Lyapunov
method as shown in the following theorems.

Theorem 5.1. Assume that the disease and predator free equilibrium point E1 = (1,0,0,0) of
system (2.2) is locally asymptotically stable in the R4+. Then E1 is globally asymptotically stable
provided that the following condition hold:

a4 +a5 > 1+a1, (5.1a)

a12 > a2. (5.1b)
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Proof. Consider the following function

G1(s, i, x, y)= (s−1− ln s)+ i+ x+ y.

It is easy to see that G1(s, i, x, y) ∈ C1(R4+,R), G1(E1)= 0 and G1(s, i, x, y)> 0; for all (s, i, x, y) 6=
E1. Now by differentiating G1 with respect to time t and going some algebraic handling, given
that:

dG1

dt
=−(s−1)2 − si+ (1+a1 − (a4 +a5))i+ (a2 −a12)y− (a2 − (a5 +a9))sy− (a3 − (a6 +a10))i y .

Now, according to the conditions in theory (2.1) and (5.1a)-(5.1b) we obtain that dG1
dt < 0.

Hence E1 is a globally asymptotically stable and then the proof is complete.

Theorem 5.2. Assume that the predator free equilibrium point E2 = (s̄, ı̄,0,0) of system (2.2) is
locally asymptotically stable in the R4+. Then E2 is globally asymptotically stable on the region
ω1 in the Int R+

4 that satisfies the following conditions:

a11 > a2 s̄+a3 ı̄. (5.2)

Proof. Consider the following function

G2(s, i, x, y)=
(
s− s̄− s̄ ln

s
s̄

)
+

(
i− ī− ı̄ ln

i
ı̄

)
+ x+ y.

It is easy to see that G2(s, i, x, y) ∈ C1(R4+,R), G2(E2)= 0, and G2(s, i, x, y)> 0, for all (s, i, x, y) 6=
E2. Now by differentiating G2 with respect to time t and going some algebraic handling, given
that:

dG2

dt
<− (s− s̄)2 − (s− s̄)(i− ī)− (a2 − (a6 +a10))sy− (a3 − (a7 +a11))i y+ (a2 s̄+a3 ı̄−a12)y .

Then dG2
dt < 0 under the conditions in theory (2.1) and (5.2). Hence, E2 is a globally

asymptotically stable and then the proof is complete.

Furthermore since there are two free disease equilibrium points E3(s1,0, x1, y1) and
E4 = (s2,0, x2, y2) in the interior of R+

4 having the same local stability conditions but with
different neighborhood of starting points then its not possible to studying the global stability of
them using Lyapunove function. Therefore, we will study it numerically instead of analytically
as shown in last section.

Theorem 5.3. Assume that the positive equilibrium point E5 = (x∗, y∗, z∗,w∗) of system (2.2) is
locally asymptotically stable. Then E5 is globally asymptotically stable in the sub region of R4+.
That satisfies the following conditions:

s∗ > s, (5.3a)
i∗ > i, (5.3b)
x∗ < x, (5.3c)
y∗ > y. (5.3d)

Proof. Consider the following function

G3(s, i, x, y)=
(
s− s∗− s∗ ln

s
s∗

)
+

(
i− i∗− i∗ ln

i
i∗

)
+

(
x− x∗− x∗ ln

x
x∗

)
+

(
y− y∗− y∗ ln

y
y∗

)
.
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It is easy to see that G3(s, i, x, y) ∈ C1(R4+,R), G3(E5)= 0, and G3(s, i, x, y)> 0, for all (s, i, x, y) 6=
E5. Now by differentiating G3 with respect to time t and going some algebraic handling, given
that:

dG3

dt
<−(s− s∗)2 − (s− s∗)(i− i∗)− (a2 −a10)(s− s∗)(y− y∗)− (a3 −a11)(i− i∗)(y− y∗)

− (x− x∗)
(

a6sy+a7i y
xx∗

)
+ (y− y∗)

(
a6s∗+a7i∗

x∗

)
+ a6 y

x∗
(s− s∗)+ a7 y

x∗
(i− i∗)

− a8x
yy∗

(y− y∗)2 + a9

y∗
(x− x∗)(y− y∗).

Then dG3
dt is negative definite under conditions (5.3a)-(5.3d), with the biological facts a10 < a2

and a11 < a3. Hence, E5 is a globally asymptotically stable and then the proof is complete.

6. Numerical Simulation
In this section, we confirm our obtained results in the previous sections numerically by using
Runge-Kutta method along with predictor-corrector method. Note that, we use turbo C++ in
programming and MATLAB for plotting and then discuss our obtained results. The system (2.2)
is studied numerically for different sets of parameters and initial points. The objectives of this
study are; first investigate the effect of varying the value of each parameter on the dynamical
behaviour of system (2.2) and second confirm our obtained analytical results. It is observed that,
for the following set of hypothetical parameters that satisfies stability conditions of the positive
equilibrium point, system (2.2) has a globally asymptotically stable positive equilibrium point
as shown in Figure 6.1(a-d).

a1 = 2, a2 = 2, a3 = 0.9, a4 = 0.1, a5 = 0.1, a6 = 0.6, a7 = 0.4,

a8 = 0.5, a9 = 0.1, a10 = 0.6, a11 = 0.4, a12 = 0.3.

}
(6.1)

Clearly, Figure 6.1 shows that system (2.2) has a globally asymptotically stable as the
solution of system (2.2) approaches asymptotically to the positive equilibrium point E5 =
(0.223,0.064,0.078,0.288) starting from three different initial points and this is confirming our
obtained analytical results.

Now, in order to discuss the effect of the parameters values of system (2.2) on the dynamical
behavior of the system. The system is solved numerically for the data given in (6.1) with varying
one parameter at each time and sometime two parameters the obtained results are given below.

The effect of varying the infection rate of prey in the range 0.1 < a1 ≤ 1.93 keeping other
parameters as data given in (6.1) is studied, causes extinction in the infected prey and the
system will approach to the infected prey free equilibrium point as shown in Figure 6.2. However,
for 1.93 < a1 < 2 it is observed that system (2.2) still approach asymptotically to the positive
equilibrium point.

The effect of varying the predation rate on susceptible prey in the range 0.1 < a2 ≤ 1.88
keeping other parameters as data given in (6.1) is studied, it is observed that system (2.2)
still approach asymptotically to the free infected prey equilibrium point, while increasing
this parameter further 1.88 < a2 ≤ 2 the solution of the system will approach to the positive
equilibrium point as shown in Figure 6.3 for typical value a2 = 1.88.
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Figure 6.1. The time series of the solution of system (2.2) started from the three different initial points
(0.4,0.5,0.6,0.7), (0.6,0.7,0.8,0.9) and (0.2,0.4,0.2,0.3) for the data given by (6.1) (a) the trajectories of s
as a function of time, (b) the trajectories of i as a function of time, (c) trajectories of x as a function of
time and (d) the trajectories of y as a function of time
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Figure 6.2. Time series of the solution of system (2.2) approaches asymptotically to the infected prey
free equilibrium point E2 = (0.271,0,0.098,0.360) for the data given in (6.1) with a1 = 1.93
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Figure 6.3. Time series of the solution of system (2.2) approaches asymptotically to the infected prey
free equilibrium point E3 = (0.272,0,0.105,0.385) for the data given in (6.1) with a2 = 1.88

On other hand, varying the predation rate on infected prey in the range 0.1 < a3 ≤ 0.95
keeping other parameters as data given in (6.1) is studied, it is observed that system (2.2) still
approach asymptotically to the positive equilibrium point. While increasing this parameter
further 0.95< a3 < 1 causes extinction in the infected prey and the system will approach to the
free infected prey equilibrium point E3 as shown in Figure 6.4 for typical value a3 = 0.98.
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Figure 6.4. Time series of the solution of system (2.2) approaches asymptotically to the infected prey
free equilibrium point E3 = (0.272,0,0.099,0.363) for the data given in (6.1) with a3 = 0.98

The effect of varying the harvesting rate of the infected prey, in the range 0 < a4 ≤ 0.02
keeping other parameters as data given in (6.1) causes extinction in the predator, and that
system (2.2) still approach asymptotically to the free predator equilibrium point as shown
in Figure 6.5(a) for typical value a4 = 0.011, however increasing this parameter further
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0.02< a4 ≤ 0.11 it is observed that the system (2.2) still approach to the positive equilibrium
point as shown in Figure 6.5(b) for typical value a4 = 0.05 additional for 0.11< a4 < 1 causes
extinction in the infected prey and the system will approach to the infected prey free equilibrium
point as shown in Figure 6.5(c) for typical value a4 = 0.2.
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Figure 6.5. (a) Time series of the solution of system (2.2) for the data given by (6.1) with a4 = 0.011, which
approaches to E2 = (0.055,0.315,0,0), (b) Time series of the solution of system (2.2) for the data given by
(6.1) with a4 = 0.05, which approaches to E5 = (0.112,0.240,0.022,0.083), (c) Time series of the solution
of system (2.2) for the data given by (6.1) with a4 = 0.2, which approaches to E3 = (0.272,0,0.099,0.363).

Moreover, varying the mortality death rate of the infected prey due to disease, in the range
0< a5 ≤ 0.02 keeping other parameters as data given in (6.1) causes extinction in the predator,
and that system (2.2) still approach asymptotically to the free predator equilibrium point E2,
however increasing this parameter further 0.02 < a5 ≤ 0.11 it is observed that the system
(2.2) still approach to the positive equilibrium point E5. In additional, for 0.11< a5 < 1 causes
extinction in the infected prey and the system will approach the infected prey free equilibrium
point E3.

The varying of the parameter a6 which represents the conversion rate from the susceptible
prey to the immature predator in the range 0.1≤ a6 ≤ 0.2, and keeping the rest of parameters
values as data given in (6.1) , causes extinction in the predator, and that system (2.2) still
approach asymptotically to the free predator equilibrium point E2, and increasing further
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0.2< a6 ≤ 0.6 it is observed that for the solution of system (2.2) still approaches asymptotically
to a positive equilibrium point E5.

The varying of the parameter a7which represents the conversion rate from the infected prey
to the immature predator in the range 0.1≤ a7 ≤ 0.28, and keeping the rest of parameters values
as data given in (6.1), causes extinction in the predator, and that system (2.2) still approach
asymptotically to the free predator equilibrium point E2, and increasing further 0.28< a7 ≤ 0.4
it is observed that the solution of system (2.2) still approaches asymptotically to a positive
equilibrium point E5.

Now, varying the growth rate parameter of immature predator a8 and keeping the rest
of parameters values as data given in (6.1), it is observed that for 0.1 < a8 ≤ 0.19 causes
extinction in the predator, and that system (2.2) still approach asymptotically to the free
predator equilibrium point E2 and increasing further 0.19 < a8 ≤ 0.74 it is observed that for
the solution of system (2.2) still approaches asymptotically to a positive equilibrium point E5.
Increasing further 0.74 < a8 < 1 cause’s extinction in the infected prey and the system will
approach the infected prey free equilibrium point.

The effect of varying the natural death rate of immature predator in the range 0.01 ≤
a9 ≤ 0.06 keeping other parameters as data given in (6.1) causes extinction in the infected
prey and the system will approach asymptotically to the infected prey free equilibrium point
E3, increasing this parameter further in the range 0.06 < a9 ≤ 0.24 is studied; it is observed
that system (2.2) approach asymptotically to the positive equilibrium point E5, however for
0.24< a9 ≤ 0.99 causes extinction in the predator and the system will approach the free predator
equilibrium point E2.

For varying the conversion rate of food from susceptible prey onto mature predator, in the
range 0.1< a10 < 0.32 keeping other parameters as data given in (6.1) causes extinction in the
predator and the system will approach asymptotically to the free predator equilibrium point E2.
increasing this parameter further in the range 0.32< a10 ≤ 0.63 is studied; it is observed that
system (2.2) approach asymptotically to the positive equilibrium point E5, while for the values
0.63< a10 < 1 causes extinction in the infected prey and the system will approach asymptotically
to the infected prey free equilibrium point E3.

On the other hand, the effect of varying the conversion rate of food from infected prey
onto mature predator, in the range 0.1≤ a11 ≤ 0.28 keeping other parameters as data given in
(6.1) causes extinction in the predator and the system will approach asymptotically to the free
predator equilibrium point E2. Increasing this parameter further in the range 0.28< a11 ≤ 0.4
is studied; it is observed that system (2.2) approach asymptotically to the positive equilibrium
point E5.

Moreover, varying the natural death rate of mature predator, in the range 0.1< a12 ≤ 0.29
keeping other parameters as data given in (6.1) causes extinction in the infected prey and
the system will approach the infected prey free equilibrium point E3, in additional for
0.29 < a12 ≤ 0.33 it is observed that system (2.2) approach asymptotically to the positive
equilibrium point E5, increasing this parameter further in the range 0.33 < a12 < 1 causes
extinction in the predator and the system will approach the free predator equilibrium point E2 .
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Finally, varying the parameters a1, a4, a5, a6, a8, a9, a10 and a13 into the following values
which satisfies conditions (4.2b-4.2d) and (5.1a) and (5.1b),

a1 = 0.5, a2 = 0.8, a3 = 0.3, a4 = 0.9, a5 = 0.9, a6 = 0.6, a7 = 0.4,

a8 = 0.3, a9 = 0.1, a10 = 0.4, a11 = 0.4, a12 = 0.9.

}
(6.2)

It is observed that system (2.2) approach asymptotically to the axial equilibrium point
E1 = (1,0,0,0), as shown in Figure 6.6 and this is confirming our obtained analytical results.
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Figure 6.6. Time series of the solution of system (2.2) approaches asymptotically to the axial equilibrium
point E1(1,0,0,0) for the data given in (6.2)

7. Conclusions and Discussion
In this paper, an eco-epidemiological mathematical model consisting of prey-predator model
involving SI infectious disease in prey and stage structured predator species with harvest in
infectious population has been proposed and analysed. Further, in this model, linear types
of functional responses for the predation of susceptible and infected prey which are outside
refuge as well as linear incidence rate for describing the transition of disease are used. Our aim
is to study the role of harvesting on the dynamics of disease propagation and/or eradication.
Therefore, system (2.2) has been solved numerically for different sets of initial points and
different sets of parameters starting with the hypothetical set of data given by (6.1) and the
following observations are obtained.

1. System (2.2) has one type of attractor in Int R4+ for the hypothetical set of parameters
value given in eq. (6.1).

2. For the set of hypothetical parameters value given in eq. (6.1), the system (2.2) approaches
asymptotically to globally stable positive point E5 = (0.223,0.064,0.078,0.288).

3. As the infection rate of prey a1 increasing to 1.93 keeping the rest of parameters as in
eq. (6.1), the solution of system (2.2) approaches to infected free equilibrium point E3.
However, if 1.93< a1 ≤ 2, then the infected prey will grow again and then the trajectory
transferred from infected prey free equilibrium point to the positive equilibrium point E5,
thus the parameter a1 = 1.93 is a bifurcation point.
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4. As the attack rate of mature predator on susceptible prey a2 increasing to 1.88 keeping the
rest of parameters as in eq. (6.1), the solution of system (2.2) approaches to infected free
equilibrium point E3, however if 1.88< a2 ≤ 2, then the infected prey will grow again and
then the trajectory transferred from infected prey free equilibrium point to the positive
equilibrium point E5, thus the parameter a2 = 1.88 is a bifurcation point.

5. As the attack rate of mature predator on infected prey a3 increasing to 0.95 keeping
the rest of parameters as in eq. (6.1), the solution of system (2.2) approaches to positive
equilibrium point E5, however if 0.95< a3 < 1, then the infected prey faced extinction and
the trajectory transferred from the positive equilibrium point E5 to the infected prey free
equilibrium point E3, thus, the parameter a3 = 0.95 is a bifurcation point.

6. As the harvesting rate of infected prey a4 increasing to 0.02 keeping the rest of parameters
as in eq. (6.1), the solution of system (2.2) approaches to free predator equilibrium point
E2, however if 0.02< a4 ≤ 0.11, then the predator grown up and the trajectory transferred
from the free predator equilibrium point E2 to the positive equilibrium point E5, while
for 0.11 < a4 < 1 the infected prey faced extinction and the trajectory transferred from
the positive equilibrium point E5 to the infected prey free equilibrium point E3 thus, the
parameters a4 = 0.02 and 0.11 are bifurcation points for system (2.2). Similarly result
satisfied for varying the death rate of infectious prey due to the disease and hence the
parameters a5 = 0.02 and 0.11 are bifurcation points for system (2.2).

7. As the conversion rate of food from susceptible prey to immature predator a6 increasing to
0.2 keeping the rest of parameters as in eq. (6.1), the solution of system (2.2) approaches to
free predator equilibrium point E2, however if 0.2< a6 ≤ 0.6, then the predator grown up
and the trajectory transferred from the free predator equilibrium point E2 to the positive
equilibrium point E5, thus, the parameter a6 = 0.2 is a bifurcation point for system (2.2).

8. As the conversion rate of food from infected prey to immature predator a7 increasing to
0.28 keeping the rest of parameters as in eq. (6.1), the solution of system (2.2) approaches
to free predator equilibrium point E2, however, if 0.28< a7 ≤ 0.4 then the predator grown
up and the trajectory transferred from the free predator equilibrium point E2 to the
positive equilibrium point E5, thus the parameter a7 = 0.28 is a bifurcation point for
system (2.2).

9. As the growth rate of immature predator onto mature predator a8 increasing to 0.19
keeping the rest of parameters as in eq. (6.1), the solution of system (2.2) approaches to
free predator equilibrium point E2, however if 0.19< a8 ≤ 0.74 then the predator grown
up and the trajectory transferred from the free predator equilibrium point E2 to the
positive equilibrium point E5, while for 0.74 < a8 < 1 the infected prey faced extinction
and the trajectory transferred from the positive equilibrium point E5 to the infected prey
free equilibrium point E3 thus, the parameters a8 = 0.19 and 0.74 are bifurcation points
for system (2.2).

10. As the natural death rate of immature predator a9 increasing to 0.06 keeping the rest
of parameters as in eq. (6.1), the solution of system (2.2) approaches to free infected
prey equilibrium point E3, however if 0.06< a9 ≤ 0.24, then the infected prey grown up
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and the trajectory transferred from the free infected prey equilibrium point E3 to the
positive equilibrium point E5, while for 0.24 < a9 ≤ 0.99 the predator faced extinction
and the trajectory transferred from the positive equilibrium point E5 to the predator free
equilibrium point E2 thus, the parameters a9 = 0.06 and 0.24 are bifurcation points for
system (2.2).

11. As the conversion rate of food from susceptible prey onto mature predator a10 increasing to
0.32 keeping the rest of parameters as in eq. (6.1), the solution of system (2.2) approaches
to free predator equilibrium point E2, however if 0.32 < a10 ≤ 0.63, then the predator
grown up and the trajectory transferred from the free predator equilibrium point E2 to the
positive equilibrium point E5, while for 0.63< a10 < 1 the infected prey faced extinction
and the trajectory transferred from the positive equilibrium point E5 to the infected prey
free equilibrium point E3 thus, the parameters a10 = 0.32 and 0.63 are bifurcation points
for system (2.2).

12. As the conversion rate of food from infected prey to mature predator a11 increasing to 0.28
keeping the rest of parameters as in eq. (6.1), the solution of system (2.2) approaches to
free predator equilibrium point E2, however if 0.28< a11 ≤ 0.4, then the predator grown
up and the trajectory transferred from the free predator equilibrium point E2 to the
positive equilibrium point E5, thus, the parameter a11 = 0.28 is a bifurcation point for
system (2.2).

13. As the natural death rate of mature predator a12 increasing to 0.29 keeping the rest
of parameters as in eq. (6.1), the solution of system (2.2) approaches to free infected
prey equilibrium point E3, however if 0.29< a12 ≤ 0.33, then the infected prey grown up
and the trajectory transferred from the free infected prey equilibrium point E3 to the
positive equilibrium point E5, while for 0.33< a12 < 1 the predator faced extinction and
the trajectory transferred from the positive equilibrium point E5 to the predator free
equilibrium point E2 thus, the parameters a12 = 0.29 and 0.33 are bifurcation points for
system (2.2).

14. Finally, varying the hypothetical set of parameters into the set of parameters given in
eq.(6.2) which satisfies conditions (4.2b)-(4.2d) and (5.1a) and (5.1b) , then the solution of
system (2.2) approach asymptotically to the axial equilibrium point E1 = (1,0,0,0).
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