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Construction of Wavelet and Gabor’s Parseval Frames

María Luisa Gordillo and Osvaldo Añó

Abstract. A new way to build wavelet and Gabor’s Parseval frames for L2(Rd ) is
shown in this paper. In the first case the construction is done using an expansive
matrix B, together with only one function h ∈ L2(Rd ). In the second one, we
work with a function g ∈ L2(Rd ) and two invertible matrixes B and C , with
the condition that C tZd ⊂ Zd . The only requirement for h and g is that they
have to be supported in a set Q, such that the measure of Q is finite and
positive. Q has diameter lower than 1, and its border has null measurement. In
addition, {B jQ} j∈Z ({TB jQ} j∈Zd ) is a covering of Rd\{0} (Rd ), and {h(B j)} j∈Z
({TB j g} j∈Zd ) is a Riesz Partition of unity for L2(Rd ). Then, it is possible to obtain
the Parseval frames with good localization properties, after adding conditions to
h(g). At the end, we show two examples of building of wavelet Parseval frames
and Gabor’s Parseval frames with a good decay, as required.

1. Introduction

Mathematical research focuses in developing of new theories, technologies and
algorithms for representation, processing, analysis and interpretation of large
volumes of data from different disciplines such as communications, geosciences,
astronomy and medical sciences, among others. The usefulness of these data, is
largely determined by their accessibility and transportability. Thus, the theories
of representation that use Gabor and wavelet expansions are within the most
accurate mathematical tools for this purpose, and they have found an extensive
use in the analysis of signals, processing of images and many other areas. Besides,
the frame concept has achieved relevance not only in pure mathematics but also in
the applied ones. In the Hilbert’s separable spaces, the frames are representation
systems of the elements of the space less restrictive than the bases. This advantage
is achieved without losing the remarkable condition of reconstruction obtained in
the frames, from their duals. Parseval frames, duals of themselves, constitute a
powerful tool, because the process of reconstruction or synthesis of an element of
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the space from its decomposition or analysis in Parseval frames, is very simple.
Specifically, wavelet and Gabor’s frames have similar features: they are generated
from only one function, or from a finite collection of them by applying two
countable families of operators in each case, dilations and translations in the first
one, and modulations and translations in the second one. On the other hand,
the good localization is very important in applications, being this property very
appreciated by researchers.

The notion of frames was introduced by Duffin and Schaeffer [8], as a new tool
to describe expansions of functions in L2(−π,π] using exponentials of the type
eiλn x with λn 6= 2πn. These types of expansions are known as non harmonic series.
Later, several authors have used these frames, ([8], [12], [6], [11]), [4], [5]).

In this article, the principal results are included in sections 3 and 4. In the first
one we build wavelet Parseval frames; in the second one, we construct Gabor’s
Parseval frames. In section 5, we show two examples of this type of constructions.

1.1. Previous Concepts

Definition 1.1. Let H be a Hilbert space and I a set of countable indexes.
{ fi}i∈I ⊂ H is a frame for H if there exist constants 0< A≤ B <∞ such that:

A‖ f ‖2 ≤
∑

j∈I

|〈 f , fi〉|2 ≤ B‖ f ‖2 for all f ∈ H .

{〈 f , fi〉}i∈I is called set of frame coefficients of f respect to { fi}i∈I , and it is the result
of the process known as analysis.
A and B are the constants lower and upper bounds of the frame { fi}i∈I respectively.
A frame will be called tight, if A= B, and it will be Parseval frame, if A= B = 1.

Definition 1.2 (Wavelet frames and Gabor’s frames in L2(Rd)).

(i) Let {ψl}l=1,2,...,n ⊂ L2(Rd), A ∈ GLd(R)) expansive, and Γ be a lattice.
A wavelet frame of L2(Rd) is a frame of the form:
�
ψl

jγ(x) := |det A| j/2ψl(Aj x − γ))	 j∈Z,γ∈Γ,l=1,...,n .

(ii) Let {φ l}l=1,2,...,n ⊂ L2(Rd), B and C ∈ GLd(R) , and Γ be a lattice. A Gabor’s
frame of L2(Rd) is a frame of the form:
�
φ l

jγ(x) := e2πi〈B j,x〉φ l(x − Cγ))
	

j∈Z,γ∈Γ,l=1,...,n .

If dilation, modulation and translation operators of L2(Rd) in L2(Rd) are
defined as:

• (DAj f )(x) := |det A| j/2 f (Aj x)

• (Mz f )(x) := e2πi〈z,x〉 f (x)

• (Tk f )(x) := f (x − k)

then

ψl
j,γ = DAj Tγψ

l , φ l
jγ(x) = MB j TCγφ

l(x) .
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One essential fact in the frame theory is how to recover f vector from frame
coefficients {〈 f , fi〉}i∈I .

Definition 1.3 (Dual frames). Let { f j} j∈I be a frame for a Hilbert space H, the
frame {g j} j∈I is a dual frame for { f j} j∈I if:

f =
∑

k∈I

〈 f , fk〉gk for all f ∈ H (1.1)

The frame { f j} j∈I carries out the analysis through a {〈 f , fk〉}k∈I , and the frame
{g j} j∈I makes the process known as synthesis represented by equation (1.1).

For tight frames, is easy to recover f from their frame coefficients {〈 f , fi〉}i∈Z:
∑

j∈I

|〈 f , fi〉|2 = A‖ f ‖2 ⇒ ∗ f = A−1
∑

j∈I

〈 f , fi〉 fi . (1.2)

Then a dual frame, for a tight frame { fi}i∈I is {A−1 fi}i∈I , where A is the bound
of { fi}i∈I . A Parseval frame (A= B = 1) is dual of itself.

Definition 1.4. Let S = {S j} j∈J be a covering of Rd by measurable subsets, with
J a countable set of indexes; and ρS : Rd → N∪ {0} defined as:

ρS (x) := #{ j ∈ J : x ∈ S j}=
∑

j∈J

χS j
(x)

where #R means the cardinal of the set R.
We call covering index of S to ρS := ‖ρS ‖∞.

Definition 1.5. A countable set H = {h j} j∈J of measurable functions of Rd is a
Riesz Partition of Unity (RPU) with bounds p and P (0< p ≤ P <∞) if:

p ≤
∑

j∈J

|h j(x)|2 ≤ P a.e. x ∈ Rd . (1.3)

We use two theorems for the proof of the main results in this work, due to
Hernádez et al. [9], which characterize wavelet and Gabor’s Parseval frames for
L2(Rd).

Theorem 1.6. LetΨ= {ψ1,ψ2, . . . ,ψl} ⊂ L2(Rd), A∈ GLd(R) be, such that B = At

expands† a subspace F of Rd . Then the system:

{D j
ATkψl : j ∈ Z, k ∈ Zd , l = 1 . . . , L}

is a Parseval frame if and only if:
L∑

l=1

∑

j∈Pm

bψl(B− j(ξ) bψl(B− j(ξ+m)) = δm,0 a.e. ξ ∈ Rd (1.4)

for all m ∈ Zd , where Pm = { j ∈ Z : B− jm ∈ Zd}.
†The authors consider matrices that expand a subspace F of Rd ; in our case the subspace F of the
previous theorem is all Rd .
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Theorem 1.7. The Gabor system:

{MBnTCk g l : m, k ∈ Zd , l = 1, 2, . . . , L}
generated by the finite family {g1, g2, . . . , g L} ⊂ L2(Rd) and the pair of matrices B
and C of GLd(R) is a Parseval frame if and only if:

L∑

l=1

∑

k∈Zd

1

|det C |
bg l(ξ− Bk) bg l(ξ− Bk+ C I m) = δm,0 (1.5)

for a.e ξ ∈ Rd , all m ∈ Zd , where C I = (C t)−1

We will makes use of two lemmas following in our construction, the first of
which was demonstrated by Aldroubi et al. [1]:

Lemma 1.8. Let V ⊂ Rd be a bounded set such that 0 ∈ V 0, and A a d×d expansive
matrix. Let Q = AV\V , then {AjQ : j ∈ Z} is a covering of Rd\{0} with finite covering
index. Furthermore, if V ⊂ AV then the sets {AjQ : j ∈ Z} are disjoint.

Lemma 1.9. If A ⊂ GLd(R) is expansive, then there exists Q ⊂ Rd with δ(Q) < 1
such that {AjQ} j∈Z covers Rd\{0} with finite covering index (δ(Q) is the diameter of
the set Q).

In the following section we introduce the first theorem of this article related to
the construction of wavelet Parseval frame. Then we analyze conditions that makes
possible to built frames with good localization properties.

2. Construction of Wavelet Parseval Frame

Theorem 2.1. Let A expansive, B = At , and Q ⊂ Rd be a measurable subset such that
δ(Q) < 1, µ(∂Q) = 0 and {B jQ} j∈Z is a covering of Rd\{0}‡. Let h be a measurable
function with supp h⊂Q, such thatH = {h j := h(B− j)} j∈Z be RPU; then the system
given by:

{|detA| j
2η(Aj x − k) : j ∈ Z, k ∈ Zd} (2.1)

is a Parseval frame for L2(Rd), where:

bη(ξ) :=





h(ξ)Ç∑
j∈Z
|h(B− j(ξ))|2

si ξ ∈ Rd\S

0 si ξ ∈ S

(2.2)

being S := {ξ ∈ Rd : Σ j∈Z|h(B− jξ)|2 < p ∨ Σ j∈Z|h(B− jξ)|2 > P}; with p and P
bounds of the RPUH . (The set S has null measure since {h j} j∈Z is RPU).

‡If Q is built as in the Lemma 1.9, {B jQ} j∈Z has a finite covering index.
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Note that Daubechies and Han [7] have obtained a similar result as the one
presented here. They worked in L2(R) with dyadic dilation, but with different
hypothesis from ours. It is necessary to note that the idea for the construction of
the function bη has been taken from their work.

Proof. H is PRU with bounds p and P, then

p ≤
∑

j∈Z
|h j(ξ)|2 =

∑

j∈Z
|h(B− j(ξ)|2 ≤ P a.e. ξ .

This shows that bη is well defined a.e. According to the theorem 1.6, the system
(2.1) is a Parseval frame for L2(Rd) if and only if:

∑

j∈Pm

bη(B− j(ξ))bη(B− j(ξ+m)) = δm0 a.e. ξ. (2.3)

for all m ∈ Zd , being Pm = { j ∈ Z : B− jm ∈ Zd}.
We will prove (2.3) for our hypothesis:

(i) Let m= 0. We have P0 = { j ∈ Z : B− j0 ∈ Zd}= Z.
The proof of (2.3) for m= 0 is:

|bη(B− j(ξ))|2 = |h(B− j(ξ)|2∑
k∈Z
|h(B−kB− j(ξ)|2 =

|h(B− j(ξ)|2∑
k∈Z
|h(B−k(ξ)|2

then:

∑

j∈Z
|bη(B− j(ξ))|2 =

∑
j∈Z
|h(B− j(ξ)|2

∑
k∈Z
|h(B−k(ξ)|2 = 1 a.e. ξ (2.4)

(ii) Let m 6= 0. We know that supp bη= supp h⊂Q.
Let ξ ∈ Rd , m 6= 0 and j ∈ Pm such that B− j(ξ) ∈ supp bη.
If bη(B− j(ξ) 6= 0⇒ bη(B− j(ξ+m)) = 0 for all j ∈ Pm :

B− j(m) = k ∈ Zd ⇒ B− j(ξ+m) = B− j(ξ) + k .

If we assume that

B− j(ξ+m) ∈Q ⇒ ‖B− j(ξ+m)− B− j(ξ)‖= ‖B− j(m)‖= ‖k‖ ≥ 1,

this is an absurd since δ(Q)< 1. Then
∑

j∈Pm

bη(B− j(ξ))bη(B− j(ξ+m)) = 0 . ¤

Corollary 2.2. If h is a function at real values, supp h = Q and {B jQ : j ∈ Z} is a
covering for almost disjoint of Rd\{0} (µ(B jQ ∩ BkQ) = 0 if j 6= k), then the system
given by:

{|det A| j
2χ∨Q (A

j x − k) : j ∈ Z, k ∈ Zd} (2.5)

is a Parseval frame for L2(Rd).
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Proof. If {B jQ : j ∈ Z} is a covering for almost disjoint of Rd\{0}, the function bη
of the Theorem 2.1 is exactly χQ, except a set of null measurement (S ∩Q). ¤

The frame obtained in Corollary 2.2 has no good decay. In the next corollary
of the Theorem 2.1 we show that under certain conditions the wavelet Parseval
frames with good localization properties can be built.

Corollary 2.3. If p ≤
∑
j∈Z
|h(B− j(ξ))|2 ≤ P for all ξ ∈ Rd\{0}, h ∈ C r and 0 /∈ Q,

then the function bη of the Theorem 2.1 is of the class§ C r .

In order to demonstrate this corollary, a result over matrix norms is introduced,
this can be seen in other works (for example [10]).

Lemma 2.4. Let A be a matrix of the order n × n and ε > 0, then there exists a
matrix norm ‖ · ‖ such that

ρ(A)≤ ‖A‖ ≤ ρ(A) + ε (2.6)

where ρ(A) is the spectral radius of the matrix A, defined as the maximum of the set
of modules of eigenvalues of the matrix A.

Proof of the Corollary 2.3. Because supp h ⊂ Q and Q is bounded, h is a
compactly supported function. Let’s assume that h is a real function. We will
to prove that bη is continuous a.e, for which we will observe that the series∑
j∈Z
(h(B j(ξ))2 uniformly converges over each compact that does not contain the

zero.

According to the hypothesis 0 /∈ Q, then there exists ε > 0 such that 0 /∈ Qε being
Qε := {x ∈ Rd : d(x ,Q)< ε}.
Q ⊂Qε, then {B jQε : j ∈ Z} is a covering for open of Rd\{0}.
Let K ⊂ Rd be a compact set such that 0 /∈ K , then K ⊂ Rd\{0}, there exists a finite
amount of integers j1, . . . , jt such that:

K ⊂
t⋃

i=1

B ji Qε . (2.7)

We will prove that

K ∩ B jQ = ; for all j /∈ { j1, . . . , jt} . (2.8)

• Because K is compact, then K is bounded. In addition 0 /∈ K , then there exists
r > 0 and R<∞ such that:
◦ B(0, r)∩ K = ;, and
◦ ‖ξ‖ ≤ R for all ξ ∈ K ,

§A function f is of C r class if ∂ s f

∂ ξ
i1
1 ∂ ξ

i2
2 ...∂ ξ

id
d

(ξ) exists and is continuous for all set {i1, i2, . . . , id} ⊂ N

such that i1 + i2 + . . .+ id = s ≤ r and for all ξ ∈ Rd .
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later:

r ≤ ‖ξ‖ ≤ R for all ξ ∈ K (2.9)

• There exist: c1 > 1 and c2 < 1 such that for all ξ ∈ Rd :

‖B jξ‖ ≥ c j
1‖ξ‖ for all j ≥ 0 and ‖B jξ‖ ≤ c− j

2 ‖ξ‖, for all j < 0 . (2.10)

The inequalities in (2.10) come from that B is an expansive matrix, ρ(B) > 1
and thus ρ(B−1) < 1. According to (2.6) there exists a matrix norm ‖ · ‖ such
that ‖B−1‖ ≤ c2 < 1 and then ‖Bξ‖ ≥ c1‖ξ‖ (it is enough to consider c1 = 1/c2).

• Because Q is compact and 0 /∈ Q, then exist 0 < er ≤ eR <∞, as in the previous
analysis for K (see above), such that:

er ≤ ‖ξ‖ ≤ eR for all ξ ∈Q . (2.11)

Using (2.9), (2.10) and (2.11) we are will prove the stated in (2.8)as follow:

Suppose that K ∩ B jQ 6= ; for non finite j ∈ Z, then two possibilities exist:

(i) K∩B jQ 6= ; for all j ∈ J with J ⊂ N of non finite cardinality, then for all j ∈ J
there exists ξ j ∈ K and q ∈Q such that ξ j = B jq, and:

R≥ ‖ξ j‖= ‖B jq‖ ≥ c j
1‖q‖ ≥ c j

1er
this is an absurd due to er > 0, R <∞ and c1 > 1. It is enough to consider j
sufficiently large;

(ii) K ∩ B jQ 6= ; for j ∈ J1, where J1 is a subset of integers lower than 0, and the
cardinal of J1 is non finite. Then for all j ∈ J1 there exists ξ j ∈ K and q ∈ Q
such that ξ j = B jq, then:

r ≤ ‖ξ j‖= ‖B jq‖ ≤ c− j
2 ‖q‖ ≤ c− j

2
eR

this is an absurd due to r > 0, eR <∞ and c2 < 1. It is sufficient to consider
j ∈ J1 of absolute value as large as it is required.

The expression (2.8) is valid according to (1) and (2). Then, it can be warranted
that there exists N ∈ N such that:

h(B− j(ξ)) = 0 for all ξ ∈ K ∧ for all j : | j| ≥ N (2.12)

whereas N =max{| j1|, . . . , | jt |}+ 1:

If | j| ≥ N then j /∈ { j1, . . . jt} so B jQ
⋂

K = ;. Because supp h(B j .) ⊂ B− jQ, the
expression (2.12) is verified. Then:∑

| j|≥n

(h(B jξ))2 = 0 ξ ∈ K , for all n≥ N (2.13)

The equation (2.13) ensures the uniform convergence of the series
∑
j∈Z
(h(B j(ξ))2

over the compact K , and as functions h(B j .) are of class C r over K , the function bη
is of class C r for being quotient of functions of class C r for which the denominator
is different from zero. ¤
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Observation 2.5. From the previous corollaries it can be derived that:

(i) Because that the frame determined in (2.1) has good decay properties (h is
smooth enough), the covering {B jQ : j ∈ Z} of Rd\{0} can not be for almost
disjoint, i.e. the covering index must be strictly higher than 1.

(ii) If h is of class C r and H = {h j := h(B− j)} j∈Z is a Riesz partition of the
unity with p ≤

∑
j∈Z
|h(B− j(ξ))|2 ≤ P for all ξ ∈ Rd\{0}, then the frame

(2.1) determined in Theorem 2.1 has good localization properties, since their
elements have polynomial decay if r is finite, and belong to the Schwartz
class for h ∈ C∞.

3. Construction of Gabor’s Parseval Frames

We present now the second theorem in this work, from which we build Gabor’s
Parseval frames.

Theorem 3.1. Let B and C ∈ GLd(Rd) such that Zd ⊆ C tZd . Let Q ⊂ Rd

such that δ(Q) < 1 and µ(∂Q) = 0. Be g ∈ L2(Rd) such that supp g ⊆ Q. If
eQ = {Qk := TBkQ : k ∈ Zd} covers Rd and G = {g j := TB j g} j∈Zd is a Riesz partition
of the unity with bounds p and P, then the Gabor system.

{MBmTCnη= e2πi〈Bm,·〉η(· − Cn) : m ∈ Zd , n ∈ Zd} (3.1)

is a Parseval frame for L2(Rd), being

bη(ξ) :=
g(ξ)

p
|det C |

Ç∑
j∈Z
|g(ξ− B j)|2

a.e. ξ . (3.2)

Proof. Since G is RPU then bη is well defined. According to the Theorem 1.7, the
system given in (3.1) will be a Parseval frame if we prove the equation (1.5) of the
Theorem 1.7 for all m ∈ Zd :

(i) If m= 0, it must be verified that:
∑

k∈Zd

1

|det C | |bη(ξ− Bk)|2 = 1 . (3.3)

The equation (3.3) is fulfilled due to

∑

k∈Zd

|bη(ξ− Bk)|2 =
∑

k∈Zd




g(ξ− Bk)
p
|det C |

Ç∑
j∈Z
|g(ξ− B j)|2




2

= |det C | .

(ii) If m 6= 0 we must prove that :
∑

k∈Zd

1

|det C | bη(ξ− Bk) bη(ξ− Bk+ C I m) = 0 (3.4)

being C I = (C t)−1.
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We observe that supp bη= supp g. We consider ξ ∈ Rd such that bη(ξ−Bk) 6= 0.
If bη(ξ− Bk+ C I m) 6= 0, then (ξ− Bk+ C I m) belongs to supp bη⊂Q, then

‖ξ− Bk− (ξ− Bk+ C I m)‖= ‖C I m‖= ‖(C t)−1m‖ ≥ 1 . (3.5)

The expression (3.5) is an absurd due to δ(Q) < 1, (note that the inequality
in the previous expression is due to the hypothesis Zd ⊆ C tZd).

According to the Theorem 1.7, equations (3.3) and (3.4) confirm that the Gabor
system given in (3.1) is a Parseval frame for L2(Rd). ¤

Corollary 3.2. If Q covers Rd with covering index equal to 1, then the function in
Theorem 3.1 is bη(ξ) = χQ(ξ)

p
|det C | a.e. ξ ∈ Rd . In this case the Gabor’s frame

given in (3.1) does not have a good decay.

Corollary 3.3. If 0 < p ≤
∑

j∈Zd

|TB j g(ξ)|2 ≤ P < ∞ for all ξ ∈ Rd , g ∈ C r and

0 /∈Q, then the function bη of the theorem 3.1 is of the class C r .

Proof. Because supp g ⊂ Q and Q is bounded, then g has compact support. Let
assume that g is a function at real values, and that

∑
j∈Zd

|TB j g|2 uniformly converges

over compact sets. Let K ⊂ Rd be a compact set. Because K is compact, its diameter
(δ(K)) is finite.

0 /∈ Q ⇒ ∃ ε > 0 : 0 /∈ Qε := {x ∈ Rd : d(x ,Q) < ε}. Because Q ⊂ Qε then
{TBkQε}k∈Zd is a covering by open subsets ofRd . There is a finite amount of integers
j1, j2, . . . , jn such that

K ⊂
n⋃

i=1

TB jiQε . (3.6)

Let prove that

K ∩ TB jQ = ; for all j ∈ Zd\{ j1, j2, . . . , jn} . (3.7)

(a) If there is only one integer jn+1 /∈ { j1, j2, . . . , jn} such that K ∩TB jn+1
Q 6= ;, then

K ⊂
⋃n+1

i=1 TB ji Qε, and (3.7) is valid for all j ∈ Zd\{ j1, j2, . . . , jn, jn+1}.
(b) If there is a finite set { j1, . . . j l} ⊂ Zd such that K ∩ TB j i Q 6= ;, with
{ j1, j2, . . . , jn}∩{ j1, . . . j l}= ;, expressions (3.6) and (3.7) are verified similarly
to the previous case.

(c) Let assume that there is a finite amount of integers for which K ∩ TB jQ 6= ;,
then we can choose two of them j and j′ such that:

‖B( j − j′)‖ ≥ 1+δ(K) . (3.8)

Because K ∩ TB jQ 6= ; and K ∩ TB j′Q 6= ;, there are q and q′ in Q, ξ and ξ′ in
K such that q = ξ+ B j and q′ = ξ′ + B j′. Then

‖q− q′‖= ‖ξ− ξ′ + B( j − j′)‖ ≥
�� ‖B( j− j′)‖− ‖ξ− ξ′‖

�� . (3.9)
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Because ‖ξ− ξ′‖ ≤ δ(K), due to (3.8) we obtain:
�� ‖B( j − j′)‖− ‖ξ− ξ′‖

��= ‖B( j − j′)‖− ‖ξ− ξ′‖
≥ ‖B( j − j′)‖−δ(K)≥ 1 . (3.10)

From (3.9) and (3.10) we obtain ‖q − q′‖ ≥ 1, which is absurd since the
diameter of Q is strictly smaller than 1.

With (a), (b) and (c) we have proved (3.7); then there is N ≥ {| j1|, | j2|, . . . | jn|}
such that∑

| j|≥N

|g(ξ− B j)|2 = 0 for all ξ ∈ Rd . (3.11)

The expression (3.11) ensures the uniform convergence of the series
∑

j∈Zd

|g(ξ−

B j)|2 over each compact set in Rd : because g ∈ C r , the series is of C r class. Then
bη defined in Theorem 3.1 results of class C r . ¤

Observation 3.4. Similarly to the analysis for wavelet Parseval frames, it is derived
for the construction of Gabor’s Parseval Frames, from the previous corollaries it is
deducted that:

(i) Because the frame determined in (3.1) has good decay properties (g is
smooth enough), the covering {TB jQ} j∈Z of Rd can not be by almost disjoint,
i.e the covering index must be strictly larger that 1.

(ii) If g is of class C r and G = {g j := TB j g} j∈Zd is a Riesz partition of the unity
with p ≤

∑
j∈Z
|TB j g(ξ))|2 ≤ P for all ξ ∈ Rd , then the frame (3.1) determined

in Theorem 3.1 has good localization properties, since their elements have
polynomial decay in case of being finite r, and belong to the Schwartz class
for g ∈ C∞.

Next, we will show two examples derived from a frame construction of the
paper [1].

4. Examples

Example 4.1. Let Q = {(ξ1,ξ2) ∈ R2 : 1/42 ≤ ξ2
1 + ξ

2
2 ≤ 5/42}, A = 2Id , and

h(ξ1,ξ2) := nβn−1((ξ2
1 + ξ

2
2 − 1/42)4.n), where βn−1 is the function β-spline of

degree n− 1 whose support is the real interval [0, n]. It can be observed that:

(a) supp h = Q, and |h(ξ1,ξ2)|2 ≤ n2, (due to the property of β-spline functions:∑
k∈Z
βs(x − k) = 1 for all x ∈ R, for all s ∈ N0).

(b) Q ⊂ B1/2(0), then δ(Q)< 1.
(c) Q =: {2 jQ} j∈Z covers R2\{0} with covering index ρQ = 2:
• 2− jQ = {(ξ1,ξ2) ∈ R2 : 1/4 j+2 ≤ ξ2

1 + ξ
2
2 ≤ 5/4 j+2}

• intervals [ 1
4 j ,

5
4 j ] cover the set R+\{0} with covering index equal to 2.

From the stated above it is derived that ρQ = 2.
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(d) h is a function of R2 −→ R determined by the composition of two functions,
eβn−1 and H:
• eβn−1 : R−→ R defined by eβn−1(t) := nβn−1(t), and
• H : R2 −→ R defined by H(ξ1,ξ2) := (ξ2

1 + ξ
2
2 − 1/16)4n

i.e. h= eβn−1 o H, with eβn−1 ∈ C n−2 and H ∈ C∞, then h ∈ C n−2.
(e) If for all j ∈ Z we define h j(ξ1,ξ2) := h(2 j(ξ1,ξ2)), then H = {h j} j∈Z is a

Riesz partition of the unity:
• supp h j = 2− jQ
• Because to c) given (ξ1,ξ2) ∈ R2 there exists at least one or at most two

consecutive integer indexes, j and j+ 1 such that (ξ1,ξ2) ∈ 2− jQ∪ 2− j−1Q.
Then:
∑

t∈Z
|ht(ξ1,ξ2)|2 ≤ |h j(ξ1,ξ2)|2 + |h j+1(ξ1,ξ2))|2 ≤ 2.n2 (4.1)

The other inequality is obtained form observing that for each j ∈ Z exists at
least one point (eξ1, eξ2) ∈ K := 2− jQ ∩ 2− j−1Q such that:

h j(eξ1, eξ2) = h j+1(eξ1, eξ2) (4.2)

We define eK := {(eξ1, eξ2) ∈ K : h j(eξ1, eξ2) = h j+1(eξ1, eξ2)}.
If (eξ1, eξ2) ∈ eK then

βn−1((4
j(fξ1

2
+fξ2

2
)− 1/16)4n) = βn−1((4

j+1(fξ1
2
+fξ2

2
)− 1/16)4n)

(4.3)

Considering the symmetry of β-spline functions with respect to the middle
point of its support (n/2 in case of βn−1) function, according to equation
(4.3) it can be seen that there is (eξ1, eξ2) which verifies:

4 j(fξ1
2
+fξ2

2
) = 1/2⇒ (eξ2

1 + eξ2
2) /∈ {1/4 j+1, 5/4 j+1, 1/4 j , 5/4 j} (4.4)

Then m := h j(eξ1, eξ2)> 0¶.
With the help of (4.2) and the properties of β-spline functions:

|h j(ξ1,ξ2)|2 + |h j+1(ξ1,ξ2)|2 ≥ |h j(ξ1,ξ2)|2 ≥ |h j(eξ1, eξ2))|2 = m (4.5)

if ξ2
1 + ξ

2
2 ≥fξ1

2
+fξ2

2
, and

|h j(ξ1,ξ2)|2 + |h j+1(ξ1,ξ2)|2 ≥ |h j+1(ξ1,ξ2))|2 ≥ |h j+1(eξ1, eξ2))|2 = m
(4.6)

if ξ2
1 + ξ

2
2 ≤fξ1

2
+fξ2

2
.

Form (4.1), (4.5) and (4.6) it can be derived that:

m≤
∑

j∈Z
|h j(ξ1,ξ2)|2 ≤ 2n2 for all (ξ1,ξ2) ∈ R2 .

¶Since 4 j(ξ2
1 + ξ

2
2) =

1
2

for any j such that h j(ξ1,ξ2) = h j+1(ξ1,ξ2). Thus m is unique.
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ThusH = {h j} j∈Z is PRU with bounds m and 2n2. It verifies the conditions of
Theorem 2.1 and of the Corollary 2.3. Then:

{4 j
2η(2 j x − k)} j∈Z,k∈Z2 (4.7)

is a Parseval frame for L2(R2), with polynomial decay, being

bη(ξ) = h(ξ)Ç∑
j∈Z
((h(2 jξ))2

a.e ξ ∈ R2 .

The next example, following the methodology of Example 4.1, shows the
construction of a Gabor’s Parseval frame for L2(R).

Example 4.2. Let Q := [−5/16,−1/16]∪ [1/16, 5/16]⊂ R, B = 1/8, C = 1, and
g(ξ) := nβn−1((|ξ| − 1/42)4.n). If:

(i) Q =: {Q− 1
8

j} j∈Z, then Q covers R with covering index ρQ = 2.

(ii) G = {g j := T 1
8

j g} j∈Z, then G is a RPU for L2(Rd) which verifies the
requirements of Corollary 3.3.

Thus conditions of Theorem 3.1 and of the Corollary 3.3 are satisfies. Then:

{M j/8Tkη= e2πi< j/8, ·>η( · − k)} j∈Z,k∈Z (4.8)

is a Parseval frame for L2(R) with polynomial decay, being

bη(ξ) :=
g(ξ)Ç∑

j∈Z
|g(ξ− j/8)|2

a.e. ξ . (4.9)

5. Appendix

Proof of the Lemma 1.9. Let V be an open subset such that 0 ∈ V ⊂ Br(0), with
0< r < 1

2‖A‖ . See that δ(AV )< 1:

δ(AV ) = sup
v1,v2∈V

‖Av1 − Av2‖= sup
v1,v2∈V

‖A(v1 − v2)‖

≤ ‖A‖δ(V )< ‖A‖ 2r < 1.

Considering Q = AV\V , it is possible to see:

(i) Q ⊂ AV , then δ(Q)< 1
(ii) According to Lemma 1.8 {AjQ} j∈Z covers Rd\{0} with a finite covering

index. ¤
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