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On Centraloid Operators

As’ad Y. As’ad

Abstract. In this paper we study centraloid operators, some of their properties
and their relation to their adjoint, their Hilbert adjoint, isometries and normal
operators. Also we show that the set of all centraloid operators need not be a
Banach algebra.

1. Introduction

In this paper we define and study a new kind of operators called centraloid
operator, where we study some of its properties and its relations with its adjoin, its
Hilbert adjoin, isometries and normal operators.

Let X be a normed space over the complex field C. BL(X ) will denote the
complex normed algebra of bounded linear operators on X . T× will denote the
adjoint of T , T× ∈ BL(X ′) and ‖T‖ = ‖T×‖, where X ′ is the dual space of X
[2, pp. 232]. A bounded linear operator T on X is called an isometry if ‖T x‖= ‖x‖
for all x ∈ X . The center of A = BL(X ) is denoted by Z(A) and is defined by
Z(A) = {T ∈ A : TS = ST for all S ∈ A}.

Let H be a Hilbert space over the complex field C. The Hilbert adjoint operator
of T is denoted by T ∗, where T ∗ ∈ BL(H) and ‖T‖= ‖T ∗‖ [2, pp. 196]. T is called
normal in the case T T ∗ = T ∗T , and T is called unitary in the case T is bijective
and T ∗ = T−1 [2, pp. 201]. Also, T is called unitarily equivalent to S ∈ BL(H) if
there is a unitary operator U on H such that S = UT U−1 [2, pp. 207]. Let H and
K be two Hilbert spaces and let

H ⊕ K = {h⊕ k : h ∈ H, k ∈ K}
and

〈h1 ⊕ k1, h2 ⊕ k2〉= 〈h1, h2〉+ 〈k1, k2〉.
Then H ⊕ K is a Hilbert space, is called the direct sum of H and K [3, pp. 24].
If T1 ∈ BL(H) and T2 ∈ BL(K) we use T1 ⊕ T2 to denote the operator on H ⊕ K
defined by: (T1 ⊕ T2)(x ⊕ y) = T1 x ⊕ T2 y [4, pp. 8]. It is easy see that the norm
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of T1 ⊕ T2 will be given by

‖T1 ⊕ T2‖=max{‖T1‖,‖T2‖}.
In [1, Theorem 5], As’ad and Sarsour proved that “If B is a Banach algebra with
unity over the complex field C and if a ∈ B is such that ‖x(λ− a)‖ ≤ ‖(λ− a)x‖
for all x ∈ B and all λ ∈ C that satisfies |λ|> ‖a‖, then a ∈ Z(B).”

Throughout this paper, all linear spaces and algebras are assumed to be defined
over C, the field of complex numbers.

2. Centraloid Operators on a Normed Space

In this section we define the centraloid operators and study some of its
properties. Also we give examples to explain the relation with other known kinds
of operators.

Definition 2.1. A bounded linear operator T on a normed space X is called
centraloid if it satisfies the condition ‖ST‖ ≤ ‖TS‖ for all S ∈ BL(X ).

It is clear from the definition that the zero and the identity operators are
centraloid operators, moreover any operator in the center of BL(X ) is centraloid.
However, in Example 2.3 below we show that there is an operator T which is
centraloid but is not in the center of BL(X ). First we start with the following
theorem.

Theorem 2.2. Let T ∈ BL(X ), where X is a normed space.

(i) If ‖TS‖= ‖T‖‖S‖ for all S ∈ BL(X ), then T is centraloid.
(ii) If T is an isometry, then T is centraloid.

Proof. (i) Obvious
(ii) Let T be an isometry on X . For any S ∈ BL(X ) and any x ∈ X , ‖TSx‖= ‖Sx‖,

so that ‖TS‖ = ‖S‖. However, ‖T‖ = 1. Therefore, by using (i) we get the
result. ¤

Example 2.3. There is a centraloid operator T on `2 that is not in the center of
BL(`2).

Construction. Consider the bounded linear operator T : `2 → `2 that is defined
by T (ξ1,ξ2,ξ3, . . .) = (0,ξ1,ξ2,ξ3, . . .). By [2, pp. 206], T is an isometry, and
by Theorem 2.2(ii) T is centraloid. Now, consider the bounded linear operator
S : `2→ `2 is defined by S(ξ1,ξ2,ξ3, . . .) = (ξ1, 0, 0, 0, . . .). It is clear that ST 6= TS.
Therefore, T is not in the center of BL(`2).

The following proposition shows that under some conditions centraloid
operators are in the center. Moreover it explains under what conditions a bounded
linear operator T may be centraloid.
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Proposition 2.4. If T is a bounded linear operator on a Banach space X and
(T − λI) is centraloid for all λ ∈ C satisfies |λ| > ‖T‖, then (T − λI) ∈ Z(BL(X ))
for all λ ∈ C.

Proof. Since (T − λI) is centraloid for all λ ∈ C that satisfies |λ| > ‖T‖, then
‖S(T − λI)‖ ≤ ‖(T − λI)S‖ for all S ∈ BL(X ) and all λ ∈ C satisfies |λ| > ‖T‖.
However BL(X ) is a Banach algebra, then by [1, Theorem 5 ] T ∈ Z(BL(X )) and
so (T −λI) ∈ Z(BL(X )) for all λ ∈ C. ¤

Theorem 2.5. Let T, W and Tn be centraloid operators on a normed space X for all
natural numbers n, and suppose that lim Tn = S. Then the following are centraloid
operators

(i) αT for any α ∈ C.
(ii) TW .

(iii) T n for any natural number n.
(iv) S, provided that X is complete.

Proof. (i) Obvious.
(ii) For all S ∈ BL(X ), ‖STW‖ ≤ ‖WST‖ ≤ ‖TWS‖. Hence TW is centraloid.

(iii) By induction.
(iv) Use the continuity of the product, the continuity of the norm and ‖STn‖ ≤

‖TnS‖ for allS ∈ BL(X ) and all natural numbers n. ¤

Corollary 2.6. There is an uncountable number of centraloid operators on a
normed space X that are not isometries.

Proof. To see this, consider αI , where I is the identity operator (or any isometry)
and α is any element in C with |α| 6= 1.
Hence the converse of (ii) in Theorem 2.2 need not be true in general. ¤

Proposition 2.7. Let X be a normed space and A be a dense subset of BL(X ). If
T is a bounded linear operator such that ‖ST‖ ≤ ‖TS‖ for all S ∈ A, then T is
centraloid.

Proof. Left to the reader. ¤

It would be noted here that Theorem 2.5 implies that the set of all centraloid
operators on a Banach space X is an uncountable closed subset of BL(X ).
Moreover, it is closed under multiplication (composition of operators) and under
scalar multiplication. But we show in Example 2.8 below that this set need not be
closed under addition. Hence it need not be a Banach algebra.

Example 2.8. There are centraloid operators T and I on `2, such that T + I is not
centraloid, where I is the identity.
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Construction. Consider the bounded linear operator T : `2 → `2 that is defined
by T x = (−ξ1,ξ2,−ξ3,ξ4, . . .), and let I be the identity operator, where x =
(ξ1,ξ2,ξ3,ξ4, . . .) ∈ `2. One can easily show that T and I are isometries and
so by Theorem 2.2 (ii), they are centraloid. We show that W = T + I is not
centraloid. Note that, W x = (0, 2ξ2, 0, 2ξ4, 0, 2ξ6, 0, . . .). Consider the bounded
linear operator S : `2 → `2 that is defined by Sx = (ξ2, 0,ξ4, 0,ξ6, 0, . . .). Simple
calculations show that WSx = W ((ξ2, 0,ξ4, 0,ξ6, 0, . . .) = (0, 0, 0, 0, . . .), but
SW (1, 1, 0, 0, 0, 0, . . .) = S(0, 2, 0, 0, 0, . . .) = (2, 0, 0, 0, . . .). Hence ‖WS‖ = 0, but
‖SW‖ > 0. Therefore, there is a bounded linear operator S such that ‖SW‖ >
‖WS‖, and so W is not a centraloid operator.

Theorem 2.9. If T is an invertible bounded linear operator on a normed space X
with ‖T‖‖T−1‖= 1, then both T and T−1 are centraloid.

Proof. For all S ∈ BL(X ), ‖ST‖ = ‖T−1TST‖ ≤ ‖T−1‖‖TS‖‖T‖ = ‖TS‖. Hence T
is centraloid. Similarly for T−1. ¤

Proposition 2.10. If a bounded linear operator T on a normed space X and
its adjoint T× are centraloid then ‖ST‖ = ‖TS‖ = ‖S×T×‖ = ‖T×S×‖ for all
S ∈ BL(X ).

Proof. Suppose that T and T x are centraloid. Then for all S ∈ BL(X ) we have,
‖ST‖ ≤ ‖TS‖ and ‖S×T×‖ ≤ ‖T×S×‖ because S× ∈ BL(X ′). However, ‖S×T×‖ =
‖(TS)×‖ = ‖TS‖ and ‖T×S×‖ = ‖(ST )×‖ = ‖ST‖. Therefore, ‖ST‖ = ‖TS‖ =
‖S×T×‖= ‖T×S×‖. ¤

3. Centraloid Operators on a Hilbert Space

In this section we study centraloid operators on a Hilbert space, where we study
the relation between centraloid operators with its Hilbert adjoint, normal and self
adjoint operators. Finally we give a necessary and a sufficient condition for a self
adjoint operator to be centraloid. First we give an example to show that the adjoint
of a centraloid operator need not be centraloid. Moreover this example shows that
the centraloid operator need not be normal.

Example 3.1. There is a nonnormal centraloid operator T on `2, such that the
Hilbert adjoint operator T ∗ of T is not centraloid.

Construction. Consider the bounded linear operator T : `2 → `2 that is defined
by T x = (0,ξ1,ξ2,ξ3,ξ4, . . .), where x = (ξ1,ξ2,ξ3,ξ4, . . .) ∈ `2. By direct
calculation one can see that T is an isometry (‖T x‖= ‖x‖ for all x ∈ `2) and so by
Theorem 2.2(ii), it is centraloid. It is clear that the adjoint of T is T ∗ : `2→ `2 with
T ∗x = (ξ2,ξ3,ξ4, . . .). Similar to the proof of Example 2.8, the bounded linear
operator S : `2→ `2 defined by Sx = (ξ1, 0, 0, 0, . . .), satisfies ‖ST ∗‖ > ‖T ∗S‖ = 0.
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Hence T ∗ is not centraloid. Finaly one can show that T T ∗ 6= T ∗T . Hence T is not
normal.

Note. In Example 3.1 above, define W : `2 → `2 by W x = αT x , where α ∈ C and
|α| 6= 1, to get a centraloid operator which is neither normal nor isometry.

The following example shows that the self-adjoint and the normal operators
need not be centraloid.

Example 3.2. There is a normal operator T on `2 which is not centraloid.

Construction. Consider the bounded linear operator T : `2 → `2 that is defined
by T x = (0,ξ2, 0,ξ4, 0,ξ6, 0, . . .), where x = (ξ1,ξ2,ξ3,ξ4, . . .) ∈ `2. One can
easly show that T is self adjoint and so normal. Similarly as in Example 2.8,
T is not centraloid. For this consider the bounded linear operator S : `2 → `2

defined by Sx = (ξ2, 0,ξ4, 0,ξ6, 0, . . .). Simple calculations show that ‖TS‖ = 0
and ‖ST‖> 0.

Theorem 3.3. If T is a bounded linear operator on a Hilbert space H, then T and
T ∗ are centraloid if and only if ‖ST‖= ‖TS‖ for all S ∈ BL(X ).

Proof. The proof of the “only if” part is similar to the proof of Proposition 2.10.
Conversely, suppose that ‖ST‖ = ‖TS‖ for all S ∈ BL(X ). Then ‖T ∗S‖ =
‖(T ∗S)∗‖ = ‖S∗T‖ = ‖TS∗‖ = ‖(ST ∗)∗‖ = ‖ST ∗‖. Finally, by using the definition
of a centraloid operator we get the result. ¤

Corollary 3.4. If T is a self adjoint operator on a Hilbert space H, then T is
centraloid if and only if ‖ST‖= ‖TS‖ for all S ∈ BL(X ).

Proposition 3.5. Let T and S be bounded linear operators on a Hilbert space H.
If S is unitarily equivalent to T , then T is centraloid if and only if S is centraloid.

Proof. To get the result, use the definition of unitarily equivalence, the facts that
the inverse of a unitary operator is unitary and that any unitary operator is an
isometry and Theorems 2.2(ii) and 2.5(ii). ¤

Theorem 3.6. Let T1 ∈ BL(H1) and T2 ∈ BL(H2), where H1 and H2 are Hilbert
spaces. If T1 and T2 are centraloid, then T1 ⊕ T2 is centraloid.

Proof. Let S ∈ BL(H1 ⊕ H2). Then there are S1 ∈ BL(H1) and S2 ∈ BL(H2) such
that S = (S1⊕S2). Then, ‖S(T1⊕ T2)‖= ‖S1T1⊕S2T2)‖=max{‖S1T1‖,‖S2T2‖} ≤
max{‖T1S1‖,‖T2S2‖} = ‖T1S1 ⊕ T2S2‖ = ‖(T1 ⊕ T2)S‖. Therefore, T1 ⊕ T2 is
centraloid. ¤
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