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1. Introduction
Various operators of fractional calculus have been used in recent years to find solutions to the
equations modeling of real-world phenomena in engineering and physical sciences. There exist
many phenomena in several fields which are modeled by fractional differential equations.
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These include fluid mechanics [45], chemistry [17, 26, 39, 40], biology [30], viscoelasticity
[35], engineering, finance, and physics [19, 28, 36]. This made scientists and engineers give
more attention to the modeling problems in which the fractional derivative does arise in
physical contexts. In this connection, we refer the interested reader to the earlier works [3,42].
As a result of the difficulty in finding an analytical solution for the fractional differential
equations by using analytical techniques, the approximate methods were used (see, for example,
[16,24,29,37,41,43,46,49–51]).

The familiar Nagumo equation is given by

ψη =ψζζ+ψ(1−ψ)(ψ−µ) (05µ< 1; ψ=ψ(ζ,η)) (1.1)

involving the space variable ζ and the time variable η. The exact solution of (1.1) is known as a
solitary wave in the following form:

ψ(ζ,η)= a+b tanh(κ(ζ−νη)). (1.2)

In fact, there is a class of eight solutions of the form (1.1) that can be obtained by the software
MATHEMATICA or otherwise. Here, in this paper, we consider the case when

a = 1+µ
2

, ν= 1+µp
2

, b = 1−µ
2

and κ= µ−1

2
p

2
. (1.3)

We mention that the solution (1.2) satisfies the ollowing condition:

ψ(−∞,η)= 1 and ψ(∞,η)=µ.

The Nagumo equation (1.1) has attracted the attention of many researchers (see, for example,
[2, 12, 18, 22, 23]). This equation has been applied as a model for the transmission of nerve
impulses (see, for details, [15,33]). Furthermore, the equation (1.1) is an important nonlinear
reaction-diffusion equation and it has been used in biology, in the area of population genetics,
and in circuit theory (see [44]).

Recently, Adomian (see [4,5]) considered a new technique called the Adomian Decomposition
Method (ADM) for computing the solutions of linear and nonlinear equations. Various authors
have studied the convergence of Adomain’s method (see [1, 10, 11, 31]). It has recently been
proven that the ADM provides a very effective technique and can be applied successfully to
many problems such as systems of ordinary and partial differential equations as well as integral
equations (see, for example, [6–8,20,21,27,34,47,48]).

This work is organized as follows. Section 2 is devoted to the essential ideas surrounding
some operators of fractional calculus, which we propose to use in this paper. Section 3
concentrates upon a description of the standard ADM. In Section 4, we apply the ADM for
evaluating the time-fractional Nagumo equation. In Section 5, we apply the ADM for evaluating
the space-time fractional-order Nagumo equation. Conclusions are presented in the last section
(Section 7).

2. Operators of Fractional Calculus
In this section, we give some basic definitions and properties of the operators of fractional
calculus (see, for details, [9,25,32,35]).
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Definition 1. If ψ(η) ∈ L1(a,b), L1(a,b) being the set of all integrable functions in the interval
(a,b), and α> 0, then the Riemann-Liouville fractional integral of order α, denoted by Jα

a+, is
defined by

Jα
a+ψ(η)= 1

Γ(α)

∫ η

a
(η−ς)α−1 ψ(ς)dς. (2.1)

Correspondingly, the Riemann-Liouville fractional derivative operator Dα
η is defined by

Dα
ηψ(η)= 1

Γ(n−α)

∫ η

a
(η−ς)n−α−1 ψ(n)(ς)dς (2.2)

(n−1<α5 n; n ∈N= {1,2,3, · · · }).

Definition 2. For α > 0, the Liouville-Caputo fractional derivative of order α, denoted by
LCDα

a+, is defined by

LCDα
a+ψ(η)= 1

Γ(n−α)

∫ η

a
(η−ς)n−α−1 Dn

ςψ(ς)dς (2.3)

(n−1<α5 n; n ∈N),

where

Dn
η := dn

dηn (n ∈N0 :=N∪ {0}). (2.4)

If α is a positive integer, then the Liouville-Caputo fractional derivative becomes the ordinary
derivative:

LCDα
a+ = Dα

η (α ∈N). (2.5)

Finally, the Liouville-Caputo fractional derivative on the whole space R= (−∞,∞) is defined
below.

Definition 3. For α > 0, the Liouville-Caputo fractional derivative of order α on the whole
space R, denoted by LCDα

a+, is defined by

LCDα
−∞+ψ(ζ)= 1

Γ(n−α)

∫ ζ

−∞
(ζ−ς)n−α−1 Dn

ςψ(ς)dς (2.6)

(n−1<α5 n; n ∈N).

3. Basic Ideas of the Adomian Decomposition Method (ADM)

In this section, we present the basic ideas of the Adomian Decomposition Method (ADM) (see,
for example, [13]) by considering the following nonlinear partial differential equation:

L
(
ψ(ζ,η)

)+R
(
ψ(ζ,η)

)+N
(
ψ(ζ,η)

)= 0 (3.1)

together with the condition given by

ψ(ζ,0)=φ(ζ), (3.2)

where L is the highest-order derivative which is assumed to be invertible, R is the remaining
linear operator and N represents a nonlinear operator. Now, by applying the inverse operator
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L−1 to both sides of (3.1), we get

ψ(ζ,η)=φ(ζ)−L−1{R
(
ψ(ζ,η)

)+N
(
ψ(ζ,η)

)}
. (3.3)

Let

ψ(ζ,η)=
∞∑

m=0
ψm(ζ,η) (3.4)

and

N(ψ)=
∞∑

m=0
χm, (3.5)

where χm are the Adomian polynomials which depend upon ψ. In view of the equations (3.4) to
(3.5), the equation (3.3) takes the following form:

∞∑
m=0

ψm(ζ,η)=φ(ζ)−L−1{R
(
ψ(ζ,η)

)}+ ∞∑
m=0

χm
(
ψ(ζ,η)

)
. (3.6)

We set

ψ0(ζ,η)=φ(ζ). (3.7)

Then

ψm+1(ζ,η)=−L−1{R
(
ψ(ζ,η)

)}+ ∞∑
m=0

χm
(
ψ(ζ,η)

)
(m ∈N0), (3.8)

where

χm
(
ψ(ζ,η)

)= [
1

m!
dm

dλm N

( ∞∑
m=0

ψm(ζ,η)λm

)]
λ=0

. (3.9)

Hence, the equations (3.7), (3.8) and (3.9) lead to the following recurrence relations:

ψ0(ζ,0)=φ(ζ), ψm+1(ζ,η)=−L−1[R
(
ψ(ζ,η)

)+ Am
(
ψ(ζ,η)

)]
. (3.10)

The solution ψ(ζ,η) can be approximated by the truncated series given by

ϕk(ζ,η)=
k−1∑
m=0

ψm(ζ,η) (3.11)

and

lim
k→∞

ϕk(ζ,η)=ψ(ζ,η). (3.12)

4. The Time-Fractional Nagumo Equation

In this section, we apply the ADM to find the approximation solutions for the time-fractional
Nagumo equation. To obtain the time-fractional Nagumo equation, we replace ψη in the Naguno
equation (1.1) by ψα

η , where n−1<α5 n (n ∈N). We thus obtain the time-fractional Nagumo
equation given by

ψα
η =ψζζ+ψ(1−ψ)(ψ−µ) (0<α5 1; 05µ< 1). (4.1)

If we operate upon both sides of (4.1) by Jα
η , we obtain

ψ(ζ,η)=ψ(ζ,0)+ Jα
η

[
ψζζ−µψ+ (1+µ)ψ2 −ψ3] . (4.2)
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Now the ADM solutions and the nonlinear functions N
(
ψ(ζ,η)

)
can be presented as infinite

series given by

ψ(ζ,η)=ψ0(ζ,η)+
∞∑

n=1
ψn(ζ,η) (4.3)

and

N
(
ψ(ζ,η)

)= (1+µ)[ψ(ζ,η)]2 − [ψ(ζ,η)]3 =
∞∑

n=0
χn, (4.4)

where

χn = 1
n!

[
dn

dλn N

(
n∑

k=0
λkψk(ζ,η)

)]
λ=0

. (4.5)

Here χn are called the Adomian polynomials and the components ψn(ζ,η) of the solutions ψ(ζ,η)
will be determined by the following recurrence relations:

ψ0(ζ,η)=ψ(ζ,0) (4.6)

and

ψn+1(ζ,η)= Jα
η

[
ψn(ζ,η)ζζ−µψn(ζ,η)+χn

]
. (4.7)

In view of (3.9), and by using the software MATHEMATICA, we evaluate the Adomian polynomials
χn as follows:

χ0 = (1+µ)[ψ0(ζ,η)]2 − [ψ0(ζ,η)]3

χ1 = 2(1+µ)ψ0(ζ,η)ψ1(ζ,η)−3[ψ0(ζ,η)]2ψ1(ζ,η),
... (4.8)

Thus, in the case of the first iteration, we have

ψ1(ζ,η)= 1
Γ(α)

∫ η

0
(η−ς)α−1[ψ0(ζ,ς)ζζ−µψ0(ζ,ς)+χ0

]
dς. (4.9)

The initial condition is then taken by setting η= 0 in (1.2), so that

ψ(ζ,0)= 1
2

[
1+µ− (µ−1)tanh

(
(µ−1)ζ

2
p

2

)]
. (4.10)

In view of(4.6) and (4.9) to (4.10), we obtain the first three approximations as follows:

ψ0(ζ,η)= 1
2

[
1+µ− (µ−1)tanh

(
(µ−1)ζ

2
p

2

)]
, (4.11)

ψ1(ζ,η)= (µ−1)2(µ+1)ηα

8Γ(α+1)
sech2

(
(µ−1)ζ

2
p

2

)
(4.12)

and

ψ2(ζ,η)= (µ−1)2(µ+1)η2α

32π
sech2

(
(µ−1)ζ

2
p

2

)[p
π4−α(µ−1)2 cos(πα)Γ

(1
2 −α

)
Γ(α+1)

·
[
cosh

(
(µ−1)ζp

2

)
−2

]
sech2

(
(µ−1)ζ

2
p

2

)
−

(
4µsin(2πα)Γ(−2α)−

p
π4−α cos(πα)Γ

(1
2 −α

)
Γ(α+1)

)
·
[
1+µ− (µ−1)tanh

(
(µ−1)ζ

2
p

2

)]{
1+µ+3(µ−1)tanh

(
(µ−1)ζ

2
p

2

)}]
. (4.13)
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The following further approximations:

ψ3(ζ,η), ψ4(ζ,η), ψ5(ζ,η), · · ·
can also be determined similarly and used accordingly. For the sake of brevity, we choose not to
record these approximations here. The general form of the above approximations is given by
(4.3), that is, by

ψ(ζ,η)=ψ0(ζ,η)+ψ1(ζ,η)+ψ2(ζ,η)+·· · . (4.14)

(a) (b)

(c) (d)

(e)

Figure 1. The surface of the 4 terms of the ADM solution for α= 0.4,0.6,0.8 in (a) to (c), respectively,
and the surface of the exact solution (1.2) in (d) and the plotting of (a) to (d) in (e) at µ= 0.8.
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In Figure 1, we have graphically illustrated the first four terms of the ADM solution for
α = 0.4,0.6,0.8 in (a) to (c), respectively and the surface of the exact solution (1.2) in (d) at
µ= 0.8. It is clear from Figure 1 that, in the limit when α→ 1, the behavior of the ADM solution
approaches to the exact solution. In Figure 2, we have graphically illustrated the absolute
error between the exact solution (1.2) and the ADM solutions for three terms, four terms, five
terms and six terms in (a) to (d), respectively. It can be seen from Figure 2 that the absolute
error decreases as the number of terms of the ADM solution increases. Obviously, in order to
minimize the error involved, more terms need to be considered for the ADM solution.

In Figure 3, we have presented the graphs of the surfaces of the two-term ADM solution
(5.18) for different special numerical values of the parameters involved therein.

(a) (b)

(c) (d)

Figure 2. The absolute error of the ADM solutions for three terms, four terms, five terms and six terms
in (a) to (d), respectively, at µ= 0.98.
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(a) (b)

(c) (d)

Figure 3. The surface of the two-terms ADM solution (5.18) for α= 0.4,0.6 and β= 0.6,0.6 in (a) and (b),
respectively, and the surface of the exact solution (1.2) in (c) and the plotting of (a) to (c) in (d) at µ= 0.9.

5. The Space-Time Fractional-Order Nagumo Equation

In this section, we study the ADM solutions for the space-time fractional-order Nagumo equation.
We begin by expanding the exact solution given (see, for details, [38])

ψ(ζ,η)= 1
2

[
1+µ− (−1+µ)tanh

(
ρ(ζ,η)

)]
= 1− (−1+µ)

∞∑
r=1

(−1)r e−rρ(ζ,η), (5.1)

where

ρ(ζ,η)=
(−1+µ)

(
ζ− η(1+µ)p

2

)
p

2
> 0.

For convenience, we set ψ= 1+ϕ and rewrite the Nagumo equation (1.1) as follows:

ϕη =ϕζζ− (1−µ)ϕ− (2−µ)ϕ2 −ϕ3. (5.2)

The solution of (5.2) assumes the following form:

ϕ(ζ,η)=−(−1+µ)
∞∑

r=1
(−1)r e−rρ(ζ,η). (5.3)
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We take the initial condition by letting η= 0 in (5.3), so that

ϕ(ζ,0)=−(−1+µ)
∞∑

r=1
(−1)r e−rρ(ζ,0). (5.4)

We now consider the ADM for the space-time fractional-order Nagumo equation. If, in the
equation (5.2), we replace ϕη by ϕαη and ϕζζ by ϕ2β

ζ
, we obtain

ϕαη =ϕ2β
ζ

− (1−µ)ϕ− (2−µ)ϕ2 −ϕ3 = 0. (5.5)

If we operate upon both sides of (5.5) by Jα
η , we obtain

ϕ(ζ,η)=ϕ(ζ,0)+ Jα
η

[
ϕ

2β
ζ

− (1−µ)ϕ− (2−µ)ϕ2 −ϕ3
]

. (5.6)

Now the ADM solutions and the nonlinear functions M
(
ψ(ζ,η)

)
can be presented as infinite

series given by

ϕ(ζ,η)=ϕ0(ζ,η)+
∞∑

n=1
ϕn(ζ,η) (5.7)

and

M
(
ϕ(ζ,η)

)=−(2−µ)[ϕ(ζ,η)]2 − [ϕ(ζ,η)]3 =
∞∑

n=0
ξn, (5.8)

where

ξn = 1
n!

[
dn

dpn M

(
n∑

k=0
pkψk(ζ,η)

)]
p=0

, (5.9)

where ξn are called the Adomian polynomials. The components ξn(ζ,η) of the solutions ϕ(ζ,η)
will be determined by the following recurrence relations:

ϕ0(ζ,η)=ϕ(ζ,0) (5.10)

and

ϕn+1(ζ,η)= Jα
η

[
ϕ

2β
ζ,n − (1−µ)ϕn(ζ,η)+ξn

]
. (5.11)

In view of (3.9), and by using the software MATHEMATICA, we evaluate the Adomian polynomials
ξn as follows:

ξ0 = (µ−2)[ϕ0(ζ,η)]2 − [ϕ0(ζ,η)]3,

ξ1 = 2(µ−2)ϕ0(ζ,η)ϕ1(ζ,η)−3[ϕ0(ζ,η)]2ϕ1(ζ,η),
... (5.12)

In view of the equations (5.4), (5.10) and (5.11), the first three components of the decomposition
series are derived as follows:

ϕ0(ζ,η)=−(−1+µ)
∞∑

r=1
(−1)r e−λζ

(
λ := µ−1p

2

)
, (5.13)

ϕ1(ζ,η)=− ηα

Γ(α+1)
f0(ζ), (5.14)

ϕ2(ζ,η)=− η2α

Γ(2α+1)
[
f1(ζ)− (1−µ) f0(ζ)−2(2−µ)ϕ0 f0(ζ)−3ϕ2

0 f0(ζ)
]
, (5.15)
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where

f i(ζ)= (−1+µ)
∞∑

r=1
(−1)r e−λζ(rλ)(2+2i)β− (1−µ)(−1+µ)

∞∑
r=1

(−1)r e−λζ(rλ)2iβ

+ (2−µ)(−1+µ)2
∞∑

r=1

∞∑
r1=1

(−1)r+r1 e−(r+r1)λζ[(r+ r1)λ]2iβ

− (−1+µ)3
∞∑

r=1

∞∑
r1=1

∞∑
r2=1

(−1)r+r1+r2 e−(r+r1+r2)λζ [(r+ r1 + r2)λ]2iβ, (5.16)

where λ is given as in the equation (5.13), and so on. In this manner, the rest of the components
of the decomposition series can be obtained. The first two terms of the decomposition series are
given by

ψ(ζ,η)= 1+ϕ0 +ϕ1

= 1− (−1+µ)
∞∑

r=1
(−1)r e−2rλζ− ηα

Γ(α+1)
f0(ζ). (5.17)

In the same manner, we obtain the following other components of approximation:

ϕ3(ζ,η), ϕ4(ζ,η), ϕ4(ζ,η), · · · .

When we set β= 1 in the first approximation (5.14) and in the second approximation (5.15),
and after some simplifications, we obtain the same approximations as those given by (4.12) and
(4.13) after returning to the original variable.

We can obtain the ADM solutions of (5.5) for ρ(ζ,η)< 0 by using the same procedure as the
above for ρ(ζ,η)> 0. Moreover, by using the software MATHEMATICA, we can simplify (5.17) and
we obtain the following ADM solutions for the first few terms:

ψ(ζ,η)= 1+ µ−1

e
(µ−1)ζp

2 +1
− (µ−1)ηα

Γ(α+1)

[
− µ−1

e
(µ−1)ζp

2 +1
+ (µ−1)2e

3ζp
2(

e
µζp

2 + e
ζp
2
)3

− (µ−2)(µ−1)e
p

2ζ(
e
µζp

2 + e
ζp
2
)2

+2−β(1−µ)2β Li−2β
(− e−

ζ(µ−1)p
2

)]
, (5.18)

where Lis(z) denotes the Polylogarithmic function (or de Jonquière’s function) Liν(z):

Lis(z) :=
∞∑

n=1

zn

ns (5.19)

(s ∈C when |z| < 1; ℜ(s)> 1 when |z| = 1).

We use the first approximation (5.18) to show the behavior of the ADM solutions. Figure 3
shows the behavior of the ADM solution (5.18) for different values for α and β. It can be seen
from Figure 3 that, in the limit as α→ 1 and β→ 1, the ADM solution (5.18) approaches the exact
solution of the Nagumo equation (1.1). Therefore, the ADM is an efficient and accurate method
which can be used to find approximate analytical solutions of the space-time fractional-order
Nagumo equation (5.5).
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6. Convergence Analysis

In this section, we establish a lemma and a set of three theorems that guarantee the existence
of the ADM solution and provide the maximum absolute truncation error. We define the Banach
space as (C(I),‖·‖), which is the space of all continuous functions ϕ(ζ,η) with the norm given by

‖ϕ(ζ,η)‖ = max
(ζ,η)∈I

∣∣ϕ(ζ,η)
∣∣ .

Lemma. Suppose that the function ϕ(ζ,η) and their partial derivatives are continuous. Then the
derivatives Dα

ηϕ(ζ,η) and D2β
ζ
ϕ(ζ,η) are bounded.

Proof. We first prove that Dα
ηϕ(ζ,η) is bounded. From the definition (2.2) of the Riemann-

Liouville fractional derivative, we have

‖Dα
ηϕ(ζ,η)‖ =

∥∥∥∥ 1
Γ(m−α)

∫ η

a
(η−ς)m−α−1 ϕ(m)(ζ,ς)dς

∥∥∥∥
5

|η−a|
|(m−α)Γ(m−α)| ‖ϕ(ζ,η)‖

= L1‖ϕ(ζ,η)‖, (6.1)

where

L1 = |η−a|
|(m−α)Γ(m−α)| .

In the same manner, we find that∥∥D2β
ζ
ϕ(ζ,η)

∥∥5 L2‖ϕ(ζ,η)‖.

This completes the proof of the lemma.

Theorem 1. Let the function F(ϕ) given by

F(ϕ)=−(2−µ)ϕ2 −ϕ3

satisfy the Lipschitz condition with the Lipschitz constant L3. Then the problem (5.5) has a
unique solution ϕ(ζ,η) whenever 0< δ< 1, where

δ := [L2 +L3 − (1−µ)]MT
Γ(α)

. (6.2)

Proof. Let ψ and ϕ be two different solutions of the space-time fractional-order Nagumo
equation (5.2). Then, for all η ∈ [0,T]; (T > 0) and ς ∈ [0,η], these solutions are seen to be
bounded on using (6.1). We now set

M = max
05ς5T; 05η5T

∣∣(η−ς)α−1∣∣ .

Then

ψ−ϕ= Jα
η

[
D2β
ζ
ψ(ζ,ς)− (1−µ)ψ(ζ,ς)+F(ψ)

]− Jα
η

[
D2β
ζ
ϕ(ζ,ς)− (1−µ)ϕ(ζ,ς)+F(ϕ)

]
= 1
Γ(α)

∫ η

0
(η−ς)α−1[D2β

ζ
ψ(ζ,ς)− (1−µ)ψ(ζ,ς)+F(ψ)

]
dς

− 1
Γ(α)

∫ η

0
(η−ς)α−1[D2β

ζ
ϕ(ζ,ς)− (1−µ)ϕ(ζ,ς)+F(ϕ)

]
dς,
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so that

max |ψ−ϕ| =max
∣∣∣∣ 1
Γ(α)

∫ η

0
(η−ς)α−1[D2β

ζ
ψ(ζ,ς)− (1−µ)ψ(ζ,ς)+F(ψ)

]
dς

− 1
Γ(α)

∫ η

0
(η−ς)α−1[D2β

ζ
ϕ(ζ,ς)− (1−µ)ϕ(ζ,ς)+F(ϕ)

]
dτ

∣∣∣∣
5

(
[L2 +L3 − (1−µ)]

Γ(α)

)
max

{∫ η

0
|η−ς|α−1 ∣∣ψ−ϕ∣∣dς,‖ψ−ϕ‖

}
5

(
[L2 +L3 − (1−µ)]MT

Γ(α)

)
‖ψ−ϕ‖, (6.3)

which yields

(1−δ)‖ψ−ϕ‖5 0, (6.4)

where δ is given by (6.2). Since 1−δ 6= 0, we have

‖ψ−ϕ‖ = 0.

Therefore, we have ψ=ϕ, which completes the proof of Theorem 1.

Theorem 2. The series solution ϕ(ζ,η) of the problem (5.5) is given by

ϕ(ζ,η)=
∞∑
j=0

ϕ j(ζ,η)

by using the ADM convergence when

0< δ< 1 and |ϕ1(ζ,η)| <∞.

Proof. We first define the sequence sn of partial sums. Let sn and sm be arbitrary partial sums
with n= m. We propose to prove that sn is a Cauchy sequence in the Banach space:

‖sn − sm‖ = max
(ζ,η)∈I

|sn − sm| = max
(ζ,η)∈I

∣∣∣∣∣ n∑
j=m+1

u j

∣∣∣∣∣
= max

(ζ,η)∈I

∣∣∣∣∣ 1
Γ(α)

∫ η

0
(η−τ)α−1

(
n−1∑
j=m

B j −
n−1∑
j=m

C j +
n−1∑
j=m

D j

)∣∣∣∣∣ . (6.5)

We find from [14] that
n−1∑
j=m

B j = D2β
ς (sn−1 − sm−1),

n−1∑
j=m

C j = (1−µ)(sn−1 − sm−1)

and
n−1∑
j=m

D j = F(sn−1 − sm−1).

Thus, clearly, we have

‖sn − sm‖ = max
(ζ,η)∈I

∣∣∣∣ 1
Γ(α)

∫ η

0
(η−ς)α−1

(
D2β
ζ

[sn−1 − sm−1]− (1−µ)[sn−1 − sm−1]+F[sn−1 − sm−1]
)
dτ

∣∣∣∣
5

(
L2 +L3 − (1−µ)

Γ(α)

)
max
(ζ,η)∈I

∫ η

0
|η−ς|α−1|sn−1 − sm−1|

5
(
[L2 +L3 − (1−µ)]MT

Γ(α)

)
‖sn−1 − sm−1‖5 δ‖sn−1 − sm−1‖. (6.6)
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Let n = m+1. Then

‖sm+1 − sm‖5 δ‖sm − sm−1‖
5 δ2‖sm−1 − sm−2‖
5 δm‖s1 − s0‖. (6.7)

Thus, by the triangle inequality, we have

‖sn − sm‖5 ‖sm+1 − sm‖+‖sm+2 − sm+1‖+·· ·+‖sn − sn−1‖
5

[
δm +δm+1 +·· ·+δn−1]‖s1 − s0‖

5 δm
(
1−δn−m

1−δ
)
‖ϕ1(ζ,η)‖. (6.8)

Since 0< δ< 1, so that 1−δn−m < 1, we have

‖sn − sm‖5
(
δm

1−δ
)

max
(ζ,η)∈I

|ϕ1(ζ,η)|. (6.9)

But |ϕ1(ζ,η)| <∞. Therefore, in the limit when m →∞, we get

‖sn − sm‖→ 0.

We conclude that sn is a Cauchy sequence in C[I]. Consequently, the series is convergent and
the proof of Theorem 2 is complete.

Theorem 3. The maximum absolute truncation error of the series solution ϕ(ζ,η) given by

ϕ(ζ,η)=
∞∑
j=0

ϕ j(ζ,η)

for the problem (5.5) is estimated as follows:

max
(ζ,η)∈I

∣∣∣∣∣ϕ(ζ,η)−
m∑

j=0
ϕ j(ζ,η)

∣∣∣∣∣5
(
δm

1−δ
)

max
(ζ,η)∈I

|ϕ1(ζ,η)|. (6.10)

Proof. According to the formula (6.9), we have

‖sn − sm‖5
(
δm

1−δ
)

max
(ζ,η)∈I

|ϕ1(ζ,η)|.
In the limit as n →∞, we see that

sn →ϕ(ζ,η),

so we have

‖ϕ(ζ,η)− sm‖5
(
δm

1−δ
)

max
(ζ,η)∈I

|ϕ1(ζ,η)|. (6.11)

Therefore, the maximum absolute truncation error in the interval I is estimated by

max
(ζ,η)∈I

∣∣∣∣∣ϕ(ζ,η)−
m∑

j=0
ϕ j(ζ,η)

∣∣∣∣∣5
(
δm

1−δ
)

max
(ζ,η)∈I

|ϕ1(ζ,η)|, (6.12)

which evidently completes the proof of Theorem 3
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7. Conclusion
In this paper, we have successfully and efficiently applied the Adomian Decomposition Method
(ADM) to derive the approximate solutions of the time-fractional and space-time fractional-
order Nagumo equation. In the case of space-time fractional-order Nagumo equation, we
expanded the tanh-function initial condition in terms of the basis functions e−nζ. The fractional
derivative could then be easily calculated. As there no direct methods to compute the fractional
derivatives, many authors seem to have avoided this type of initial conditions. We have studied
the convergence analysis and applied our results to the Nagumo equation. The agreement
with the numerical solutions are remarkably favorable. Aside from such favorable agreement,
the results demonstrate that the ADM provided a fairly accurate technique for solving the
time-fractional and space-time fractional-order Nagumo equation. By increasing the number of
iterations, we can reach any desired accuracy. We have the software MATHEMATICA 9 in all of
our calculations.
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