
Journal of Informatics and Mathematical Sciences
Vol. 11, No. 2, pp. 155–177, 2019
ISSN 0975-5748 (online); 0974-875X (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/jims.v11i2.957

Research Article

Constructing Recursive MDS Matrices Effective for
Implementation from Reed-Solomon Codes and
Preserving the Recursive Property of MDS Matrix
of Scalar Multiplication

Tran Thi Luong, Nguyen Ngoc Cuong and Hoang Duc Tho*

Academy of Cryptographic Techniques, Ha Noi, Viet Nam
*Corresponding author: hdtho@bcy.gov.v

Abstract. MDS matrices from Maximum Distance Separable codes (MDS codes) and MDS matrix
transformations have important applications in cryptography. However, MDS matrices always have a
large description and cannot be sparse, causing costly hardware/software implementations. Recursive
MDS matrices allow to solve this problem as they can be a power of a simple serial matrix, so there is a
compact description suitable even for constrained processing environments. In this paper, the method
for constructing recursive MDS matrices effective for implementation from Reed-Solomon codes is
presented. In addition, preserving the recursive property of MDS matrix of scalar multiplication
transformation is given. The recursive MDS matrices effective for implementation are meaningful
in hardware implementation, and the ability to preserve recursive property of MDS matrix of scalar
multiplication transformation also has important applications for efficiently building dynamic block
ciphers to improve the security of block ciphers.

Keywords. MDS matrix; Recursive MDS matrices; RS codes

MSC. 11T71; 14G50; 68P25

Received: June 28, 2018 Accepted: October 2, 2018

Copyright © 2019 Tran Thi Luong, Nguyen Ngoc Cuong and Hoang Duc Tho. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://doi.org/10.26713/jims.v11i2.957

156Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

1. Introduction
Using MDS matrices in block ciphers was first introduced by Serge Vaudenay in FSE’95 [13] as
a linear case of multipermutations. These multipermutations characterize the notion of perfect
diffusion [12] which requires that the change of any t out of m input bits must affect at least
m− t+1 output bits.

For block ciphers, the security against strong attacks (such as linear and differential attacks)
depends on branchnumber [5,15] of diffusion layer. The larger the branch number, the higher
the security.As MDS matrices give maximum branch numbers for the linear transformations
corresponding with them, they have been used for diffusion layer in many block ciphers such
as: AES, SHARK, Square, Twofish, Anubis, Khazad, Manta, Hierocrypt. They are also used in
stream ciphers like MUGI and cryptographic hash functions like WHIRLPOOL.

In addition, recursive MDS matrices (powers of serial matrices) [9] have been studied by
many authors in the literature because of its important applications in lightweight cryptography,
such as [1,2,6,11,14]. However, according to these studies, searching for such recursive MDS
matrices required to perform an exhaustive search on families of serial matrices, thus limiting
the size of MDS matrices one could look for [2] or to use some other rather complex methods
such as constructing recursive MDS matrices from shortened BCH codes [1]. In [8], we gave a
method for efficiently and simply constructing recursive MDS matrices from Reed-Solomon (RS)
codes, but not to mention to finding recursive MDS matrices effective for implementation from
this method.

To further enhance the security of the block ciphers, some MDS matrix transformations
have been studied to generate dynamic block ciphers later such as: scalar multiplication [10],
permutations of rows and columns [3, 4], direct exponent [10]. The scalar multiplication for
MDS matrix was first published by Murtaza and Ikram [10] but the authors did not show the
preservation of some good cryptographic properties of MDS matrix by the transformation. In
[7], we showed that the scalar multiplication is capable of preserving some good cryptographic
properties of the MDS matrix, but not to mention to preservation of recursive property of MDS
matrix of the scalar multiplication transformation.

In this paper, the method for constructing recursive MDS matrices effective for
implementation (meaning that inverse diffusion layer can use the same circuit as the diffusion
layer itself in hardware implementation) from Reed-Solomon codes is presented. In addition,
preserving the recursive property of MDS matrix of the scalar multiplication transformation is
given. The recursive MDS matrices effective for implementation are meaningful in hardware
implementation, and the ability to preserve recursive property of MDS matrix of scalar
multiplication transformation also has important applications for efficiently building dynamic
block ciphers to improve the security of block ciphers.

The paper is organized as follows. In Section 2, preliminaries and related works are
introduced. Section 3 presents the method for constructing recursive MDS matrices effective
for implementation from Reed-Solomon codes and experimental results. Section 4 provides
preserving the recursive property of MDS matrix of the scalar multiplication transformation.
Finally, conclusion is given in Section 5.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.157

2. Preliminaries and Related Works
2.1 RS Code
A RS code over GF(q) = GF(pm) is a BCH code of length n = q−1. Suppose α is a primitive
element of the field. A RS code of length n = q − 1 designed with distance d will have a
corresponding generator polynomial of degree d−1 as follow:

g(x)= (x−αb)(x−αb+1) . . . (x−αb+d−2) (1)

where b is a pre-selected value (b ∈ N,b ≥ 1).
In [9], the authors showed that a RS[n,k,d] code generated from the polynomial of the form

(1) is an MDS code i.e. it satisfies the condition: d = n−k+1.

2.2 Recursive MDS Matrix
It can be definited a general recursive MDS matrixanda recursive MDS matrix as a power of
aserial matrix as follows:

Definition 1. Let A = [ai, j]m×m, ai, j ∈GF(pr), be an MDS matrix. A is called a recursive MDS
matrix if there exists a matrix S of size m over GF(pr) and a non-negative integer k such that:
A = Sk.

Definition 2. Let A = [ai, j]m×m, ai, j ∈ GF(pr) be an MDS matrix. A is called a recursive
MDS matrix as a power of a serial matrix if there exists a serial matrix S of size m
over GF(pr) such that: A = Sm, where the serial matrix S associated with a polynomial
c(x)= z0 + z1x+ z2x2 +·· ·+ zd−1xd−1 + xd has the following form:

S =Serial (z0, . . . , zm−1)=


0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 · · · 0 1
z0z1z2 · · · zm−1

 (2)

and the inverse matrix of S has the following form:

Serial(z0, . . . , zm−1)−1 =



z1
z0

z2
z0

· · · 1
z0

1 0 0 0 · · · 0
0 1 0 0 · · · 0
...
0 0 0 · · · 1 0

 (3)

Notice that the polynomial c(x) having the constant term equal to 1 (z0 = 1) is particularly
interesting as the diffusion layer and its inverse share the same coefficients:

Serial(z0, . . . , zm−1)−1 =


0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 · · · 0 1
1 z1z2 · · · zm−1



−1

=


z1z2 · · · zm−1 1
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
...
0 0 0 · · · 1 0

 (4)

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

158Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

Definition 3. A matrix serial-like Ś of size m over GF(pr) has the following form:

Ś =Serial_like(z0, . . . , zm−1, e)=


0 e 0 · · · 0
0 0 e · · · 0
...
0 0 · · · 0 e
ez0ez1ez2 · · · ezm−1

 (5)

where e 6= 0 is an arbitrary element in GF(pr).
The inverse matrix of Ś has the following form:

Serial_like(z0, . . . , zm−1, e)−1 =


e−1 z1

z0
e−1 z2

z0
· · · e−1 zm−1

z0
e−1

z0
e−1 0 0 · · · 0 0
0 e−1 0 · · · 0 0
...

...
0 0 0 · · · e−1 0

 (6)

It can be seen that the serial-like matrix is very sparse similar to the serial matrix. Therefore,
the advantage of recursive MDS matrices as powers of such matrices is that the diffusion layer
can be implemented as a linear feedback shift register (LFSR) that is clocked m times, using a
very small number of gates in hardware implementations, or a very small amount of memory
for software. The inverse of the diffusion layer also benefits from a similar structure.

In particular, if c(x) is a symmetric polynomial (i.e. having coefficients symmetric each other)
and having the constant term equal to 1, the inverse diffusion layer with the recursive MDS
matrix as a power of the serial matrix can use the exact same circuit as the diffusion layer itself
by simply reversing the order of the input and output symbols. If the hardware implementation
uses LFSR registers, encryption and decryption can use the exact same circuit thus saving
hardware resources and implementation cost. Then, the encryption is done from left to right
and decryption is done from right to left.

In [8], we presented a method for efficiently constructing recursive MDS matrices from the
RS codes based on the following propositions:

Proposition 1. If m×m MDS matrices can be generated from a RS[2r −1,2r −d,d] code over
GF (2r) then r, m and d must satisfy: r ≥ log2(2m+1) and m+1≤ d ≤ 2r −m.

Proposition 2. Let C[n,k,d] be an MDS code (i.e. d = n− k+1). If k ≥ n− k then a recursive
MDS matrix of size n−k can be generated from this code.

2.3 Recursive MDS Matrix
Murtaza and Ikram [10] defined the scalar multiplication for MDS matrix as follows:

Let A = [A1, . . . , Am]T be an MDS matrix and A i = [ai,1 · · ·ai,n], ai, j ∈ Fq. Denote vector
E = [e i] , i = 1,2,dots,m where e i 6= 0 ∈ Fq, i = 1,2, . . . ,m. Then the scalar multiplication of E
and A generates an MDS matrix denoted by:

EA = [e1A1 . . . em Am]T ,

where e i A i = [e iai,1 · · · e iai,n].

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.159

In [7], we define our scalar multiplication as follows:
Let A = [ai, j]m×m, ai, j ∈ GF(pr) be an MDS matrix. Denote vectors E = (e1, e2, . . . , em),

F = (f1, f2, . . . , fm), (where e i, f i ∈ GF∗(pr)). Then the scalar multiplication of E, F and A
generates an MDS matrix denoted by: (E,F)(A)= [bi, j]m×m, where bi, j = e i f jai, j .

3. Constructing Recursive MDS Matrices Effective for
Implementation from RS Codes

In this section, specifying directly recursive MDS matrices effective for implementation from
RS codes is presented.

Firstly, from (1) it can be found that b ∈ N , b ≥ 1 is a pre-selected value. On the other hand
αq−1 = 1, it is to have:

1≤ b ≤ q−1

where q = 2r in this case.
In order to find the recursive MDS matrices built from the RS codes, just need to find the

corresponding generator polynomials of these codes. Essentially these polynomials are the
polynomials that generate the serial matrices corresponding to the recursive MDS matrices (see
[8]).

The following proposition specifies the specific cases in which symmetric polynomials having
the constant term equal to 1 can be directly selected from the RS codes without performing an
exhaustive search for 4×4 recursive MDS matrices over GF(24) and GF(28).

Proposition 3. On constructing 4×4 recursive MDS matrices over GF(24) or GF(28) from
RS codes, the generator polynomial g(x) of the form (1) is a symmetric polynomial having the
constant term equal to 1 if and only if b = 6 or b = 126, respectively.

Proof. For the construction of a 4×4 recursive MDS matrix from RS codes, the generator
polynomial g(x) of the form (1) is a polynomial of degree 4 and has the following form:

g(x)= (x+αb)(x+αb+1)(x+αb+2)(x+αb+3) (7)

where 1≤ b ≤ q−1, b ∈ N , for q = 16 or q = 256.
Expand the above expression, it is to have:

g(x)= x4 +αb(1+α+α2 +α3)x3 +α2b+1(α4 +α3 +α+1)x2

+αbα2b+3(1+α+α2 +α3)x+α4b+6 . (8)

From (8), g(x) is symmetric and has the constant term equal to 1 if and only if:{
αbα

2b+3(1+α+α2 +α3)=αb(1+α+α2 +α3)
α4b+6 = 1

(9)

⇐⇒
{
α2b+3 = 1
α4b+6 = 1

(10)

where 1≤ b ≤ q−1, b ∈ N .

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

160Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

Since α is a primitive element of the field, it is to infer that:

(10)⇐⇒
{

(q−1)|(2b+3)
(q−1)|(4b+6)

⇐⇒(q−1)| (2b+3) (11)

where 1≤ b ≤ q−1, b ∈ N .

• For GF(24), it is to have:

(11)⇐⇒
{

2b+3= 15k
1≤ b ≤ 15; k ≥ 1; b,k ∈ N

⇐⇒
{

2b+3= 15k
1≤ b = 15k−3

2 ≤ 15; k ≥ 1; b, k ∈ N

⇐⇒
{

2b+3= 15k
1≤ k ≤ 2; b, k ∈ N

⇐⇒
{

b = 6
k = 1

(12)

• For GF(28), prove similarly from (11), it is to have:{
b = 126
k = 1

(13)

From (12), (13), the proposition is proven.

Similarly, the following proposition can be proven for the cases of 8×8, 16×16 and 32×32
recursive MDS matrices over GF(28) from the RS codes.

Proposition 4. On constructing 8×8, 16×16 or 32×32 recursive MDS matrices over GF(28)
from RS codes, the generator polynomial g(x) of the form (1) is a symmetric polynomial having
the constant term equal to 1 if and only if b = 124 or b = 120 or b = 112, respectively.

From Proposition 3 and Proposition 4, we found immediately the polynomials are both
symmetric and have the constant term equal to 1. Table 1 shows 66 such polynomials that
we found after experimenting on Maple for sizes of 4, 8, 16, 32 (the symbol a in Table 1 is a
primitive element of the field).

For larger sizes, it is possible to use the RS codes to find the corresponding recursive MDS
matrices in our way. It can be said that these are recursive MDS matrices effective for hardware
implementation which may have important applications for cryptographic applications in
general and in particular lightweight cryptography. With such matrices, just use the exact same
circuit for encryption and decryption in hardware implementation, thus saving resources and
implementation cost.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.161

Table 1. Symmetric polynomials havingthe constant term equal to 1 from RS

№

F
ie

ld
 G

F

P
ri

m
it

iv
e

p
ol

yn
om

ia
l

S
iz

e
of

 m
at

ri
x

R
S

 c
od

e
S

y
m

m
et

ri
c

p
ol

yn
om

ia
ls

 h
av

in
gt

h
e

co
n

st
an

t
te

rm
 e

q
u

al
 t

o
1

1
�
�
(2

�
)

�
�
+
�
	
+
1

4
×
4

R

S
(1

5,
11

,5
)

�
=
�
�
+
�
�
�
�
	
+
�
�
�
�
�
+
�
�
�
�
+
1

2
�
�
(2

�
)

�
�
+
�
+
1

4
×
4

R

S
(1

5,
11

,5
)

3
�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

4
�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

5
�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

6
�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

7
�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

8
�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

9
�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

10

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

11

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

162Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

12

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

13

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

14

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

15

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

16

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

17

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

18

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

4
×
4

R

S
(2

5
5,

 2
51

,
5)

19

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

8
×
8

R

S
(2

5
5,

 2
54

,
9)

20

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

8
×
8

R

S
(2

5
5,

 2
47

,
9)

21

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
+
1

8
×
8

R

S
(2

5
5,

 2
47

,
9)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.163

 22

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

23

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

24

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

25

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

26

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

27

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

28

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

164Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

 29

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

30

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

31

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

32

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

33

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

34

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

8
×
8

R
S

(2
55

, 2
47

, 9
)

35

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.165

 36

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

37

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

38

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

39

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

40

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

41

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

166Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

 42

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

43

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

44

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

45

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

46

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

16
×
16

R

S
(2

55
, 2

39
, 1

7)

47

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.167

48

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

49

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

50

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

16

×
16

R

S
(2

55
, 2

39
, 1

7)

51

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

52

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

168Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

53

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
+
1

32
×
32

R

S
(2

55
, 2

23
, 3

3)

54

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

55

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

56

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

32
×
32

R

S
(2

55
, 2

23
, 3

3)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.169

57

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

58

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

59

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

60

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
�
�
+
�
+
1

32
×
32

R

S
(2

55
, 2

23
, 3

3)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

170Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

61

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

62

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

63

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
�
�
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

64

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
	
+
1

32

×
32

R

S
(2

55
, 2

23
, 3

3)

Table Contd.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.171

6
5

�
�
(2

�
)

�
�
+
�
�
+
�
	
+
�
�
+
1

3
2
×
3
2

R

S
(2

5
5
,
2

23
,

3
3
)

6
6

�
�
(2

�
)

�
�
+
�
�
+
�
�
+
�
�
+
1

3
2
×
3
2

R

S
(2

5
5
,
2

23
,

3
3
)

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

172Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

Compare our Results with Results in [1]
In [1], the authors proposed the construction of recursive MDS matrices using shortened BCH
codes. In general, this construction is complicated because finding the generator polynomial
of BCH codes is not straightforward. However, for the RS codes, it is very straightforward to
compute the generator polynomial of these codes according to the formula (1). In addition, in
[1] the authors found a number of symmetric polynomials, however there is a case where the
constant termis not equal to 1. Table 2 shows these polynomials (the symbol α in Table 2 is a
root element of the field).

Table 2. Some symmetric polynomials are the results in [1]

No. Field GF Primitive polynomial Size of matrix Symmetric polynomial

1 GF(24) x4 + x3 +1 4×4 g1 = x4 +α3x3 + αx2 +α3x+1

2 GF(24) x4 + x3 +1 4×4 g2 = x4 +α3x3 + αx2 + x+α3 +α
3 GF(28) x8 + x4 + x3 + x2 +1 4×4 g3 = x4 +α3x3 + α−3x2 +α3x+1

4 GF(28) x8 + x4 + x3 + x2 +1 4×4 g4 = x4 + (α2 +α3)x3 + α3x2 + (α3 +α2)x+1

5 GF(28) x8 + x4 + x3 + x2 +1 4×4 g4 = x4 +α202x3 + (α202 +1)x2 + x+α+1

In Table 1, we found 66 symmetric polynomials having the constant term equal to 1. Thereby,
there will be many options to choose recursive MDS matrices effective for implementation for
cryptographic applications.

4. Preserving the Recursive Property of MDS Matrix of
Scalar Multiplication

This section presents the ability to preserve the recursive property of MDS matrix of the scalar
multiplication transformation. Specifically, from a recursive MDS matrix which is a power of a
serial matrix, by scalar multiplication many other recursive MDS matrices as powers of serial-
like matrices can be generated. Serial-like matrices are very sparse similar to serial matrices.
Thus, the recursive MDS matrices from such matrices are very meaningful in implementation,
especially in hardware implementation when they are applied to design the diffusion layer of
block ciphers.

It is to have the following proposition:

Proposition 5. Let A = [ai, j]m×m, ai, j ∈ GF(pr), be an MDS matrix such that A = Sm, where
S is a serial matrix of the form (2). Let matrix Á = c.A for c ∈ GF(pr)\0. If there exists
e ∈GF(pr) : em = c then Á = Śm, where Ś is a serial-like matrix of the form (5).

Proof. By assumption, it is to have:

A = Sm (14)

where S is a serial matrix of the form (2).
If there exists e ∈GF(pr) : em = c,it is to have:

Á = c.A = em A (15)

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.173

From (14) and (15) it is to infer that:

Á = emSm = (eS)m = Śm (16)

whereŚ = eS. Therefore,it is to obtain Ś of the form (5).

On the other hand, two vectors of m elements can be defined as follows: E = [em, em, . . . , em],
F = [1,1, . . . ,1]. From (15), it is to infer:

Á = (E,F) A (17)

Hence, it is possible to generate Á from A by the scalar multiplication, then Á is also an MDS
matrix.

Therefore, from a recursive MDS matrix which is a power of a serial matrix, by scalar
multiplication another recursive MDS matrix as a power of a serial-like matrix can be generated.

Example 1. Consider the field GF(28)with the primitive polynomial: x8 + x7 + x6 + x+1.
Let A be a recursive MDS matrix as a power of a serial matrix of size m = 4 over the field:

A =

8A 46 D8 1E
17 42 C2 4F
F5 5D 78 E4
A2 4B F 11


The corresponding serial matrix is: S =

 0 1 0 0
0 0 1 0
0 0 0 1

8A 46 D8 1E

 such that: A = S4.

Consider element c = 0×10. It is to have c = (0×02)4 then it has the form c = e4.

Compute the matrix Á = cA. It is to obtain: Á =

77 EA 1E 23
B3 AA 7D 7A
8B 99 8C 58
B2 3A F0 D3

.

Compute the serial-like matrix Ś as follow: Ś = (0×02).S =

 0 2 0 0
0 0 2 0
0 0 0 2

D7 8C 73 3C

 .

Check and see that Á = Ś4, so Á is a recursive MDS matrix which is a power of the serial-like
matrix Ś.

Comment 1. To be able to select a matrix Á 6= A, it is to need to select the element c 6= 1 or em 6= 1
or ord(e) is not a divisor of m.

Comment 2. Suppose there exists two elements e1, e2 ∈ GF(pr) such that: (e1)m = (e2)m (i.e.
A1 = (e1)m A = A2 = (e2)m A). It is to infer that: (e1e−1

2)m = 1 or ord(e1e−1
2)|m. Then, in order to

obtain A1 6= A2, it is to need to choose an element a = e1e−1
2 ∈GF(pr)\{0,1} such that ord(a) is

not a divisor of m where e1, e2 ∈GF(pr)\{0,1}.

The question is that how many recursive MDS matrices (powers of serial-like matrices) can
be generated from an original recursive MDS matrix (power of a serial matrix) by the scalar
multiplication transformation?

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

174Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

Let A = [ai, j]m×m, ai, j ∈ GF(pr), be a recursive MDS matrix as a power of a serial matrix.
Choose an element a ∈GF(pr)\{0,1} such that ord(a) is not a divisor of m and a = e1e−1

2 , where
e1, e2 ∈GF(pr)\{0,1}.

Select and fix an element e1 other than 0,1 ∈ GF(pr) then compute e2 = e1a−1. Obviously
e2 6= 0, so if e2 = 1 or e2 does not satisfy the condition: ord(e2) is not a divisor of m (to make
(e2)m A 6= A) then choose another element e1 until e2 satisfies the above condition (i.e. e2 6= 1
and ord(e2) is not a divisor of m).

Consider a sequence of matrices: A0 = (e2)m A, A1 = (e2a)m A, A2 = (e2a2)m A, . . . , Ak =
(e2ak)m A, and so on. It is to have the following result:

Proposition 6. The sequence of matrices A0, A1, A2, . . . has a finite cycle, that is d = ord(a).

Proof. By assumption, ord(a)is not a divisor of m, so according to Comment 2, the sequence of
matrices A0, A1, A2, . . . are different matrices in pairs.

For d = ord(a), it is to have (e2ad)m A = (e2)m A or Ad = A0.
Now, suppose that ∃ d1 ∈ N+ : (e2ad1)m A = (e2)m A. Then, amd1 = 1. Therefore d|(md1). By

assumption, d is not a divisor of m, it is to infer that d|d1 or d is the smallest positive integer
that satisfies the condition (e2ad)m A = (e2)m A.

Consequently, for an element a ∈ GF(pr)\{0,1} such that ord(a) is not a divisor of m, one
can obtain ord(a) recursive MDS matrices (powers of serial-like matrices) from the original
recursive MDS matrix A (power of a serial matrix).
The next question is how to select elementa so that the cycle of the above sequence of matrices is
as large as possible?

Suppose that the size of the matrices satisfies m < pr −1. As ≤ pr −1, so if d = pr −1 (i.e. a
is a root element of the field), it is always to have dis not a divisor of m, so the cycle of the above
matrices reaches a maximum value that is pr −1.

The following Algorithm 1 will show how to find the sequence including pr −1 different
recursive MDS matrices (powers of serial-like matrices) from an original recursive MDS matrix
(power of a serial matrix) over GF(pr).

Algorithm 1 (Finding a set of pr−1 different recursive MDS matrices from an original
recursive MDS matrix A).

Input: the recursive MDS matrixA (power of a serial matrix) over GF(pr); C = {Set of root
elements of the fieldGF(pr)}.

Output: a set T of pr −1 different recursive MDS matrices (powers of serial-like matrices)
generated from A.

Step 1: Select any element a ∈ C.

Step 2: Step 2.1: Select an element e1 ∈GF(pr)\{0,1}.
Step 2.2: Compute e2 = e1a−1.
Step 2.3: If e2 6= 1 and ord(e2) is not a divisor of m then go to Step 3,

otherwise go back to Step 2.1.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.175

Step 3: Return T = {A0 = (e2)m A, A1 = (e2a)m A, A2 = (e2a2)m A, . . . , Apr−2 = (e2apr−2)m A}.

Example 2. Consider the field GF(28) with the primitive polynomial: x8 + x5 + x3 + x+1.
Let A be a recursive MDS matrix as a power of a serial matrix of size m = 4 over the field:

A =

AC BD D8 1E
97 EE 75 A7
21 44 85 30
4 68 D8 F3

 .

The corresponding serial matrix is: S =

 0 1 0 0
0 0 1 0
0 0 0 1

AC BD D8 1E

 .

Matrices A and S satisfy: A = S4.
Consider an element a = 0×80 ∈GF(28) is a root element of the field, i.e. its order is 255.
Next, select e1 ∈GF(28)\{0,1}, for example e1 = 0×53. Compute e2 = e1a−1 = (0×53).(0×60)=

0×CF .
It can be seen that e2 6= 1 and ord (e2)= 85 is not a divisor of 4. Then, a set of 255 recursive

MDS matrices can be built as follows:

T = {A0 = (e2)4A, A1 = (e2a)4A, A2 = (e2a2)4A, . . . , A254 = (e2a254)4A}.

Let Si be the serial-like matrix corresponding to matrix A i such that: A i = (Si)4, 0≤ i ≤ 254.
Table 3 gives some of recursive MDS matrices (powers of serial-like matrices) from the set T .

Table 3. Some of recursive MDS matrices obtained over GF(28)

No. Recursive MDS matrix Corresponding serial-like matrix

1 A0 =


BE 3 B0 D6
60 9C D7 CC
11 A2 9D AC
19 41 B0 A

 S0 =


0 CF 0 0
0 0 CF 0
0 0 0 CF

CE 2E 42 59



2 A1 =


36 E9 B8 73
32 96 CD BD
50 1 28 8F
27 7B B8 20

 S1 =


0 53 0 0
0 0 53 0
0 0 0 53

D3 37 CC B8



3 A2 =


E0 5A CF 35
4E B6 3 DF
2B BE 80 91
B0 42 CF F7

 S2 =


0 3F 0 0
0 0 3F 0
0 0 0 3F

DA 68 F8 DC


...

...

255 A254 =


1 CD 27 88

1E 64 2A 75
A7 4D C6 6B
30 B6 27 F8

 S254 =


0 E2 0 0
0 0 E2 0
0 0 0 E2

82 C9 55 72



Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

176Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.

5. Conclusion
In this paper, the method for constructing recursive MDS matrices effective for implementation
from Reed-Solomon codes is presented. In addition, the ability to preserve the recursive property
of MDS matrix of the scalar multiplication transformation is given. The recursive MDS matrices
effective for implementation are meaningful in hardware implementation, and preserving
recursive property of MDS matrix of the scalar multiplication transformation also has important
applications for efficiently building dynamic block ciphers later. The strength of the ciphers
against developing cryptanalytic techniques can be enhanced by the dynamic block ciphers.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] D. Augot and M. Finiasz, Direct construction of recursive MDS diffusion layers using shortened

BCH codes, 21st International Workshop on Fast Software Encryption, FSE 2014, Springer (2014),
DOI: 10.1007/978-3-662-46706-0_1.

[2] D. Augot and M. Finiasz, Exhaustive search for small dimension recursive MDS diffusion layers for
block ciphers and hash functions, in 2013 IEEE International Symposium on Information Theory
Proceedings (ISIT), IEEE (2013), pp. 1551 – 1555, DOI: 10.1109/ISIT.2013.6620487.

[3] K. C. Gupta and I. G. Ray, On Constructions of MDS Matrices from Companion Matrices
for Lightweight Cryptography, Applied Statistics Unit, Indian Statistical Institute 203, B.
T. Road, Kolkata 700108, India (2013), https://link.springer.com/content/pdf/10.1007/
978-3-642-40588-4_3.pdf.

[4] K. C. Gupta and I. G. Ray, On constructions of MDS matrices from circulant-like matrices
for lightweight cryptography, Technical Report No. ASU/2014/1, dated: 14th February, 2014,
https://www.isical.ac.in/~asu/TR/TechRepASU201401.pdf.

[5] L. Keliher, Linear Cryptanalysis of Substitution-Permutation Networks, Queen’s University,
Kingston, Ontario, Canada (2003), http://www.madchat.fr/crypto/codebreakers/keliherPhD.
pdf.

[6] S. Kolay and D. Mukhopadhyay, Lightweight diffusion layer from the kth root of the MDS matrix,
IACR Cryptology ePrint Archive 498 (2014), https://eprint.iacr.org/2014/498.pdf.

[7] T. T. Luong and N. N. Cuong, Direct exponent and scalar multiplication transformations of MDS
matrices: some good cryptographic results for dynamic diffusion, Journal of Computer Science and
Cybernetics 32 (1) (2016), 1 – 17, DOI: 1813-9663/32/1/7732.

[8] T. T. Luong, Constructing effectively MDS and recursive MDS matrices by Reed-Solomon codes,
Journal of Science and Technology on Information Security of Viet Nam Government Information
Security Commission, 3(2) (2016), 10 – 16, http://antoanthongtin.vn/Portals/0/NewsAttach/
2017/01/MDS%20matric.pdf.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

http://doi.org/10.1007/978-3-662-46706-0_1
http://doi.org/10.1109/ISIT.2013.6620487
https://link.springer.com/content/pdf/10.1007/978-3-642-40588-4_3.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-40588-4_3.pdf
https://www.isical.ac.in/~asu/TR/TechRepASU201401.pdf
http://www.madchat.fr/crypto/codebreakers/keliherPhD.pdf
http://www.madchat.fr/crypto/codebreakers/keliherPhD.pdf
https://eprint.iacr.org/2014/498.pdf
http://doi.org/1813-9663/32/1/7732
http://antoanthongtin.vn/Portals/0/NewsAttach/2017/01/MDS%20matric.pdf
http://antoanthongtin.vn/Portals/0/NewsAttach/2017/01/MDS%20matric.pdf

Constructing Recursive MDS Matrices Effective for Implementation from Reed-Solomon. . . : T. T. Luong et al.177

[9] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, (Bell Laboratories,
Murray Hill, NJ, USA), North-Holland Publishing Company, Amsterdam, pp. 100 – 350, New York,
Oxford (1977), http://www.academia.edu/download/43668701/linear_codes.pdf.

[10] G. Murtaza and N. Ikram, Direct Exponent and Scalar Multiplication Classes of an MDS Matrix,
[EB/OL], National University of Sciences and Technology, Pakistan, (2011-01-10), pp. 2 – 5, http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.8450&rep=rep1&type=pdf.

[11] M. Sajadieh, M. Dakhilalian, H. Mala and P. Sepehrdad, Recursive diffusion layers for block ciphers
and hash functions, in Fast Software Encryption, Springer (2012), pp. 385 – 401, DOI: 10.1007/978-
3-642-34047-5_22.

[12] C. Schnorr and S. Vaudenay, Black box cryptanalysis of hash networks based on multipermutations,
in Advances in Cryptology - EU-ROCRYPT ’94.Proceedings, A. De Santis (editor), Vol. 950 of LNCS,
pp. 47 – 57, Springer-Verlag (1995), DOI: 10.1007/BFb0053423.

[13] S. Vaudenay, On the need for multipermutations: cryptanalysis of MD4 and SAFER, in Fast
Software Encryption.Proceedings, B. Preneel (editor), Vol. 1008 of LNCS, pp. 286 – 297, Springer-
Verlag (1995), DOI: 10.1007/3-540-60590-8_22.

[14] S. Wu, M. Wang and W. Wu, Recursive diffusion layers for (lightweight) block ciphers and hash
functions, in Selected Areas in Cryptography, Springer (2013), pp. 43 – 60, http://ir.iscas.ac.
cn/handle/311060/15899.

[15] M. R. Z’aba, Analysis of Linear Relationships in Block Ciphers, Ph.D Thesis, Queensland University
of Technology, Brisbane, Australia (2010), http://eprints.qut.edu.au/35725/1/Muhammad_Z%
27aba_Thesis.pdf.

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 2, pp. 155–177, 2019

http://www.academia.edu/download/43668701/linear_codes.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.8450&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.8450&rep=rep1&type=pdf
http://doi.org/10.1007/978-3-642-34047-5_22
http://doi.org/10.1007/978-3-642-34047-5_22
http://doi.org/10.1007/BFb0053423
http://doi.org/10.1007/3-540-60590-8_22
http://ir.iscas.ac.cn/handle/311060/15899
http://ir.iscas.ac.cn/handle/311060/15899
http://eprints.qut.edu.au/35725/1/Muhammad_Z%27aba_Thesis.pdf
http://eprints.qut.edu.au/35725/1/Muhammad_Z%27aba_Thesis.pdf

	Introduction
	Preliminaries and Related Works
	RS Code
	Recursive MDS Matrix
	Recursive MDS Matrix

	Constructing Recursive MDS Matrices Effective for Implementation from RS Codes
	Preserving the Recursive Property of MDS Matrix of Scalar Multiplication
	Conclusion
	References

