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Abstract. The study investigates the effects of response scales of items on results of item response
theory models and multivariate techniques. A total of sixty-four datasets have been simulated under
various conditions such as item response format, number of dimensions underlying response scales,
and sample size using R package mirt command: simdata(a,d, N, itemtype). Two main statistical
techniques − Item Response Theory (IRT) models and Factor Analysis − are employed. We find that
there is a direct relationship between parameters of IRT and those of factor models, particularly item
discrimination and factor loadings. The results also show that the overall fitness of the item response
model increases with increasing scale points for higher dimensionality and sample size 150 and higher.
The fitness deteriorates over increasing scale points for small sample sizes for unidimensional model.
Again, the number of influential indicators on factors increases with increasing scale-points which
improves the fitness of the model. The study suggests that a five-point response scale gives most
reasonable results among various scales examined. IRT analysis is recommended as a preliminary
process to ascertain the observed features of items. The study also finds a sample size of 150 as
adequate for a most plausible factor solution, under various conditions.

Keywords. Item response theory; Factor model; Scale points; Dimensionality

MSC. 62Hxx

Received: June 22, 2018 Accepted: January 7, 2019

Copyright © 2019 B. K. Nkansah, A. Zakaria and N. K. Howard. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://doi.org/10.26713/jims.v11i1.951


52 Effect of Measurement Scales on Results of Item Response Theory Models. . . : B. K. Nkansah et al.

1. Introduction
A scale is a continuum, consisting of the highest point and the lowest point along with several
intermediate points (thresholds) between these two points. These scale-point positions are
related in a manner that when the first point happens to be the lowest, the second point indicates
a higher degree of a particular characteristic, followed by the third and so on. Scales may be
classified in various ways, one of which is in respect of number of dimensions. On this basis,
scales can be classified as unidimensional and multidimensional. Under the unidimensional
scale, only one characteristic (ability) of the person is measured, whereas multidimensional
scaling considers that an individual might be better described by several dimensions, rather
than a single-dimension continuum [13]. Scales are employed in questionnaires to measure
the characteristics of respondents such as abilities, opinions, preferences, and attitudes that
are not directly observable [5]. These person characteristics, due to their covert nature, are
referred to as latent. On a questionnaire, a scale is composed of response format and number
of items (questions) which are indications of latent abilities. A person’s response to a set of
items is influenced by the characteristics of the individual and by the characteristics of the
items. Modelling the relationship between item responses and the characteristics of persons
falls under the realm of item response theory (IRT) models. The IRT models are quite useful in
the construction of scales (e.g., Likert scale) for measuring latent constructs of persons.

An important issue to consider when designing Likert scale items is the optimal number
of response categories. Considering reliability and validity, Jacoby and Matell attempted to
determine the number of response alternatives to use in the construction of Likert-type scales
[11]. They indicated that both reliability and validity are independent of the number of scale
points used for Likert-type items. The authors suggested that two or three-point Likert scales
are good enough. Martin studied the effects of varying the number of scale points on the
correlation coefficient using the bivariate normal distribution [15]. Martin argued that the
correlation coefficient generally decreases as the number of response categories becomes smaller,
and suggested the use of ten to twenty points on a scale.

IRT analysis has been found to be highly influenced by sample size. Notably, the problem of
estimation of item parameters has a link with sample size. In other words, how large a sample to
be used in IRT analysis will depend on how many item parameters to be estimated. For complex
IRT models that require estimation of more parameters, sample size should increase accordingly.
The task of determining minimum sample size has been attempted by some researchers through
simulation studies. Reise and Yu estimated the parameters of the graded response (GR) model,
and recommended that a sample size of at least 500 is required to achieve adequate estimation
[24]. For Rasch item response model, useful information can be obtained from samples as small
as 100 and sample sizes of 500 are more than adequate in estimating item parameters [6].
Under two-parameter logistic (2PL) model, Stone found that with sample size of 500 or more
and 20 or more items, both item difficulty and discrimination parameters are generally stable
and precise [27]. Smith, Schumacker and Bush [18] examined the fitness of items using the
mean square (MSQ) statistic and provided the following guidelines for sample size: misfit is
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evident when MSQ values are larger than 1.3 for samples less than 500, 1.2 for samples between
500 and 1,000, and 1.1 for samples larger than 1,000 respondents.

Factor analysis, undoubtedly, an important multivariate statistical technique, is also widely
applied in analysing questionnaire items. Within the context of the technique, individual items
typically represent indicator variables, and the latent abilities that the questionnaire seeks to
measure represent the factors. The factor analysis model is based on three basic assumptions
about the indicator variables - normality, constant variance and linearity. The indicator variables
are also considered to be measured on at least the interval scale When these assumptions are
satisfied, the usual Pearson product-moment correlation coefficient provides a reliable measure
of the extent of correlation between each pair of indicator variables, and the linear factor model
reasonably fits the data.

However, a major concern in the literature (e.g., see [30]) has to do with the factor analysis
of Likert-type data. Item responses give categorical data, which suggests a violation of the
continuous nature of the indicator variables. The implication is that the Pearson correlations
between pairs of indicator variables in this case are less reliable and is a potential source of
distortions in the factor structure. The severity of the distortions tend to increase as the number
of response categories on the items decreases [4]. As a remedy, Ferrando and Lorenzo-Seva
recommended the use of tetrachoric correlations for factor analysis of dichotomous response
data [9]. For factor analysis of ordered polytomous data, it is recommended to use polychoric
correlations.

Another issue to consider when conducting factor analysis is the characteristics of the
sample from which the measurements of the indicator variables are taken. Obviously, an aspect
of the sample that is worth considering is how large the sample should be in order to perform
factor analysis. Correlations are less reliable when estimated from small samples [28]. Gorsuch
put it bluntly that “no one seems to know exactly where a large n begins and a small n leaves
off” [10]. Comrey and Lee noted that as the sample size increases, the reliability of the obtained
correlations increases [4]. They found that samples of size 50 give very inadequate reliability of
correlation coefficients, while samples of size 1000 are more than adequate for factor analysis.
With regards to evaluating the adequacy of the sample size, Comrey and Lee provided some
guidelines: 50 is very poor, 100 is poor, 200 is fair, 300 is good, 500 is very good, and 1000
or greater is excellent [4]. Other researchers are of the view that under optimal conditions
(communalities of 0.70 or greater and 3 to 5 indicator variables loading on each factor), a sample
of size 100 can be adequate; under moderately good conditions (communalities of 0.40 to 0.70
and at least 3 indicators loading on each factor), a sample of at least 200 should suffice; and
under poor conditions (communalities lower than 0.40 and some factors with only two indicator
variables on them), samples of at least 400 might be necessary [8,14,28].

This research is another attempt at examining the influence of the number of points on
the response scales of items on the results of IRT and how it translates into suitable factor
structure. In addition, we will investigate the effect of sample size on the factor structure. In
the next section, we study the theoretical connection between the two methods. Subsequent
section will consider the simulation studies and the analysis and results.
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2. Methods
Two broad analytical techniques have been considered. These are item response theory and
factor analysis. Factor analysis is used in the study since it is based on correlations coefficients
and identifies underlying constructs among a set of variables.

2.1 Item response models
Item response theory (IRT) models express the association between an individual’s response
to an item and the underlying latent variable (ability) being measured by the instrument
(questionnaire) [22]. IRT uses latent characterisations of individuals and items as predictors of
observed responses. The IRT describes, in probabilistic terms, how a person with higher ability
level is likely to provide a response in a different response category in relation to a person
with a low ability level [6, 19]. Each item is characterised by one or more model parameters:
discrimination (α), difficulty (δ), and guess (c) parameters.

The item response theory models may be classified broadly in three essential ways. Firstly, in
terms of the item characteristics or parameters that are included in the models. In this regard,
some models are designed to account for one parameter (mostly, the difficulty parameter), while
other more complex models account for two or more parameters. Secondly, IRT models can
also differ in terms of the response option format. Along these lines, some models are designed
to be used for dichotomous items, whereas others are designed for items with more than two
response options (i.e. polytomous items), such as Likert scale items. Examples of dichotomous
item response models are the Rasch model, one-parameter logistic (1PL), two-parameter logistic
(2PL), and three-parameter logistic (3PL) models. Examples of polytomous item response models
are the partial credit, the rating scale, the graded response, and the nominal models. Thirdly,
IRT models are classified in terms of the number of dimensions that defines the person ability
parameter. In this case, each of the dichotomous and polytomous item response models is either
unidimensional or multidimensional.

The two-parameter logistic (2PL) model, in unidimensional sense, is defined as

p
(
X i j = 1|θ,α,δ

)= 1
1+exp[−1.702αi (θ−δi)]

(1)

In this model, probability of response to a dichotomous item is determined by the individual’s
ability level (θ) and two item parameters − discrimination (α) and difficulty (δ), and items
have different discrimination powers, αi . High values of αi result in steeper item characteristic
curve (a graphical representation of probabilities of response to an item). For 2PL model, the
guess parameter (c) is set to zero, since Likert-type items are not scored as right or wrong
[18]. Thus, when the value of c is constrained to zero, it would facilitate the comparison of the
results of two-point and higher-point scales. In Equation (1), the value 1.702 is a scaling factor
that ensures the value of the item discriminating parameter in logistic models compares to a
normal-ogive model. This scaling is important for linking IRT parameters with factor analysis
results [23].
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Multidimensional equivalent of Equation (1), known as multidimensional two-parameter
logistic (M2PL) model, is given as [21]

p
(
X i j = 1|θθθ j,αααi,di

)= 1
1+exp

[−1.702(ααα′
iθθθ j +di)

] (2)

where αααi is a vector of discrimination parameters for item i and di = −1′αααiδi is a scalar
parameter that is related to the item’s difficulty. The exponent in Equation (2) can be
expanded as

ααα′
iθθθ j +di =

m∑
l=1

αilθ jl +di (3)

which indicates how the elements of ααα and θθθ vectors interact. Equation (3) shows that the
exponent in the M2PL model is a linear combination of the elements of θθθ. This feature reflects
the compensatory nature of the M2PL model. Equation (3) defines a line in an m-dimensional
space. If the exponent is set to some constant, k, that is

k =ααα′
iθθθ j +di (4)

then all θ-vectors satisfying Equation (4) will fall along the same straight line with the same
probability of a favourable response for the model.

Categorical data can be described effectively in terms of the number of categories into which
data can be placed. For ordered polytomous items, the response categories have an explicit rank
ordering with respect to the ability. Ordered categories are defined by boundaries that separate
the categories. Intuitively, there is always one less boundary than there are categories. For
instance, a five-point Likert-type item requires four boundaries to separate the five possible
response categories [19]. In general, each response variable X i j , i = 1,2, . . . , p; j = 1,2, . . . ,n,
has r i +1 response categories represented by category scores k = {0,1,2, . . . , g, . . . , r i} and r i

boundaries denoted by h = {1,2, . . . , g, . . . ,k}.
Polytomous item response models result in a general expression for the probability of a

person responding in a given response category. Mathematically, the various polytomous models
for ordered response categories differ in terms of the expressions that are used to represent the
location parameter (δ) of the category boundaries.

For polytomous items, we consider the generalised partial credit (GPC) model. The GPC
model applies 2PL concept to ordered categorical responses. In GPC model, the probability of
observing a response in category g over category g−1 for item i is given as [17]

P
(
X i j = g|θ,αi,δih

)= exp
[ g∑

h=0
αh(θ−δih)

]
r i∑

k=0
exp

[
k∑

h=0
αh(θ−δih)

] (5)

where, αh denotes the discrimination associated with response category h on item i.

2.2 Factor analysis models
Factor analysis is a multivariate statistical technique that is employed to discover which
variables (indicators) in a set form meaningful subsets that are relatively independent of one
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another. Variables that are correlated with one another but largely independent of other subsets
of variables are combined into factors (abilities in IRT). These factors are thought to reflect
underlying processes that have created the correlations among the variables [28]. In this paper,
for convenience of keeping track of the factor, we will consider in most places a one-factor model.
A one-factor model uses only one factor to explain the correlations among the indicators. It seeks
to model the relationship between the underlying factor θ and the continuous response variable
Yi , i = 1,2, . . . , p. That is,

Yi =λiθ+εi, i = 1,2, · · · , p (6)

where λi is the loading of yi on θ.
The preceding concept can easily be extended to a factor model that contains m factors.

Suppose that a random sample y1,y2, · · · ,yn from a homogeneous population with mean vector,
µµµ and covariance matrix, ΣΣΣ. For this sample, the m-factor model is given by

Yi =λi1θ1 +λi2θ2 +·· ·+λilθl +·· ·+λimθm +εi; i = 1,2, · · · , p (7)

where θ1,θ2, · · · ,θm are the common factors (latent abilities in IRT); the coefficients λil are the
loadings; and the error terms ε1,ε2, · · · ,εm are unique factors. The loadings λil can be used in
the interpretation of the factors. For instance, θm may be interpreted by examining its loadings
λ1m,λ2m, · · · ,λpm and noting the x’s that have large loadings on θm.

In matrix notation, Equation (7) can be written as

y=ΛθΛθΛθ+εεε (8)

where y= (
Y1,Y2, · · · ,Yp

)′, θθθ = (θ1,θ2, · · · ,θm)′, εεε= (
ε1,ε2, · · · ,εp

)′, and

ΛΛΛ=


λ11 λ12 · · · λ1m
λ21 λ22 · · · λ2m

...
... . . . ...

λm1 λm2 · · · λpm

 (9)

Factor analysis model is effectively utilised when its assumptions are satisfied. The
assumptions are

E(y)= 0(p×1), E(θθθ)= 0(m×1), var(θθθ)= I(m×m), E(εεε)= 0(p×1)

cov(εεε)=ψψψ(p×p) =


ψ1 0 · · · 0
0 ψ2 · · · 0
...

... . . . ...
0 0 · · · ψp

 ,and cov(ε,θε,θε,θ)= 0(p×m) (10)

The assumptions show that the means of the common factor and unique factors are zero. The
assumptions for εi are similar to those of θl except that each εi is allowed to have different
variance, ψi . Again the unique factors are uncorrelated among themselves or with the common
factor.
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Based on the assumptions, the variance-covariance matrix of the observed variables, ΣΣΣ, can
be expressed in terms of the factor loadings and the unique factors. From Equation (8),

ΣΣΣ=ΛΛΛΛΛΛ′+ψψψ (11)

Thus, Equation (11) represents a simplified structure for ΣΣΣ, in which the covariances are
modelled by the λils alone since ψψψ is diagonal. From Equation (11),

var(Yi)=λ2
i1 +λ2

i2 +·· ·+λ2
ip +ψi (12)

That is, the variance of Yi is partitioned into a part that is due to the common factors (i.e. the
communality) given by

communality= h2
i =

m∑
l=1

λ2
il ,

and a part unique to Yi , referred to as specific variance, ψi (see notable text e.g., [12,25]). Again,
Equation (11) shows that

cov(Yi,Yk)=
m∑

l=1
λilλkl .

The covariances of the Y ’s with the θ’s can also be found in terms of the λ’s, and given as

cov(y,θθθ)=ΛΛΛ (13)

If standardised variables are used, Equation (11) is replaced by a model for the correlation
matrix, R. Thus,

cov(Yi,θl)=λil (14)

is the (i− l) element of ΛΛΛ and represents the correlations of the variables with the factors.

2.3 Item-factor relations
Item response models and factor analysis techniques have widely been applied in analysing
questionnaire survey data, which are mainly item responses. In what follows, we present
the relationship between the parameters of factor analysis and item response models [29]
under various conditions such as item response format (dichotomous and polytomous) and
dimensionality of the underlying factor/ability (unidimensional and multidimensional).

When performing factor analysis, it is assumed that both the underlying latent factor θ and
the response variables Yi , i = 1,2, . . . , p are continuous. Suppose that θ and Yi possess a joint
normal probability distribution. Then their density function, f (Y ,θ), is defined by

f (Y ,θ)= 1

2πσYσθ

√
1−ρ2

Y ,θ

exp
[
− 1

2
(
1−ρ2

Y ,θ

){(
y−µY

σY

)2
−2ρY ,θ

(
y−µY

σY

)(
θ−µθ
σθ

)
+

(
θ−µθ
σθ

)2}]
,

(15)
where µY and σY are, respectively, the mean and standard deviation of Yi , µθ and σθ are,
respectively, the mean and standard deviation of θ, and ρ2

Y ,θ measures the correlation between
Yi and θ.
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The distribution of θ is assumed to be normal and defined as

g(θ)= 1

σθ
p

2π
exp

[
−1

2

(
θ−µθ
σθ

)2]
(16)

The conditional distribution of Yi given θ, f (Y |θ)= f (Y ,θ)
g(θ) , is given by

f (Y |θ)= 1
p

2π
√
σ2

Y (1−ρ2
Y ,θ)

exp
[
− 1

2
(
1−ρ2

Y ,θ

) {(
y−µY

σY

)2

−2ρY ,θ

(
y−µY

σY

)(
θ−µθ
σθ

)
+

(
θ−µθ
σθ

)2}
+ 1

2

(
θ−µθ
σθ

)2 ]
A little simplification gives

f (Y |θ)= 1
p

2π
√
σ2

Y (1−ρ2
Y ,θ)

exp
[
− 1

2σ2
Y

(
1−ρ2

Y ,θ

) {
y− (µY+ ρY ,θ

σY

σθ
(θ−µθ))

}2 ]
(17)

Equation (17) is a density function of a normal random variable with mean

µY +ρY ,θ
σY

σθ

(
θ−µθ

)
(18)

and variance

σ2
Y

(
1−ρ2

Y ,θ

)
(19)

Therefore, the conditional distribution of Yi given θ is normally distributed. That is,

Y |θ ∼ N
[
µY +ρY ,θ

σY

σθ

(
θ−µθ

)
, σ2

Y

(
1−ρ2

Y ,θ

)]
. (20)

For the one-factor model (Equation (6)), we assume that

θ ∼ N (0,1) and εi ∼ N
(
0,ψi

)
. (21)

For a given indicator variable i,

Yi ∼ N
(
0,λ2

i +ψi
)

(22)

From the assumptions and using Equations (20)-(22), we obtain

Y |θ ∼ N
(
λiθ,1−λ2

i
)

(23)

In factor analysis the response variable, Y is assumed to be continuous and normally
distributed. However, responses to close-ended items in questionnaires are categorical and, for
that matter, result in categorical data. Many researchers have described the relationship
between item responses to be non-linear and declared the standard factor models in
Equations (6) and (7) as inappropriate [2, 9]. In order to apply factor analysis model to item
response data, it is assumed that the continuous response variable, Y is discretised to yield
the categorical response variable, X . This means that the continuous response variable, Y
underlies each categorical response variable, X i . Specifically, for binary items, each response
score X (0 and 1) is considered to arise from an arbitrary dichotomisation of the continuous
underlying response variable Y . Figure 1 illustrates the relationship between observed item
response X and underlying response variable Y [9,16].
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τX = 0 X = 1
Y

Figure 1. Pictorial representation of a Normal response variable underlying the observed dichotomous
response variable

Figure 1 indicates that the relationship between continuous underlying response variable,
Y and the dichotomous observed response variable, X is defined by

X i =
{

1, if Y ≥ τ
0, if Y < τ (24)

where, τ denotes threshold between the two response categories. The threshold is estimated to
link the underlying normal response variable Y to the observed response categorical variable
X . This implies that, to obtain a positive response (i.e. Yes, represented by X i = 1), then

p(X i = 1|θ)= p(Y ≥ τ)

= p
[

Y −λiθ√
1−λ2

i

≥ τ−λiθ√
1−λ2

i

]

= p
[

Z ≥ τ−λiθ√
1−λ2

i

]

=Φ
[

λi√
1−λ2

i

(
θ− τ

λi

)]
, (25)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Now, we consider that the random variable X which is logistically distributed with

parameters µ and σ (> 0), with a density function defined [1] by

f (x;µ,σ)= π

σ
p

3
·

exp
{
− π

σ
p

3

(
x−µ)}

[
1+exp

{
− π

σ
p

3

(
x−µ)}]2 (26)

By letting Z = 1
σ

(
x−µ)

, which has a standard Normal distribution with mean 0 and variance 1,
Equation (26) becomes

f (z;0,1)= 1.702 · exp(−1.702z)

[1+exp(−1.702z)]2 , (27)

which is the standard logistic distribution function. The cumulative distribution function of Z,
F(z;0,1), is given by

F(z;0,1)=
∫ z

−∞
f (t;0,1) dt
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That is,

F(z;0,1)= 1.702
∫ z

−∞
exp(−1.702t)

[1+exp(−1.702t)]2 dt (28)

Let u = 1+exp(−1.702t), differentiating u with respect to t gives

du =−1.702exp(−1.702t)dt or dt = −1
1.702(u−1)

du

Substituting dt into Equation (28) yields

F(z;0,1)= 1.702
∫ 1+exp(−1.702z)

∞
(u−1)

u2 · −1
1.702(u−1)

du

=
∫ 1+exp(−1.702z)

∞
− 1

u2 du

=
[

1
u

]1+exp(−1.702z)

∞

= 1
1+exp(−1.702z)

, z ∈ℜ (29)

which is the cumulative distribution function of the logistic distribution.
The unidimensional 2PL model

p
(
X i j = 1|θ,α,δ

)= 1
1+exp[−1.702αi (θ−δi)]

has the form of the logistic cumulative distribution function in Equation (29) evaluated at
αi(θ−δi). Thus, for the jth individual,

p(X i j = 1|θ)=Φ [αi(θ−δi)] (30)

Therefore, appropriately equating the probabilities in Equation (25) and Equation (30) yields

αi = λi√
1−λ2

i

, |λi| < 1 (31)

and

δi = τ

λi
(32)

Equations (31) and (32) show the relationship between IRT and factor analysis for dichotomous
data [29]. Equation (31) indicates that αi is directly a function of λi . This means that, an
item that greatly discriminates between individuals at lower and higher ability levels will be
highly influential in the formation of the corresponding factor. However, if the item has poor
discriminatory power then, it will not contribute significantly to the formation of the factor.
Equation (32) shows that an item’s difficulty δi is a function of its category threshold value (τ)
and λi . In this case, there is no clear relationship between the difficulty parameter and that of
the factor model.

Sometimes the responses to a set of items in a questionnaire is not characterised by only one
ability, but a combination of several abilities of the respondent. To this end, we determine the
relationship between the parameters of multidimensional item response and m-factor models.
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Considering the m-factor model (see Equation (8)), each X i can be written as

X i =λλλ′
iθθθ+εi (33)

where, λiλiλi = (λi1,λi2, · · · ,λim)′. The distribution of X i (in Equation (22)) becomes

X i ∼ N

(
0,

m∑
j=1

λ2
i j +ψi

)
(34)

Also, the conditional distribution of X i given θθθ (see Equation (23)) is given by

X i|θθθ ∼ N

(
λλλ′

iθθθ,1−
m∑

j=1
λ2

i j

)
(35)

Following similar algebraic steps required in Equation (25), we determine that

p(X i = 1|θ)=Φ
(

λλλ′
iθθθ−τ√

1−
m∑

j=1
λ2

i j

)
=Φ

(
λλλi√

1−
m∑

j=1
λ2

i j

θθθ− τ√
1−

m∑
j=1

λ2
i j

)
. (36)

Using the M2PL model and following Equation (30), it follows that

p(X i j = 1|θθθ)=Φ(
ααα′

iθθθ+di
)

(37)

Comparing Equation (36) and Equation (37) gives

αααi = λλλi√
1−

m∑
j=1

λ2
i j

(38)

and

di = −τ√
1−

m∑
j=1

λ2
i j

(39)

In the case of ordered polytomous data, the observed item response variable, X arises
as a result of a categorisation of an underlying continuous response variable, Y by means
of a series of thresholds, τh,h = 1,2, . . . , g, g+1, . . . ,k. Schematically, the relationship between
an underlying normal response variable and the observed categorical response variable is
illustrated in Figure (2) [9,16].

τ1 τ2 τ3 τg τg+1 τg+2 τk

X = 0 X = 1 X = 2 . . . X = g

X
=

g
+1

. . . X = k
Y

Figure 2. Pictorial representation of a Normal response variable underlying the observed polytomous
response variable
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Figure 2 implies that, the relationship between continuous variable, Y and the polytomous
response variable, X is defined by

X i =
{

g, if τg ≤Yi < τg+1

0, otherwise
(40)

It follows that τ0 =−∞ and τk+1 =∞. To obtain a response in category g of the item, then

p(X i = g|θ)= p(τg ≤Yi < τg+1)

=Φ
(
τg+1 −λiθ j√

1−λ2
i

)
−Φ

(
τg −λiθ j√

1−λ2
i

)

=Φ
[ −λi√

1−λ2
i

(
θ j −

τg+1

λi

)]
−Φ

[ −λi√
1−λ2

i

(
θ j −

τg

λi

)]

=Φ
[

λi√
1−λ2

i

(
θ j −

τg

λi

)]
−Φ

[
λi√

1−λ2
i

(
θ j −

τg+1

λi

)]
. (41)

In order to link factor analysis and item response theory models for polytomous data, the
graded response (GR) model is considered. The form of the model makes it tractable. The GR
model is stated as

p(X i = g|θ)= P(X i ≥ g|θ)−P(X i ≥ g+1|θ).

Thus,

p(X i = g | θ)= 1
1+exp

[−αi(θ−δig)
] − 1

1+exp
[−αi(θ−δi,g+1)

]
=Φ[αi(θ−δig)]−Φ[αi(θ−δi,g+1)] (42)

By comparing Equations (41) and (42), we observe that

αi = λi√
1−λ2

i

, δig =
τig

λi
, and δi,g+1 =

τi,g+1

λi
. (43)

These establish the relationship among the parameters of factor analysis and IRT models for
ordered polytomous items [7].

In many practical situations, responses to polytomous items are characterised by more than
one dimension of person ability. Thus, an equivalent of Equation (41) for m-factor model is
given by

p(X i = g |θθθ)=Φ
(

λλλ′
i√

1−
m∑

l=1
λ2

il

θθθ− τg√
1−

m∑
l=1

λ2
il

)
−Φ

(
λλλ′

i√
1−

m∑
l=1

λ2
il

θθθ− τg+1√
1−

m∑
l=1

λ2
il

)
. (44)

This can be likened to a multidimensional IRT model, say MGR model, given by

p(X i = g |θθθ j)= 1
1+exp

[−(ααα′
iθθθ+dig)

] − 1
1+exp

[−(ααα′
iθθθ+di,g+1)

] .

That is,

p(X i = g |θθθ)=Φ[ααα′
iθθθ+dig]−Φ[ααα′

iθθθ+di,g+1] (45)
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Equations (44) and (45) show that

αααi =
λλλ′

i√
1−

m∑
l=1

λ2
il

, dig =
−τg√

1−
m∑

l=1
λ2

il

and di,g+1 =
−τg+1√
1−

m∑
l=1

λ2
il

. (46)

3. Data Simulation
In order to examine the effect of response scale on results of factor analysis, data is simulated
using R package mirt [3]. Several datasets are generated under different conditions for a
total of 20 items. Datasets are generated for varied response scales, namely dichotomous,
three-point, five-point, and seven-point scales. For each response scale, different sample
sizes are considered. These sample sizes include 30, 100, 150, 200, 500, 800, and 1000. The
purpose is to investigate the effect of sample size on factor analysis results. In addition,
for each response scale, different dimensions of underlying person-ability are considered,
particularly unidimensional, two-dimensional and three-dimensional. We then determine
how these underlying dimensions translate into factors. The datasets are generated using
the command: simdata(a,d, N, itemtype) [3], where argument a denotes a vector/matrix of
discrimination parameter values, d vector/matrix of difficulty parameter values, N sample size
and itemtype the underlying IRT model. These arguments are specified to generate the desired
dataset.

Firstly, unidimensional dichotomous response dataset is simulated using 2PL model. The
2PL model is considered, because it assumes that items have different discrimination powers.
In questionnaires, items differ in terms of content, and so are their discriminations. In this
system, a 20×1 vector of discrimination values are specified for a, and another 20×1 vector
of difficulty values for d for all sample sizes. Table 1 shows the discrimination and difficulty
parameter values used in simulating unidimensional item response data for twenty items.

In the table, we have 0.4<α< 3.0 and −2.5< δ< 2.5. High values of α means that the item
is discriminating largely between low-ability and high-ability persons. High positive value of δ
means the item is “difficult” and only high-ability persons can respond to it in higher response
categories. Conversely, an item with high negative δ value is considered to be “easy” and persons
with high ability levels tend to respond favourably to it. A δ value of zero or close to zero means
that the item is averagely difficult and persons of average ability could respond to it in higher
response categories.

To generate a two-dimensional dichotomous dataset, a argument is modified to a 20×2
matrix of discrimination values. Here, the same vector of discrimination values on the first
dimension is repeated on the second dimension. Thus, the two dimensions have the same
discrimination values. The intent is to determine how the information will manifest in factor
model and facilitate easy identification of the factor. In this case, one of two possibilities is
expected in the factor model. On one hand, a factor solution is expected to be dominated by two
repeating factors since the same information is contained on the two dimensions that underlie
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the data. On the other hand, a single dominant factor is expected with the other influenced
by few items or none. To simulate a three-dimensional dichotomous dataset, 20×3 matrix of
discrimination values is specified for a. The three dimensions have the same discrimination
values, with similar rationale as for the two-dimensional case.

Table 1. Discrimination and Difficulty Levels for Each Item

Item Discrimination (α) Difficulty (δ)
1 0.5 0.00
2 0.7 0.12
3 0.8 -2.30
4 0.6 0.10
5 0.4 2.00
6 2.2 -2.50
7 1.5 -2.00
8 2.7 -1.50
9 1.8 -2.20
10 1.6 2.50
11 2.0 2.30
12 2.9 1.50
13 3.0 2.20
14 2.1 0.30
15 2.8 0.50
16 1.4 0.25
17 1.9 0.40
18 1.2 0.42
19 1.3 0.56
20 2.9 0.20

Next, a unidimensional three-point scale data is generated using a polytomous IRT model,
specifically GPC model. Polytomous models incorporates category boundaries to cater for the
multi-category nature of items. For a given scale, the number of response categories is specified
using argument d. For three-point scale, d consists of a 20×2 matrix of difficulty values with
20×1 discrimination values depicting unidimensional fashion. The GPC model considers items
of varying discriminations just as 2PL model.

Higher response scale datasets, five and seven-point, are also simulated in the same manner
as three-point scale.

4. Analysis and Results
The simulated datasets are analysed using standard R 3.4.3 codes [20]. The IRT analyses are
conducted using R package mirt [3]. The analyses of unidimensional dichotomous item response
datasets are based on two-parameter logistic (2PL) IRT model, whereas multidimensional
two-parameter logistic (M2PL) IRT model is employed in the analyses of multidimensional
dichotomous datasets. For unidimensional polytomous item response datasets, we employ the
generalised partial credit (GPC) model in the analyses. In terms of multidimensional polytomous
datasets, the multidimensional generalised partial credit (MGPC) model is used to conduct the
analyses.
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Factor analysis is also performed on each simulated item response dataset using R package
psych [26]. Factor analyses of dichotomous item response datasets are based on tetrachoric
correlation matrices. On the other hand, polychoric correlation matrix is used as input in factor
analysis of polytomous item response datasets.

We begin the analysis with an exploration of characteristics of items in the unidimensional
dichotomous item response dataset. The estimates of discrimination and difficulty parameters
of unidimensional 2PL model are presented in Table 2.

The results show that the estimated values of discrimination (α̂) and difficulty (δ̂) parameters
generally fluctuates with increasing sample size. That is, the estimates of discrimination and
difficulty parameters change depending on the sample. There is a marked difference between
the specified and estimated item parameter values at lower samples (n = 30 and 100). However,
the differences tend to reduce at sample sizes of 150 and beyond. In addition, the differences
become negligible at larger samples (n = 500,800,1000). For example, from Table 1 the specified
discrimination value (α) of Item 10 is 1.6, which is quite close to the estimated values α̂ at
samples of sizes 150 through 1000.

Table 2. Discrimination and difficulty estimates of unidimensional 2PL model for various sample sizes

Sample Size

30 100 150 200

Item α̂ δ̂ α̂ δ̂ α̂ δ̂ α̂ δ̂

1 0.684 -0.153 0.567 0.719 0.744 0.331 0.490 0.148

2 1.287 0.147 1.539 -0.001 0.845 0.184 0.828 0.045

3 0.679 -1.514 0.267 -3.273 0.450 -1.944 0.344 -1.857

4 0.321 0.274 1.008 -0.005 0.696 0.059 0.654 0.131

5 -0.377 1.655 0.076 1.588 -0.044 2.537 0.492 2.237

6 0.501 -1.458 1.718 -1.715 1.737 -2.281 2.146 -2.204

7 0.432 -2.269 0.367 -1.491 2.250 -2.283 0.927 -1.723

8 1.866 -0.880 2.266 -0.743 3.201 -1.353 2.346 -0.927

9 1.298 -1.325 1.852 -2.412 2.175 -2.173 2.296 -2.504

10 0.967 2.187 9.008 12.668 1.522 2.352 1.118 1.942

11 4.018 3.418 2.143 2.214 2.092 2.015 2.084 2.271

12 3.056 2.370 2.537 1.760 3.153 1.735 3.964 1.750

13 8.339 6.370 5.092 3.717 3.521 2.889 2.694 1.687

14 1.469 0.522 2.730 0.522 2.221 0.157 1.963 0.506

15 4.389 1.254 3.263 1.062 3.648 0.374 3.289 0.411

16 0.863 0.622 0.732 -0.002 1.339 0.100 1.524 0.420

17 1.697 0.346 1.258 0.467 1.807 0.437 2.523 0.659

18 1.316 0.147 0.778 0.363 1.287 -0.041 1.091 0.346

19 1.874 -0.056 1.606 0.759 1.353 0.536 0.921 0.525

20 4.551 -0.557 3.292 0.402 2.440 0.406 4.249 0.041
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Table 2 continued

Sample Size
500 800 1000

Item α̂ δ̂ α̂ δ̂ α̂ δ̂

1 0.460 0.034 0.504 0.090 0.453 -0.029
2 0.710 0.187 0.081 -0.001 0.784 0.100
3 0.814 -2.227 0.895 -2.210 0.700 -2.396
4 0.690 -0.160 0.638 0.132 0.656 0.159
5 0.558 1.976 0.274 1.985 0.443 2.056
6 2.276 -2.385 2.196 -2.353 2.654 -2.520
7 1.641 -2.120 1.723 -1.864 1.886 -2.248
8 2.679 -1.435 2.835 -1.370 2.720 -1.362
9 2.275 -2.554 2.486 -2.866 1.739 -2.000
10 1.786 2.529 1.599 2.551 1.663 2.468
11 1.594 2.158 2.050 2.437 2.271 2.595
12 3.385 1.874 2.898 1.678 2.971 1.805
13 3.268 2.344 3.496 2.880 3.108 2.420
14 2.069 0.458 2.272 0.410 2.120 0.378
15 3.723 0.340 2.438 0.649 2.865 0.771
16 1.331 0.365 1.480 0.430 1.456 0.352
17 1.905 0.347 1.930 0.453 1.765 0.410
18 1.069 0.297 1.053 0.421 1.371 0.724
19 1.333 0.720 1.165 0.641 1.127 0.720
20 2.889 0.061 2.920 0.198 2.900 0.377

Table 3. P-values of Fitness of Items to Unidimensional 2PL Model for Various Sample Sizes

Sample Size
Item 30 100 150 200 500 800 1000

1 0.377 0.251 0.666 0.446 0.202 0.507 0.178
2 0.360 0.694 0.459 0.314 0.988 0.564 0.368
3 0.344 0.155 0.113 0.274 0.141 0.530 0.768
4 0.792 0.553 0.260 0.055 0.890 0.665 0.609
5 0.530 0.851 0.979 0.668 0.681 0.559 0.901
6 0.325 0.304 0.001 0.465 0.905 0.849 0.818
7 NaN 0.317 0.608 0.377 0.476 0.165 0.019
8 0.767 0.931 0.595 0.939 0.483 0.177 0.997
9 0.592 0.535 0.382 0.648 0.708 0.467 0.353

10 NaN NaN 0.433 0.296 0.269 0.893 0.188
11 NA 0.877 0.682 0.486 0.490 0.318 0.079
12 NaN 0.234 0.008 0.033 0.783 0.429 0.182
13 NA 0.188 0.856 0.530 0.605 0.275 0.758
14 0.310 0.294 0.973 0.437 0.890 0.657 0.414
15 0.457 0.750 0.812 0.210 0.317 0.906 0.639
16 0.131 0.136 0.729 0.240 0.282 0.363 0.457
17 0.303 0.387 0.256 0.961 0.856 0.560 0.559
18 0.228 0.253 0.071 0.989 0.677 0.558 0.428
19 0.550 0.433 0.675 0.217 0.947 0.768 0.424
20 0.669 0.562 0.177 0.907 0.314 0.225 0.421

Model Fit 0.114 0.966 0.514 0.381 0.363 0.387 0.938

Journal of Informatics and Mathematical Sciences, Vol. 11, No. 1, pp. 51–79, 2019



Effect of Measurement Scales on Results of Item Response Theory Models. . . : B. K. Nkansah et al. 67

The significances of the fitness of items as well as the overall fitness of 2PL model to
unidimensional dichotomous response dataset are in Table 3.

Table 3 shows that items fit the unidimensional 2PL model since the p-values are generally
much higher than 0.05. Only at n = 150, 200 and 1000, it is detected that three items (6, 12,
and 7, respectively) do not fit the model. The 2PL model significantly fits the unidimensional
dichotomous item response data for all sample sizes.

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) Sample Size 30
θ

P
(X

=
1

)

Item9
Item2
Item3
Item4
Item5
Item6
Item7
Item8
Item1
Item10
Item11
Item12
Item13
Item14
Item15
Item16
Item17
Item18
Item19
Item20

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Sample Size 100
θ

P
(X

=
1

)

Item9
Item2
Item3
Item4
Item5
Item6
Item7
Item8
Item1
Item10
Item11
Item12
Item13
Item14
Item15
Item16
Item17
Item18
Item19
Item20

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) Sample Size 150
θ

P
(X

=
1

)

Item9
Item2
Item3
Item4
Item5
Item6
Item7
Item8
Item1
Item10
Item11
Item12
Item13
Item14
Item15
Item16
Item17
Item18
Item19
Item20

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) Sample Size 200
θ

P
(X

=
1

)

Item9
Item2
Item3
Item4
Item5
Item6
Item7
Item8
Item1
Item10
Item11
Item12
Item13
Item14
Item15
Item16
Item17
Item18
Item19
Item20

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(e) Sample Size 500
θ

P
(X

=
1

)

Item9
Item2
Item3
Item4
Item5
Item6
Item7
Item8
Item1
Item10
Item11
Item12
Item13
Item14
Item15
Item16
Item17
Item18
Item19
Item20

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(f) Sample Size 800
θ

P
(X

=
1

)

Item9
Item2
Item3
Item4
Item5
Item6
Item7
Item8
Item1
Item10
Item11
Item12
Item13
Item14
Item15
Item16
Item17
Item18
Item19
Item20

Figure 3. Item characteristic curves of unidimensional 2PL model for various sample sizes
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Corresponding graphs of the items on unidimensional dichotomous response data is
illustrated in Figure 3. By the graphs, we can assess whether or not items generally exhibit the
desired or expected features in line with the item response model.

From Figure 3, we observe that the curve for Item 9 is extremely steep at a low ability level
(at -2). This means that for individuals with extremely low ability, Item 9 sharply discriminates.
The only item with similar nature is Item 6. However, Item 6 discriminates at a little higher
ability. Items 2, 14, 16 through 20 discriminate maximally at average ability levels. Meanwhile,
Item 15 discriminates among individuals at high ability levels for small samples but, tend
to discriminate at average levels for large sample sizes. Item 10 discriminates the most at
extremely high ability levels for n = 30, but conforms to discriminating at just high ability levels
like other items for n ≥ 150.

The rest of the results of IRT models are summarised and presented in the following
segments.

4.1 IRT results across different scales on various dimensions
We assess IRT results under various conditions such as the number of points on response scales,
number of dimensions, and sample size. Table 4 illustrates summary statistics for IRT results
across different response scales with different number of dimensions. We examine the table for
general features and those specific to the dimensionality.

Table 4 indicates that on unidimensionality across various scales, overall fitness of item
response model deteriorates with increasing scale points for small samples, particularly n = 30
and 100. This suggests that on unidimensional higher response scales, samples of sizes 100 and
below would not produce reliable results. Meanwhile, too large a sample, particularly n = 1000
may produce almost the same IRT results since the performance of the model does not change
for all response scales. In some instances on polytomous response scales with one dimension,
overall fitness of the model increases with increasing points on the scale.

Again, we observe from Table 4 that, in respect of two-dimensional response scales, the
number of fit items is almost the same at sample sizes of 150 and beyond. For some of these
samples, the overall fitness of the model increases with increasing points on the scale. For
polytomous response scales with three dimensions, model fitness seems to be quite high at
larger samples, particularly for three and five-point scales. However, there does not appear to
be any relationship between the model fitness and the number of fit items.

We now compare the summary statistics of results of factor solutions under different
dimensions of the underlying latent ability. For each dimension, a comparison of factor solutions
is done at various response scales and sample sizes.
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Table 4. Summary statistics for IRT results across different scales on various dimensions

Sample Size
Scale 30 100 150 200 500 800 1000

Two-Point

Unidim.
Fit Items 15 19 18 19 20 20 19
Model Fit 0.114 0.966 0.514 0.381 0.363 0.387 0.938

Two-dim.
Fit Items 4 18 19 19 20 20 18
Model Fit - 0.920 0.406 0.249 0.953 0.974 0.123

Three-dim.
Fit Items 1 15 17 18 19 19 17
Model Fit - 0.882 0.462 0.885 0.556 0.783 0.371

Three-Point

Unidim.
Fit Items 15 20 19 19 20 18 19
Model Fit 0.002 0.477 0.198 0.589 0.581 0.603 0.911

Two-dim.
Fit Items 6 17 19 18 18 20 19
Model Fit 0.006 0.469 0.969 0.482 0.872 0.924 0.779

Three-dim.
Fit Items 1 14 15 20 16 18 18
Model Fit 0.830 0.623 0.717 1.000 0.948 0.998 0.766

Five-Point

Unidim.
Fit Items 6 16 18 16 20 19 19
Model Fit 0.007 0.253 0.368 0.809 0.435 0.150 0.990

Two-dim.
Fit Items 3 17 18 17 19 18 18
Model Fit 0.550 0.896 0.956 0.579 0.326 0.969 0.864

Three-dim.
Fit Items 0 11 16 16 16 15 0
Model Fit 0.728 0.977 0.997 1.000 0.887 0.997 1.000

Seven-Point

Unidim.
Fit Items 1 18 16 18 20 18 19
Model Fit 0.000 0.038 0.703 0.144 0.533 0.476 0.963

Two-dim.
Fit Items 0 10 14 19 19 17 19
Model Fit 0.842 0.854 0.979 0.930 0.252 0.994 0.667

Three-dim.
Fit Items 0 3 12 13 15 17 0
Model Fit 0.834 0.594 0.437 0.489 0.981 0.997 1.000

4.2 One-factor solutions on unidimensional datasets for various scales
Table 5 presents summary statistics for one-factor solutions on unidimensional datasets at
various response scales and sample sizes.

Table 5. Summary Statistics for One-Factor Solutions on Unidimensional Datasets

Sample Size
Scale Measures 30 100 150 200 500 800 1000

Two-Point
No. of Ind. 11 14 15 13 15 15 15
Cum. Var 0.339 0.424 0.450 0.429 0.455 0.461 0.446

Fit 0.706 0.870 0.900 0.880 0.916 0.922 0.924

Three-Point
No. of Ind. 16 18 17 17 17 17 18
Cum. Var 0.507 0.558 0.577 0.596 0.588 0.589 0.597

Fit 0.900 0.953 0.962 0.968 0.968 0.969 0.971

Five-Point
No. of Ind. 17 19 20 20 20 19 20
Cum. Var 0.580 0.678 0.697 0.714 0.717 0.720 0.729

Fit 0.949 0.982 0.985 0.987 0.988 0.988 0.990

Seven-Point
No. of Ind. 18 19 20 20 20 20 20
Cum. Var 0.616 0.736 0.759 0.776 0.784 0.787 0.794

Fit 0.706 0.968 0.990 0.992 0.993 0.994 0.995
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It is evident in Table 5 that the number of influential indicators on the factor increases
as points on the scale increase across all sample sizes. In addition, the dominant number of
indicators starts from n = 150 in each case. The cumulative variation (Cum. Var) accounted for
by the factor peaks at n = 150 and fluctuates thereafter for two-point scales. In the others, the
amount of cumulative variation is almost the same for n ≥ 150 within rounding errors. Similarly,
the significance of the fit of the model also increases with increasing scale points and sample
size. This result is consistent with what is observed in the IRT analysis.

4.3 Two-factor solutions on unidimensional datasets for various scales
The summary statistics for unidimensional two-factor solutions at different scale-points are
displayed in Table 6. The table also shows summary statistics for various sample sizes.

Table 6. Summary Statistics for Two-Factor Solutions on Unidimensional Datasets

Sample Size
Scale Measures Factors 30 100 150 200 500 800 1000

Two-Point
No. of Ind.

PA1 10 10 15 12 13 15 15
PA2 8 8 1 6 6 0 4

Cum. Var 0.339 0.424 0.450 0.429 0.455 0.461 0.446
Fit 0.706 0.870 0.900 0.880 0.916 0.922 0.924

Three-Point
No. of Ind.

PA1 14 14 17 13 13 15 15
PA2 5 9 1 13 14 4 13

Cum. Var 0.596 0.599 0.620 0.618 0.605 0.603 0.606
Fit 0.937 0.962 0.968 0.971 0.971 0.972 0.973

Five-Point
No. of Ind.

PA1 14 16 18 16 19 18 19
PA2 9 14 6 16 1 10 2

Cum. Var 0.645 0.704 0.732 0.739 0.739 0.731 0.740
Fit 0.966 0.985 0.987 0.989 0.990 0.990 0.991

Seven-Point
No. of Ind.

PA1 14 19 16 17 19 18 19
PA2 14 1 18 18 12 18 18

Cum. Var 0.662 0.764 0.774 0.787 0.793 0.796 0.880
Fit 0.976 0.993 0.993 0.994 0.994 0.995 0.995

It can be noticed that the desired factor structure is observed at n = 150 where there is
the highest number of influential indicators on the first factor and only a few on the second.
However, at higher scale-points (seven), the structure occurs at a small sample size of n = 100.
It is notable that, in general, at the desired factor structure, the cumulative variation or the
fitness peaks and deteriorates thereafter. This is true either for the cumulative variation or for
the value of fitness of the model.

4.4 Three-factor solutions on unidimensional datasets for various scales
Table 7 presents the summary statistics for the unidimensional three-factor solutions for various
scale-points. We consider the various statistics for sample sizes of 30, 100, 150 and 200. Higher
sample sizes are ignored as their results do not show improvement beyond n = 200.
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Table 7. Summary Statistics for Three-Factor Solutions on Unidimensional Datasets

Sample Size
Scale Measures Factors 30 100 150 200

Two-Point
No. of Ind.

PA1 6 10 10 10
PA2 5 8 7 6
PA3 5 1 0 1

Cum. Var 0.544 0.530 0.572 0.563
Fit 0.864 0.916 0.937 0.918

Three-Point
No. of Ind.

PA1 13 14 14 10
PA2 3 7 4 5
PA3 2 1 1 4

Cum. Var 0.669 0.639 0.637 0.641
Fit 0.956 0.971 0.973 0.975

Five-Point
No. of Ind.

PA1 14 16 18 14
PA2 8 12 2 12
PA3 1 1 1 3

Cum. Var 0.694 0.732 0.737 0.745
Fit 0.975 0.989 0.989 0.990

Seven-Point
No. of Ind.

PA1 14 17 18 17
PA2 9 13 2 8
PA3 1 1 2 1

Cum. Var 0.696 0.779 0.794 0.802
Fit 0.981 0.994 0.994 0.995

Generally, we find results for n = 150 to be consistent with underlying dimensionality
of the data. It gives the first factor as the dominant one and the other two are just much
fewer-indicator factor (or none) that contribute marginally to the cumulative proportion of
variation explained. Again, at this sample size, cumulative variation (or the fitness) peaks and
deteriorates thereafter.

4.5 Two-factor solutions on two-dimensional datasets for various scales
Two-dimensional datasets are generated by specifying the same vector of item discrimination
parameter values on both dimensions of the underlying ability. In this system, we expect
that a good factor solution should have two repeating factors since the same information is
contained on the two underlying dimensions of the dataset. Alternatively, we could expect a
single dominant first factor in the two-factor solution with similar reasoning as in the former
instance. Here, we compare the results of two-factor solutions on two-dimensional datasets at
various sample sizes and scale-points. The results are summarised in Table 8.

Table 8 shows that the cumulative variation and fitness of the model peak at n = 100 for
all scale points, and deteriorates or fluctuates thereafter. The desired factor structure is thus
obtained at n = 100. It is also observed that the amount of cumulative variation explained by
the model increases with increasing scale-point. The fitness of the model as well as the number
of significant indicators are also generally high at higher scale-points.
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Table 8. Summary Statistics for Two-Factor Solutions on Two-Dimensional Datasets

Sample Size
Scale Measures Factors 30 100 150 200 500 800 1000

Two-Point
No. of Ind.

PA1 12 18 14 16 17 15 16
PA2 4 1 13 8 1 6 1

Cum. Var 0.522 0.677 0.639 0.651 0.486 0.492 0.478
Fit 0.873 0.973 0.965 0.971 0.925 0.934 0.930

Three-Point
No. of Ind.

PA1 16 19 15 18 16 17 19
PA2 13 3 14 2 15 14 1

Cum. Var 0.714 0.763 0.749 0.742 0.723 0.700 0.747
Fit 0.974 0.990 0.989 0.989 0.988 0.986 0.991

Five-Point
No. of Ind.

PA1 19 19 19 19 19 19 19
PA2 1 1 17 15 17 17 5

Cum. Var 0.781 0.862 0.839 0.832 0.822 0.808 0.840
Fit 0.990 0.997 0.996 0.996 0.996 0.995 0.997

Seven-Point
No. of Ind.

PA1 19 19 19 19 19 19 19
PA2 1 1 17 18 18 5 4

Cum. Var 0.821 0.886 0.875 0.869 0.868 0.866 0.886
Fit 0.994 0.998 0.998 0.998 0.998 0.998 0.998

4.6 Three-factor solutions on three-dimensional datasets for various scales
In this system, we expect that a plausible three-factor solution to possess either three repeating
factors or a single dominant first factor since the same information is contained on three
dimensions that underlie item responses. Table 9 displays the summary statistics for three-
dimensional three-factor solutions at various samples and scale-points. Since the results do not
show improvement for higher sample sizes, the results for n = 500, 800 and 1000 are excluded.

Table 9. Summary Statistics for Three-Factor Solutions on Three-Dimensional Datasets

Sample Size
Scale Measures Factors 30 100 150 200

Two-Point
No. of Ind.

PA1 12 13 17 16
PA2 10 13 2 4
PA3 2 3 1 1

Cum. Var 0.746 0.753 0.789 0.702
Fit 0.973 0.986 0.990 0.983

Three-Point
No. of Ind.

PA1 17 18 18 18
PA2 8 12 1 2
PA3 2 1 1 2

Cum. Var 0.818 0.835 0.864 0.792
Fit 0.995 0.995 0.997 0.994

Five-Point
No. of Ind.

PA1 17 18 18 18
PA2 13 8 2 1
PA3 1 6 1 0

Cum. Var 0.880 0.887 0.900 0.880
Fit 0.998 0.998 0.999 0.998

Seven-Point
No. of Ind.

PA1 18 16 18 18
PA2 8 17 12 1
PA3 5 8 5 1

Cum. Var 0.878 0.907 0.916 0.907
Fit 0.998 0.999 0.999 0.999
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Generally, a sample size of 150 produces a more consistent factor solution based on the
underlying dimensionality of the data. At this sample size, cumulative variation and/or model
fitness peaks and deteriorates thereafter. The amount of cumulative variation explained
increases with increasing scale-points. It follows that the number of influential indicators
on factors increases with increasing scale-points, which is particularly true for the first factor.
This means that factors are more well defined and could be more interpretable on larger
scale-points. The results are, however, almost the same on higher scale-points of five and seven.

4.7 Factor solutions on lower point scale
The results so far shows that both IRT and Factor Analysis, for lower sample size, could be
characterised with special features. In particular, n = 150 stands out clearly as an optimal size
for obtaining the desired factor model. In addition, the results are generally good for higher
scale points. In this section, we look at details of the models with respect to the dichotomous
scale. We start with one-factor solution of unidimensional two-point item response data at
various sample sizes. The results are shown in Table 10.

Table 10. Loadings of one-factor solutions of unidimensional item response dataset for various sample
sizes on dichotomous scale

Sample Size
Item 30 100 150 200 500 800 1000

1 0.400 0.346 0.399 0.283 0.269 0.307 0.277
2 0.597 0.405 0.464 0.457 0.398 0.454 0.434
3 0.249 0.507 0.211 0.183 0.402 0.424 0.359
4 0.149 0.544 0.405 0.386 0.380 0.373 0.372
5 -0.220 0.000 0.000 0.251 0.275 0.143 0.229
6 0.228 0.639 0.658 0.774 0.769 0.745 0.810
7 0.156 0.211 0.773 0.434 0.660 0.697 0.701
8 0.608 0.755 0.831 0.787 0.828 0.853 0.831
9 0.422 0.640 0.734 0.753 0.784 0.789 0.676

10 0.474 0.796 0.626 0.520 0.700 0.637 0.678
11 0.889 0.774 0.775 0.760 0.661 0.749 0.781
12 0.744 0.865 0.857 0.888 0.874 0.864 0.855
13 0.931 0.894 0.902 0.826 0.878 0.891 0.870
14 0.529 0.839 0.773 0.738 0.765 0.805 0.774
15 0.865 0.865 0.855 0.858 0.894 0.814 0.849
16 0.402 0.429 0.618 0.663 0.626 0.665 0.654
17 0.677 0.627 0.721 0.823 0.736 0.750 0.725
18 0.603 0.430 0.575 0.555 0.540 0.539 0.636
19 0.640 0.685 0.627 0.473 0.615 0.573 0.565
20 0.809 0.861 0.806 0.907 0.848 0.863 0.852

Prop Var 0.339 0.424 0.450 0.429 0.455 0.461 0.4458
Fit 0.706 0.870 0.8964 0.881 0.916 0.922 0.924

By comparing Table 2 and Table 10 we see that there is direct relationship between
parameters of IRT and those of factor models, particularly the discrimination parameter and the
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factor loadings. We note that items with high discrimination values load highly on factors. The
discrimination values of these items are greater than one. Thus, for an item to be influential in
the formation of a factor, it should possess a discriminatory power with absolute value greater
than one. Also, the results show that for n = 30, the loading for Item 5 is negative. We observe
that this is as a result of negative estimate of discrimination parameter (see Table 2). In item
response modelling, this implies that persons with high ability rather have a low probability
of positive response (see graphs in Figure 3). However, this observation is associated with low
sample size (n = 30,100,150). This is potentially problematic. The item interpretation changes
accordingly for Item 5. The expected discrimination of the items is better achieved in larger
sample sizes. The results show that it is difficult to obtain reasonable parameter estimates for
smaller sample sizes. We observe from Table 10 that the number of influential indicators appear
to converge (at 15) for higher sample size starting at n = 150. The indicators are the same at
point of convergence. The result also shows that at low sample size, specific indicators have
no influence or do influence in a different direction, for example, Variable 5. The proportion
of variance accounted for by the single factor increases from 33.9% (for n = 30) to a highest of
46.1% (for n = 800).

Table 11 contains loadings of two-factor solutions of unidimensional item response dataset
for various sample sizes on dichotomous scale.

Table 11. Loadings of two-factor solutions of unidimensional item response dataset for various sample
sizes on dichotomous scale

Sample Size 30 Sample Size 100 Sample Size 150 Sample Size 200
Item PA1 PA2 PA1 PA2 PA1 PA2 PA1 PA2
1 0.371 0.196 0.232 0.268 0.389 0.000 0.277 0.104
2 0.136 0.858 0.000 0.582 0.443 0.142 0.326 0.324
3 0.519 -0.255 0.608 0.000 0.126 0.381 0.271 0.000
4 0.338 -0.198 0.196 0.677 0.454 -0.138 0.217 0.350
5 0.152 -0.576 0.188 -0.170 0.141 -0.660 0.000 0.453
6 0.000 0.322 0.392 0.552 0.634 0.174 0.530 0.577
7 -0.132 0.437 0.000 0.339 0.757 0.155 0.000 0.673
8 0.495 0.345 0.761 0.242 0.821 0.139 0.603 0.504
9 0.515 0.000 0.405 0.536 0.734 0.000 0.371 0.768
10 0.215 0.506 0.594 0.533 0.683 -0.135 0.625 0.000
11 0.651 0.605 0.560 0.545 0.763 0.139 0.715 0.322
12 0.406 0.705 0.647 0.579 0.829 0.214 0.758 0.470
13 0.722 0.576 0.811 0.404 0.927 0.000 0.729 0.407
14 0.565 0.136 0.909 0.195 0.721 0.307 0.708 0.295
15 0.565 0.687 0.803 0.332 0.825 0.220 0.703 0.490
16 0.488 0.000 0.218 0.432 0.522 0.496 0.537 0.388
17 0.715 0.188 0.400 0.517 0.656 0.364 0.757 0.370
18 0.618 0.185 0.420 0.152 0.525 0.280 0.301 0.520
19 0.855 0.000 0.560 0.392 0.629 0.000 0.505 0.124
20 0.614 0.522 0.799 0.365 0.774 0.226 0.650 0.641
Prop Var 0.256 0.195 0.300 0.183 0.427 0.072 0.286 0.194
Cum Var 0.451 0.483 0.499 0.480
Fit 0.801 0.896 0.917 0.904
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Table 11 continued

Sample Size 500 Sample Size 800 Sample Size 1000
Item PA1 PA2 PA1 PA2 PA1 PA2
1 0.185 0.204 0.304 0.000 0.211 0.185
2 0.268 0.309 0.285 0.482 0.394 0.188
3 0.289 0.286 0.271 0.433 0.223 0.321
4 0.355 0.156 0.262 0.327 0.344 0.151
5 0.000 0.471 0.000 0.487 0.000 0.383
6 0.793 0.222 0.688 0.285 0.791 0.271
7 0.624 0.263 0.683 0.183 0.713 0.190
8 0.891 0.195 0.812 0.276 0.801 0.293
9 0.677 0.399 0.686 0.397 0.679 0.195
10 0.440 0.596 0.686 0.000 0.507 0.468
11 0.521 0.405 0.683 0.307 0.688 0.372
12 0.575 0.709 0.811 0.304 0.695 0.498
13 0.700 0.529 0.830 0.326 0.677 0.558
14 0.573 0.513 0.691 0.425 0.640 0.434
15 0.686 0.576 0.703 0.420 0.636 0.585
16 0.422 0.487 0.615 0.253 0.553 0.348
17 0.645 0.361 0.674 0.327 0.532 0.517
18 0.523 0.196 0.584 0.000 0.489 0.416
19 0.521 0.327 0.534 0.209 0.522 0.231
20 0.682 0.501 0.796 0.334 0.683 0.513
Prop Var 0.314 0.172 0.387 0.105 0.333 0.145
Cum Var 0.486 0.492 0.478
Fit 0.925 0.934 0.930

In the table, with exception of sample sizes n = 150 and n = 800, there is generally the
incidence of repetition of high loadings on the same indicator variable of the two factors which
can distract interpretation. However, for n = 150, the first factor loads highly on as many as 15
indicators and explains 42.7% of variance. The second factor loads highly on only one indicator
(Variable 5) and is a contrast to its representation in IRT. In addition, amount of variance
explained by the second factor appears to be negligible. These observations are consistent with
the correlation matrix as Variable 5 has negative correlation with most of the other variables.
The sample size of n = 150 thus gives a more plausible factor solution than all other samples.
The n = 150 also explains the highest cumulative variation. For n = 800 the second factor is
rather considered as redundant.

Table 12 are loadings of three-factor solutions of unidimensional item response dataset for
various sample sizes on dichotomous scale.

From Table 12, the result becomes less meaningful and even unrealistic for sample sizes
beyond 30. There is generally the incidence of repeating indicators on multiple factors. There
is also the incidence of unrealistic loadings that are greater than 1 in higher factor numbers,
particularly for Factor 3. Specifically, the loadings of Item 5 on Factor 3 is greater than 1 for
n = 150 and 200. This incidence is as a result of an extraction of higher factor structure from a
lesser dimensional dataset on a low scale point. It is interesting that it is at the optimal sample
size that these weaknesses are revealed.
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Table 12. Loadings of three-factor solutions of unidimensional item response dataset for various sample
sizes on dichotomous scale

Sample Size 30 Sample Size 100
Item PA1 PA2 PA3 PA1 PA2 PA3
1 0.785 0.000 -0.106 0.340 0.000 0.536
2 0.302 0.000 0.818 0.000 0.581 0.141
3 0.152 0.515 -0.232 0.635 0.000 0.000
4 0.127 0.312 -0.202 0.231 0.531 0.475
5 0.000 0.205 -0.544 0.125 0.000 -0.379
6 0.000 0.000 0.360 0.407 0.480 0.251
7 -0.119 0.000 0.509 0.000 0.270 0.199
8 0.495 0.265 0.245 0.773 0.233 0.000
9 0.000 0.724 0.155 0.437 0.429 0.343
10 0.610 0.176 0.334 0.519 0.662 0.000
11 0.742 0.289 0.453 0.558 0.509 0.202
12 0.377 0.280 0.672 0.621 0.594 0.114
13 0.593 0.494 0.499 0.730 0.607 -0.285
14 0.000 0.737 0.253 0.920 0.202 0.000
15 0.374 0.484 0.708 0.805 0.383 0.000
16 0.000 0.554 0.000 0.145 0.541 0.000
17 0.753 0.346 0.000 0.339 0.605 0.000
18 0.721 0.246 0.000 0.433 0.127 0.000
19 0.498 0.675 0.000 0.547 0.401 0.000
20 0.453 0.465 0.486 0.773 0.411 0.000
Prop Var 0.206 0.170 0.169 0.288 0.189 0.053
Cum Var 0.544 0.530
Fit 0.864 0.916

Table 12 continued

Sample Size 150 Sample Size 200
Item PA1 PA2 PA3 PA1 PA2 PA3
1 0.435 0.000 0.000 0.206 0.189 -0.189
2 0.301 0.379 0.000 0.265 0.389 0.000
3 -0.120 0.617 -0.165 0.184 0.000 -0.168
4 0.398 0.000 0.212 0.215 0.341 0.000
5 0.000 -0.121 1.019 0.188 0.264 1.200
6 0.622 0.249 0.000 0.406 0.718 -0.125
7 0.572 0.513 0.158 0.000 0.709 0.124
8 0.809 0.285 0.000 0.564 0.546 0.000
9 0.741 0.204 0.000 0.385 0.717 0.000
10 0.401 0.473 0.429 0.519 0.194 -0.198
11 0.753 0.268 0.000 0.665 0.392 0.000
12 0.644 0.568 0.000 0.756 0.481 0.000
13 0.696 0.539 0.301 0.709 0.440 0.000
14 0.595 0.502 0.000 0.727 0.292 0.000
15 0.911 0.205 0.000 0.751 0.448 0.101
16 0.472 0.452 -0.172 0.499 0.431 0.000
17 0.421 0.689 0.000 0.682 0.465 -0.174
18 0.336 0.539 0.000 0.236 0.579 -0.107
19 0.486 0.385 0.114 0.636 0.000 0.130
20 0.790 0.279 0.000 0.633 0.652 0.000
Prop Var 0.328 0.170 0.074 0.266 0.214 0.084
Cum Var 0.572 0.563
Fit 0.937 0.918
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5. Conclusions
The study shows that there is a direct relationship between parameters of IRT and those of
factor models, particularly item discrimination and factor loadings. In this regard, items with
high discrimination values load highly on factors. Such items possess a discriminatory power
with absolute value greater than one.

The study reveals that for smaller sample size, particularly below 100, items/indicators may
not generate the desired dataset. That is, the data generated may not follow the desired model.
We may, therefore, not be able to obtain a reasonable factor solution. On the other hand, we
could obtain unrealistic factor solution if we attempt to extract higher factor solution than the
underlying dimensionality on few scale-points. This particularly shows that extracting more
factors than necessary could run into difficulties, especially for low scale points.

The results also show that the amount of cumulative variation explained increases with
increasing scale-points. It follows that, the number of influential indicators on factors increases
with increasing scale-points. This means that, factors are more well defined and could be
most interpretable on larger scale-points. The results are, however, almost the same on higher
scale-points of five and seven.

Generally, a sample size of 150 produces a more consistent factor solution based on
the underlying dimensionality of the data. However, in some cases of the factor structure
(particularly, high dimensional datasets), a sample size of 100 gives a more consistent result.

In factor analysis, generally, results appear reasonable on higher scale points irrespective
of sample, even though a sample size of 150 stands out. However, on IRT model, results are
particularly not good for small sample size and at higher scale points. It will therefore be
important to examine the IRT model, along with factor models on Likert scale data. This has
the potential to help obtain the right interpretations of factors.
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