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1. Introduction

Impulsive difference equation systems are an excellent source of models to simulate
processes and phenomena observed in control theory, physics, chemistry, population dynamics,
biotechnology, industrial robotics, economics, etc. In recent years, impulsive difference equation
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systems have become a very active area of research. Many classical results have been extended
to impulsive systems. Recently, impulsive systems with exponential decay play a frequent
role in engineering, biology, economy, and other disciplines, so it is necessary to study the
properties of these systems. However, not much has been developed in the direction of the
stability theory of impulsive difference equation systems. There are a number of difficulties
that one must face in developing the corresponding theory of impulsive functional differential
systems with exponential decay. Therefore, it is an interesting and complicated problem to study
the stability theory for impulsive difference equation systems with exponential decay. Research
have been done, by using Lyapunov functions and Razumikhin techniques, some Razumikhin-
type theorems on stability and uniform stability are obtained for a class of impulsive functional
differential systems with infinite delays.

On the other hand, several papers devoted to the study of exponential stability of impulsive
delay systems have appeared during the past years. In [7], the authors have investigated
exponential stability of impulsive systems with finite delay by using the method of Lyapunov
functions and Razumikhin techniques. In [13], the authors have studied exponential stability,
by using fundamental function and inequalities, for linear impulsive differential equations.
However, very little is known about the exponential stability of impulsive difference equation
systems. In this paper, we consider impulsive difference equation systems involving exponential
decay. By using Lyapunov functions, we establish uniform exponential stability of the impulsive
system.

This paper is organized as follows. In section 2, we give some important definitions, system
formulation and assumptions. Section 3, we obtain the exponential stability behavior of the
homogeneous impulsive difference equation involving decay and the uniform exponential
stability by suitable assumptions of difference system. Our conclusions are in Section 4.

2. Preliminaries

Basic Definitions

The zero solution of a system is said to be:

Stable (S) if given ε > 0 and n0 = 0 there exists δ = δ(ε, n0) such that‖x0‖ < δ implies
‖x(n,n0, x0)‖ < ε for all n = n0.

Uniformly stable (US) if δ may be chosen independent of n0, unstable if it is not stable.

Attracting (A) if there exists µ=µ(n0) such that ‖x0‖ <µ implies

lim
n→∞x(n,n0, x0)= 0 .

Uniformly Attracting (UA) if the choice of µ is independent of n0. The condition for uniform
attractivity may be paraphrased by saying that there exists µ> 0 such that for every ε and n0
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there exists N = N(ε) independent of n0 such that

‖x(n,n0, x0)‖ < ε
for all n ≥ n0 +N whenever ‖x0‖ <µ.

Asymptotically stable (AS) if it is stable and attracting, and uniformly asymptotically
stable (UAS) if it is uniformly stable and uniformly attracting.

Exponentially stable (ES) if there exist δ> 0, M > 0, and η ∈ (0,1) such that

‖x(n,n0, x0)‖ < M‖x0‖ηn−n0

whenever ‖x0 − x∗‖ < δ.

And is uniformly exponentially stable if M is independent of n0.

A solution x(n,n0, x0) is bounded if for some positive constant M, ‖x(n,n0, x0)‖ = M for all n = n0,
where M may depend on each solution.

Mathematical Formulation

To begin with, we introduce some assumptions.

Let B be a Banach space, we will use | · | for the norm in this space and for the induced norm
in the space of bounded operators in B, while ‖ · ‖ will be used for the operator norm in some
space of function or sequence.

Let us consider the sequence α= {αk|k = 1,2, . . . } with ‖α‖ = sup
k≥1

|αk| <∞, and α= {αk|k =
1,2, . . . }⊂ B with ‖α‖ =∑∞

k=1 |a|p , 1≤ p ≤∞ [3].

In order to clarify the concept of exponential decay, we introduce the weighted xk spaces
as follows. For x = (x1, x2, x3, . . . , xs) ∈ Bs. For a positive integer, Bs denotes the s-dimensional
Euclidean space. Suppose uk is a sequence on Bs, or t ≥ 0 and for 1≤ q <∞ and set

‖uk‖ =
( ∞∑
α=1

|uk(α)et|α||q
) 1

q

.

For t ≥ 0, let ‖u‖ be the supremum of the sequence |uk(α)et|α|| and α ∈ Bs.

System Formulation

Let {xk|k = 1,2,3 . . . } and {γk|k = 1,2,3, . . . } be sequences in B and Ak : B → B be a bounded
operator for k = 0,1,2,3 . . . . Now consider a class of difference equations in Rk shown as follows

xk+1 = Akxk, k ≥ 0 (2.1)

where x∗ ∈ Rk is the unique equilibrium point and T : Rk → Rk is a continuous differentiable
nonlinear operator in Rk, and

lim
‖x‖→∞

sup‖T ′(x)‖ =λ< 1
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holds for a positive constant λ, 0<λ< 1. The related non homogenous difference equation

xk+1 = Akxk +γk+1, k ≥ 0 (2.2)

and the homogeneous difference equation with an arbitrary initial point n0 will be [9]

xk+1 = Akxk, k ≥ n0, xn0 = I (2.3)

where I is the identity operator which is called as fundamental function of any of the equation
(2.1) and (2.2).

3. Main Results

Our main problem is to find the behavior of the exponential stability behavior, which we
can deduce by the theorem, and also the impulse ratio is considered between the systems of
difference equation. Let us recall some same kind of recent results [2,10,13].

Lemma 3.1. Let ψk,n be a fundamental function of (2.1), then the solution of (2.2) can be
presented as

xk =ψk,0x0 +
k−1∑
s=0

ψn,s+1γs+1 (3.1)

Lemma 3.2 ( [5]). Suppose sup
k

|Ak| <∞

(i) Let 1≤ q ≤∞. Then (2.1) is exponentially stable if and only if for any {γk} ∈ Iq , the solution
of (2.2), with x0 = 0, belongs to the same space {xk} ∈ Iq.

(ii) If 1 ≤ q ≤∞ and the solution of (2.2), with x0 = 0, is bounded {xk} ∈ I∞ for any {γk} ∈ Iq

then (2.1) is exponentially stable.

(iii) If the solution of (2.2), with x0 = 0, is bounded for any {γk} ∈ I1 then (2.1) is uniformly
stable.

Theorem 3.3. If (2.1) is a fundamental function, then

(i) If {γk} ∈ I∞, then the solution is bounded.

(ii) If lim
k→∞

γk =∞, then the solution of {xk} of (2.2) satisfies lim
k→∞

xk = 0

(iii) If there exist M0 > 0, λ> 0 such that |γk| ≤ M0e−λk, then there exist M1 > 0, η1 > 0 such
that the solution {xK } of (2.2) satisfies |xk| ≤ M1e−η1k , which leads the exponential stability.

Proof. Since ψk,n is the fundamental solution of the problem (2.1), ψk,nxn is a solution of (2.3)
for any xn ∈ B. Exponential stability of the equation (2.1) implies that |ψk,l xk| ≤ Me−η(n−k)|xk|
for any xk ∈ B. Thus the fundamental function has the exponential estimation

|ψk,n| ≤ Me−η(k−n) for any n = 0,1,2, . . . ,k (3.2)

(i): The solution {xk} of (2.2) satisfies (3.1), therefore

|xk| ≤ |ψk,0| · |x0|+
k−1∑
s=0

|ψk,s+1| · |γs+1| (3.3)
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Since {γk} ∈ I∞ and estimation (3.3) holds, then we get

|xk| ≤ Me−ηk|x0|+
k−1∑
s=0

Me−η(k−n−1)|γs+1|

< M

(
|x0|+‖{γk}‖ ·

∞∑
s=0

e−ηs

)

= M
(
|x0|+ ‖{γk}‖

1− e−η

)
.

This is true for any positive integer k. Thus any solution {xk} of (2.2) is bounded.

(ii): Let us pick any x0 ∈ B, any ε> 0. By the assumption of (2.1), the sequence {γk} converges to
zero solution, which implies that {γk} ∈ I∞ and there exists k1 > 0 such that

|γk| < ε
1− e−η

3M
for any k ≥ k1 .

Since e−η(k−n1−1) → 0 as k →∞, there exists a positive integer k2 such that

e−η(k−k1−1) < ε 1− e−η

3M‖{γk}‖ for any k ≥ k2 .

Finally, for a given x0 we can always find positive integer k3 such that

e−ηk < ε

3M|x0|
for any k ≥ k3 .

Let us suppose that k >max{k1,k2,k3}. Since the solution {xk} of (2.2) satisfies (3.1), we get

|xk| ≤ |ψk,0| · |x0|+
k−1∑
s=0

|ψk,s+1| · |γs+1|

= |ψk,0| · |x0|+
k1∑

s=0
|ψk,s+1| · |γs+1|+

k−1∑
s=k1+1

|ψk,s+1| · |γs+1| .

Applying (3.3) in the above equation, we get

|xk| ≤ Me−ηk |x0|+
k1∑

s=0
Me−η(k−s−1) |γs+1| +

k−1∑
s=k1+1

Me−η(k−s−1) |γs+1| . (3.4)

Let us consider each component of the sum (3.3). Since k ≥ k3, we obtain

Me−ηk |x0| < M
ε

3M|x0|
|x0| = ε

3
.

If k ≥ k2 implies,
k1∑

s=0
Me−η(n−s−1)|γs+1| = Meη‖{γk}‖

k1∑
s=0

e−η(k−s)

= Meη‖{γk}‖
k∑

s=k−k1

e−ηs

< Meη‖{γk}‖
∞∑

s=k−k1

e−ηs

< Meη‖{γk}‖e−η(k−k1) 1
1− e−η
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< M‖{γk}‖e−η(k−k1−1) 1
1− e−η

< M‖{γk}‖ε 1− e−η

3M‖{γk}‖
1

1− e−η

= ε

3
.

Finally, k ≥ K1 provides,
k−1∑

s=k1+1
Me−η(k−s)|γs+1| <

k−1∑
s=k1+1

Me−η(k−s)ε
1− e−η

3M

= ε

3
(1− e−η)

k−1∑
s=k1+1

e−η(k−s−1)

= ε

3
(1− e−η)

k−1∑
s=k1+1

e−η(k−s−1)

= ε

3
(1− e−η)

k−k1∑
s=0

e−ηs

< ε

3
(1− e−η)

k1∑
s=0

e−ηs

< ε

3
(1− e−η)

1
1− e−η

= ε

3
.

From (3.4), we can get the following,

|xk| ≤ Me−ηk|x0|+
k1∑

s=0
Me−η(k−s−1)|γs+1|+

k−1∑
s=k1+1

Me−η(k−s−1)|γs+1|

< ε

3
+ ε

3
+ ε

3
= ε .

For any k >max{k1,k2,k3} and lim
k→∞

xk = 0.

(iii): The solution {xk} of the equation (2.1) satisfies (3.1) therefore

|xk| ≤ |ψk,0| · |x0|+
k−1∑
s=0

|ψk,s+1| · |γs+1| .

The assumption of Part 3 of this Theorem and (3.3) together impose,

|xk| ≤ Me−ηk|x0|+
k−1∑
s=0

Me−η(k−s−1)M0e−λ(s+1)

≤ Me−ηk|x0|+MM0eη−λe−ηk
k−1∑
s=0

es(η−λ)

without loss of generality we can assume that η 6=λ.
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Therefore,
k−1∑
s=0

es(η−λ) = ek(η−λ) −1
e(η−λ) −1

.

So,

Me−ηk|x0|+MM0eη−λe−ηk
k−1∑
s=0

es(η−λ) = Me−ηk |x0|+MM0eη−λe−ηk ek(η−λ) −1
e(η−λ) −1

≤ Me−ηk |x0|+MM0eη−λe−ηk ek(η−λ)

e(η−λ) −1

≤ Me−ηk |x0|+MM0
eη−λ

e(η−λ) −1
e−λk .

So, for η1 =min{η,λ} and N3 = M|x0|+MM0
eη−λ

e(η−λ)−1 .

This implies,

|xk| ≤ Me−ηk|x0|+MM0
eη−λ

e(η−λ) −1
e−λk (3.5)

for any k = 0,1,2,3, . . . and hence the solution of (2.1) is exponential stable.

This completes the proof of the theorem.

Theorem 3.4. Let a be a constant with a > 1. Let B ⊂Rk be an open set containing the origin,
and let V (xk) :Rk →R be a given function satisfying

λ1| |xk| |p ≤V (xk)≤λ2‖xk‖q (3.6)

and

∆V (xk)≤−λ3‖xk‖r +Na−δn (3.7)

for some positive constants λ1,λ2,λ3, p, q, r,k and δ. Moreover, if for some positive constants α
and γ,

0< λ3

λ2
r/q ≤α< 1 (3.8)

such that

V (xk)−V r/q (xk)≤ γa−δn (3.9)

with

δ≥− ln(1−λ3/λ2
r/q)

lna
(3.10)

then the zero solution of (2.2) is uniformly exponentially stable.

Proof. First note that in view of (3.9), the constant δ; which is given by (3.10) is positive. Taking
the difference of the function V (xk)aM(k−n0) with M =− ln(1−λ3/λ2

r/q)
lna we have

∆(V (xk)aM(k−n0))= [V (xk+1)aM −V (xk)]aM(k−n0) .

For xk ∈ B, using (3.7) we get

∆(V (xk)aM(k−n0))= [−λ3‖xk‖raM +V (xk)aM +Na−δkaM −V (xk)]aM(k−n0) . (3.11)
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From condition (3.6) we have ‖xk‖q ≥V (xk)/λ2. Consequently, -‖xk‖r ≤−
[

V (xk)
λ2

]r/q
.

Thus, inequality (3.11) becomes

∆(V (xk)aM(k−n0))≤ [−(λ3/λr/q
2 )V r/q(xk)aM +V (xk)aM +Na−δkaM −V (xk)]aM(k−n0)

= [−(λ3/λr/q
2 )V r/q(xk)aM + (am−1)V (xk)+Na−δkaM−V (xk)]aM(k−n0) .

Since M =− ln(1−λ3/λr/q
2 )

lna , we have aM −1= aM(λ3/λr/q
2 ). Thus, the above inequality reduces to

∆(V (xk)aM(k−n0))≤ [V (xk)−V r/q(xk))(aM −1)+Na−δkaM]aM(k−n0) . (3.12)

By invoking condition (3.9), inequality (3.12) takes the form

∆(V (xk)aM(k−n0))≤ [γ(aM −1)+NaM ]a−δka
M(k−n0)

≤ [γ(aM −1)+NaM ]a−δk+δn0 a
M(k−n0) ≤ La(M−δ)(k−n0)

where L = γ(aM −1)+NaM Summing the above inequality from n0 to k−1 we obtain,

V (xk)aM(k−n0) −V (xn0)≤ La−(M−δ)n0
k−1∑
s=n0

a(M−δ)s

= La−(M−δ)n0

a(M−δ) −1
[a(M−δ)k − a(M−δ)n0]

= L
a(M−δ) −1

[a(M−δ)(k−n0) −1] .

Since M < δ and V (xn0)≤λ2‖x0‖q, the above inequality reduces to

V (xk)aM(k−n0) ≤λ2‖x0‖q + L
1−a(M−δ) .

Set B(‖x0‖)=λ2‖x0‖q + L
1−a(M−δ) . Then

V (xk)≤ B(‖x0 = |)a−M(k−n0) . (3.13)

From condition (3.6), we have λ1‖x‖p ≤ V (xk), which implies that

‖xk‖ ≤
{

V (xk)
λ1

} 1
p

. (3.14)

Combining (3.13) and (3.14), we arrive at

‖xk‖ ≤
{

B(‖x0‖)
λ1

} 1
p

a−M/p(k−n0) .

Hence, the zero solution of (2.2) is uniformly exponentially stable.

4. Conclusion

In this paper, a impulsive difference equation system with exponential decay has been
considered, and our objective of attaining the behavior of exponential stability has been obtained
by establishing some new necessary conditions, to the system of impulsive difference equations
with distributed decays. In this paper special Lyapunov function was utilized to obtain the
desired uniform stability for the system of impulsive difference equations.
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