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A Note on Right Full k-Ideals of Seminearrings

Nanthaporn Kornthorng and Aiyared Iampan

Abstract. This work extends the idea of k-ideals of semirings to seminearrings,
the concept of k-ideals of seminearrings is introduced and investigated, which is
an interesting for seminearrings and some interesting characterizations of k-ideals
of seminearrings are obtained. Also, we prove that the set of all right full k-ideals
of an additively inverse seminearring in which addition is commutative forms a
complete lattice which is also modular in the same way as of the results of Sen
and Adhikari.

1. Introduction and Preliminaries

The notion of semirings which is a generalization of rings introduced by
Vandiver [13] in 1935, several researches have characterized the many type of
ideals on the algebraic structures such as: In 1958, Iséki [7] considered and proved
some theorems on quasi-ideals in semirings. In 1992, Sen and Adhikari [10]
studied k-ideals in semirings. Moreover, Sen and Adhikari proved that the set of
all full k-ideals of an additively inverse semiring in which addition is commutative
forms a complete lattice which is also modular. In 1993, Sen and Adhikari [11]
gave some characterizations of maximal k-ideals of semirings. In 1994, Dönges
[5] characterized quasi-ideals, regular semirings and regular elements of semirings
using quasi-ideals. In 2000, Baik and Kim [2] characterized fuzzy k-ideals in
semirings. In 2004, Shabir, Ali and Batool [12] gave some properties of quasi-ideals
in semirings. In 2005, Flaška, Kepka and Šaroch [6] gave some characterizations
of bi-ideal-simple semirings. In 2008, Chinram [4] studied (m, n)-quasi-ideals of
semirings. In this year, Atani and Atani [1] characterized some results on ideal
theory of commutative semirings with non-zero identity analogues to commutative
rings with non-zero identity. Moreover, they studied some essential properties of
Noetherian and Artinian semirings. Now, the notion of seminearrings which is a
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generalization of semirings introduced and discussed by Rootselaar [9] in 1963.
Therefore, we will study k-ideals of seminearrings in the same way as of k-ideals
of semirings which was studied by Sen and Adhikari [10].

The purpose of this paper is threefold.

(i) To introduce the concept of (left, right) k-ideals of seminearrings.
(ii) To introduce the concept of (left, right) full k-ideals of additively inverse

seminearrings.
(iii) To characterize the properties of (left, right) k-ideals of seminearrings, and

(left, right) full k-ideals of additively inverse seminearrings.

For the sake of completeness, we state some definitions and notations that are
introduced analogously to some definitions and notations in [10].

A seminearring [8] is a system consisting of a nonempty set S together with two
binary operations on S called addition and multiplication such that

(i) S together with addition is a semigroup,
(ii) S together with multiplication is a semigroup, and

(iii) (a+ b)c = ac + bc for all a, b, c ∈ S.

We define a subseminearring A of a seminearring S to be a nonempty subset A
of S such that when the seminearring operations of S is restricted to A, A is a
seminearring in its own right. A seminearring S is said to be additively commutative
if a+ b = b+ a for all a, b ∈ S. A nonempty subset I of a seminearring S is called
a right(left) ideal of S if

(i) a+ b ∈ I for all a, b ∈ I , and
(ii) ar ∈ I (ar ∈ I) for all r ∈ S and a ∈ I .

A nonempty subset I of a seminearring S is called an ideal of S if it is both a left
and a right ideal of S. A right(left) ideal I of a seminearring S is called a right(left)
k-ideal of S if for any a ∈ I and x ∈ S, a + x ∈ I or x + a ∈ I implies x ∈ I .
A nonempty subset I of a seminearring S is called a k-ideal of S if it is both a left
and a right k-ideal of S. A seminearring S is said to be additively regular if for any
a ∈ S, there exists an element b ∈ S such that a = a+ b+ a. A seminearring S is
said to be additively inverse if for any a ∈ S, there exists a unique element b ∈ S
such that a = a+ b+ a and b = b+ a+ b. In an additively inverse seminearring,
the unique inverse b of an element a is usually denoted by a′. An element a of a
seminearring S is called a additive idempotent of S if a + a = a and the set of all
additive idempotents of S denoted by E+. A right(left) k-ideal I of an additively
inverse seminearring S is called a right(left) full k-ideal of S if E+ ⊆ I . A nonempty
subset I of an additively inverse seminearring S is called a full k-ideal of S if it is
both a left and a right full k-ideal of S. Let S be a seminearring and A a right ideal
of S. Define the set

A= {a ∈ S | a+ x ∈ A for some x ∈ A}.



A Note on Right Full k-Ideals of Seminearrings 257

Let S be an additively inverse seminearring. Define the set of all right full k-ideals
of S by I(S). An equivalence relation ρ on a seminearring S is called a congruence
if for any a, b, c ∈ S, (a, b) ∈ ρ implies

(c+ a, c + b) ∈ ρ and (a+ c, b+ c) ∈ ρ
and

(ca, cb) ∈ ρ and (ac, bc) ∈ ρ.

We can easily prove that the set of all congruence classes S/ρ is a seminearring
under addition and multiplication defined by

(a)ρ + (b)ρ = (a+ b)ρ and (a)ρ(b)ρ = (ab)ρ

for all a, b ∈ S.
A lattice A is said to be modular [3] if for any x , y, z ∈ A, y ≤ x , x ∧ z = y ∧ z

and x ∨ z = y ∨ z implies x = y .

2. Lemmas

Before the characterizations of k-ideals of seminearrings for the main results,
we give some auxiliary results which are necessary in what follows. The following
lemma is easy to verify.

Lemma 2.1. Let S be a seminearring and I a right(left) ideal of S. Then I is a
subseminearring of S.

Corollary 2.2. Let S be a seminearring and I an ideal of S. Then I is a
subseminearring of S.

Lemma 2.3. Let S be an additively commutative seminearring, and A and B two
right ideals of S. Then A+ B is a right ideal of S.

Proof. Let x , y ∈ A+ B and r ∈ S. Then x = a1 + b1 and y = a2 + b2 for some
a1, a2 ∈ A and b1, b2 ∈ B. Thus

x + y = (a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2) ∈ A+ B.

Since A and B are right ideals of S, we have

x r = (a1 + b1)r = a1r + b1r ∈ A+ B.

Hence A+ B is a right ideal of S. ¤

Lemma 2.4. Let S be a seminearring and X = {J | J is a right(left) ideal of S}.
Then

⋂
J∈X J is a right(left) ideal of S where

⋂
J∈X J 6= ;.

Proof. Let x , y ∈
⋂

J∈X J and r ∈ S. Then x , y ∈ J for all J ∈ X , so x + y, x r ∈ J
for all J ∈ X . Thus x + y, x r ∈

⋂
J∈X J . Hence

⋂
J∈X J is a right ideal of S. ¤

Corollary 2.5. Let S be a seminearring and X = {J | J is an ideal of S}. Then⋂
J∈X J is an ideal of S where

⋂
J∈X J 6= ;.
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Lemma 2.6. Let S be a seminearring and X = {J | J is a right(left) k-ideal of S}.
Then

⋂
J∈X J is a right(left) k-ideal of S where

⋂
J∈X J 6= ;.

Proof. By Lemma 2.4, we have
⋂

J∈X J is a right ideal of S. Let x ∈
⋂

J∈X J and
r ∈ S be such that x + r ∈

⋂
J∈X J . Then x , x + r ∈ J for all J ∈ X , so r ∈ J for all

J ∈ X . Thus r ∈
⋂

J∈X J . Hence
⋂

J∈X J is a right k-ideal of S. ¤

Corollary 2.7. Let S be a seminearring and X = {J | J is a k-ideal of S}. Then⋂
J∈X J is a k-ideal of S where

⋂
J∈X J 6= ;.

Lemma 2.8. Let S be a seminearring and X = {J | J is a right(left) full k-ideal of
S}. Then

⋂
J∈X J is a right(left) full k-ideal of S.

Proof. By Lemma 2.6, we have
⋂

J∈X J is a right k-ideal of S. Since E+ ⊆ J for all
J ∈ X , we have E+ ⊆

⋂
J∈X J . Hence

⋂
J∈X J is a right full k-ideal of S. ¤

Corollary 2.9. Let S be a seminearring and X = {J | J is a full k-ideal of S}. Then⋂
J∈X J is a full k-ideal of S.

Lemma 2.10. Let S be a seminearring, and A and B two right k-ideals of S. If A⊆ B,
then A⊆ B.

Proof. Let a ∈ A. Then a + x ∈ A for some x ∈ A. Thus a + x ∈ A ⊆ B for some
x ∈ A⊆ B, so a ∈ B. Hence A⊆ B. ¤

Lemma 2.11. Let S be an additively regular seminearring in which addition is
commutative. Then E+ is a right ideal of S.

Proof. Let x , y ∈ E+ and r ∈ S. Then x = x + x and y = y + y . Thus
(x + y) + (x + y) = (x + x) + (y + y) = x + y and x r + x r = (x + x)r = x r, so
x + y, x r ∈ E+. Hence E+ is a right ideal of S. ¤

Lemma 2.12. For an additively inverse seminearring S, I(S) is a partially ordered
set under inclusion. Moreover, if X = {J | J ∈ I(S)}, then

⋂
J∈X J is an infimum

of X .

Proof. By Lemma 2.8, we have
⋂

J∈X J ∈ I(S). Since
⋂

J∈X J ⊆ J for all J ∈ X ,
we have

⋂
J∈X J is a lower bound of X . Let C be a lower bound of X . Then C ⊆ J

for all J ∈ X , so C ⊆
⋂

J∈X J . Hence
⋂

J∈X J is an infimum of X . ¤

Lemma 2.13. Let S be an additively commutative seminearring. If e, f ∈ E+ and
r ∈ S, then e+ f , er ∈ E+.

Proof. Now, (e+ f )+(e+ f ) = (e+e)+( f + f ) = e+ f and er+er = (e+e)r = er.
Hence e+ f , er ∈ E+ ¤
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3. Main Results

In this section, we give some characterizations of k-ideals of seminearrings.
Finally, we prove that the set of all right full k-ideals of an additively inverse
seminearring in which addition is commutative forms a complete lattice which
is also modular.

Theorem 3.1. Let S be an additively inverse seminearring. Then every right(left)
k-ideal of S is an additively inverse subseminearring of S.

Proof. Let I be a right k-ideal of S. By Lemma 2.1, we have I is a subseminearring
of S. Let arbitrary a ∈ I . Since S is an additively inverse seminearring, we obtain
a+a′+a = a and a′+a+a′ = a′. Now, a+(a′+a) = a+a′+a = a ∈ I . Since I is
a right k-ideal of S, we have a′ + a ∈ I . Again, a′ ∈ I . Therefore I is an additively
inverse subseminearring of S. ¤
Corollary 3.2. Let S be an additively inverse seminearring. Then every k-ideal of S
is an additively inverse subseminearring of S.

Theorem 3.3. Let S be an additively inverse seminearring in which addition is
commutative and A a right ideal of S. Then

A= {a ∈ S | a+ x ∈ A for all x ∈ A}
is a right k-ideal of S such that A⊆ A.

Proof. Let a, b ∈ A and r ∈ S. Then a + x , b + y ∈ A for some x , y ∈ A. Since
(a + b) + (x + y) = a + x + b + y ∈ A and x + y ∈ A, we have a + b ∈ A. Since
ar + x r = (a + x)r ∈ A and x r ∈ A, we have ar ∈ A. Hence A is a right ideal of
S. Let d ∈ S and c ∈ A be such that c + d ∈ A. Then there exist x , y ∈ A such that
c + x ∈ A and c + d + y ∈ A. Thus d + (c + x + y) = (c + d + y) + x ∈ A. Since
c + x + y ∈ A, we have d ∈ A. Therefore A is a right k-ideal of S. Let a ∈ A. Then
(a + a′) + a = a ∈ A, so a + a′ ∈ A. Suppose that a 6∈ A. Since a + a′ ∈ A, we get
a′ 6∈ A. Since a′+(a+a) = a+a′+a = a ∈ A, we have a′ ∈ A that is a contradiction.
Hence a ∈ A and so A⊆ A. ¤
Corollary 3.4. Let S be an additively inverse seminearring in which addition is
commutative and A a right ideal of S. Then A is an additively inverse subseminearring
of S such that A⊆ A.

Corollary 3.5. Let S be an additively inverse seminearring in which addition is
commutative and A a right ideal of S. Then A = A if and only if A is a right k-ideal
of S.

Proof. Assume that A= A. Then, by Lemma 3.3, we have A is a right k-ideal of S.
Hence A is a right k-ideal of S.

Conversely, assume that A is a right k-ideal of S. Then, by Lemma 3.3, we have
A⊆ A. Let x ∈ A. Then x + y ∈ A for some y ∈ A. Since A is a right k-ideal of S, we
have x ∈ A. Thus A⊆ A, so A= A. ¤
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Lemma 3.6. Let S be an additively inverse seminearring in which addition is
commutative, and A and B two right full k-ideals of S. Then A+ B is a right full
k-ideal of S such that A⊆ A+ B and B ⊆ A+ B.

Proof. By Lemma 2.3, we have A+ B is a right ideal of S. By Lemma 3.3, we have
A+ B is a right k-ideal of S such that A+ B ⊆ A+ B. Since A and B are right full
k-ideals of S, we have E+ ⊆ A and E+ ⊆ B. Now, let x ∈ E+. Then x ∈ A and x ∈ B,
so x = x + x ∈ A+ B. Thus E+ ⊆ A+ B ⊆ A+ B. Hence A+ B is a right full k-ideal
of S. Let a ∈ A. Then a = a+ a′ + a. We can show that a′ + a ∈ E+. Thus

a = a+ a′ + a = a+ (a′ + a) ∈ A+ E+ ⊆ A+ B ⊆ A+ B.

Hence A⊆ A+ B. We can prove in a similar manner that B ⊆ A+ B. This completes
the proof. ¤

Theorem 3.7. For an additively inverse seminearring S in which addition is
commutative, I(S) is a complete lattice which is also modular.

Proof. By Lemma 2.12, we have I(S) is a partially ordered set under inclusion.
Let A, B ∈ I(S). By Lemma 2.8, we have A∩ B ∈ I(S). By Lemma 3.6, we have
A+ B ∈ I(S). Define

A∧ B = A∩ B and A∨ B = A+ B.

Since A∧ B = A∩ B ⊆ A and A∧ B = A∩ B ⊆ B, we have A∧ B is a lower bound of
A and B. Let C ∈ I(S) be such that C ⊆ A and C ⊆ B. Then C ⊆ A∩ B = A∧ B, so
A∩ B is an infimum of A and B. Since A∨ B = A+ B and by Lemma 3.6, we have
A⊆ A+ B = A∨B and B ⊆ A+ B = A∨B. Thus A+ B is an upper bound of A and B.
Let D ∈ I(S) be such that A⊆ D and B ⊆ D. Then A+ B ⊆ D. By Lemma 2.10, we
have A+ B ⊆ D. By Corollary 3.5, we have D = D and so A+ B ⊆ D. Thus A+ B
is a supremum of A and B. Hence I(S) is a lattice. We shall show that I(S) is a
modular lattice. Let A, B, C ∈ I(S) be such that A∧ B = A∧ C and A∨ B = A∨ C
and B ⊆ C . Now, let x ∈ C . Then x ∈ A∨ C = A∨ B = A+ B. Thus there exists
a+ b ∈ A+ B such that x + a+ b ∈ A+ B, so x + a+ b = a1 + b1 for some a1 ∈ A
and b1 ∈ B. This implies that x + a+ a′ + b = x + a+ b+ a′ = a1 + b1 + a′. Since
x ∈ C , a + a′ ∈ C and b ∈ B ⊆ C , we have a1 + b1 + a′ ∈ C but b1 ∈ C . Thus
a1+a′ ∈ C . By Lemma 3.1, we have a1+a′ ∈ A and so a1+a′ ∈ A∩C = A∩B. Thus
a1 + a′ ∈ B. Since x + a+ b = a1 + b1, we have x + a+ a′ + b = a1 + a′ + b1 ∈ B.
Since (a+ a′) + b ∈ B and B is a right k-ideal of S, we have x ∈ B and so C ⊆ B.
Thus B = C . Therefore I(S) is a modular lattice. By Lemma 2.12, we get that I(S)
is complete. ¤

In comparison our above results with results of k-ideals of semirings, we see
that the set of all right full k-ideals of an additively inverse seminearring in which
addition is commutative forms a complete lattice which is also modular which is
an analogous result of full k-ideals of semirings.
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