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Extensions of Steffensen’s Inequality

W.T. Sulaiman

Abstract. Extension and new inequalities concerning Steffensen’s inequality are
presented.

1. Introduction

Steffensen’s inequality reads as follows:
Theorem 1.1. Assume that two integrable functions f(t) and g(t) are defined on
the interval (a, b), that f(t) non-increasing and that 0 < g(t) < 1in (a, b). Then

b b a+i
J f(t)dtsj f(t)g(t)dtSJ f(t)dt, (€))
a—X a a

where A = fab g(t)dt.

Prcaric [6], however, through some modification, gives the following

modification

Theorem 1.2. Let f : [0,1] — R be nonnegative and non-increasing function and
let g : [0,1] — R be an integrable function such that 0 < g(t) <1 forall t € [0,1].
Ifp>1, then

1 -
( f f(t)g(r)dr) sJ £, @
0 0

where A = (fol g(t)dt)p.
A mapping ¢ : R — R is said to be convex on [a, b] if

Ptx+(1-0)y)<tp(x)+(1-1t)p(y), x,y €[a,b],0<t<1. (3)

If (3) reverses, then ¢ is called concave.
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The aim of this paper is to give a generalization of Theorem 1.2, as well as other
results including a reverse of Steffensen’s inequality.

The following Lemma is needed
Lemma 1.3. The mapping ¢ (x) = x? is convex for p > 1, and concave for 0 < p < 1.
Proof. As

¢"(x)=p(p—DxP?>0,

then ¢ is convex. Also for 0 < p < 1, the concavity of ¢ follows from the inequality
¢”(x) <0. O

2. Results

The following gives a generalization of Theorem 1.2.

Theorem 2.1. Let f,g,¢ >0, 0< g <1, p>1 ¢(A/P) < A, where A =
p
(fol g(t)dt) , f is non-increasing. Then

A 1
f ¢ o f(x)dx z;vl/l’(p(xl/l’)f ¢ o f(x)g(x)dx. 4)
0 0

Proof. As ¢ >0 and f is non-increasing, then ¢ o f is non-increasing. Also,
ATVPG(AMPYIg(x) < ATVPP(AMP) < ATTVP <1,

then

A 1
f ¢ o f(x)dx — AP (21P) f ¢ o f(x)g(x)dx
0 0
A A 1
- f ¢ o f(x)dx - (A“P)U i f )¢ o F(x)g(x)dx
0 0 A
A A
- f ¢ 0 FOO(L = AP $(AIP)g(x))dx — AP (A1) f ¢ o f(x)g(x)dx
0 0
A 1
> ¢0f(A) U (1= AP g (P)g(x))dx — A~ P (AV?) f g(x)dx)
0 A

A 1
=¢of(x)(A—x1/P¢(x“P)U T f )g(x)dx)
0 A

1
—$of(A) (A - A-”%(A“P)J g(x)dx)
0

=¢ofMA -9 >0. O
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Remark 1. If we are putting ¢(x) = xP, p > 1, we obtain the inequality (2) as

A 1 p—1 1
f FP)dx > (J g(x)dx) f FP(0)g()dx
0 0 0

1 p
> (J f(x)g(x)dx) .
0

The following result is dealing with Steffensen’s inequality for p > 0.

follows

Tllleorem 2.2, Let f,g,¢ >0,0<g <1, f is non-increasing. ¢(p) >0, A¥Pg <1,
fo g(x)dx < A17%®) Then

2 1
J ¢of(x)dx > AW(p)J ¢of(x)glx)dx. 5)
0 0
Proof. As ¢ >0 and f is non-increasing, then ¢ o f is non-increasing. Also,
1
APlg <1 = AW(p)J glx)dx <1
0

= ALZ1.

Then, we have

A A 1
=J qbof(x)dx—w(f +J )«pof(x)g(x)dx
0 0 A

A 1
= J ¢ o f(x)(1 = 27Pg(x))dx — K‘”%(/““’)f ¢ o f(x)g(x)dx
0 A

A 1
> ¢ Of(l)(J (1-2¥Pg(x))dx — A‘”%(A”P)J g(X)dX)
0 A

A 1
=¢of(d) (A - A*"(P)U +J )g(x)dx)
0 A

1

= of()L)()L—)LWPJ

0

g(x)dx)

=¢of(M(A—A)>0. O

Corollary 2.3. Let f,g,¢ > 0, AV/P~lg < 1, f is non-increasing, p > 0, where
p
_ 1 2p-1
A= (fo g(t)dt) . Then

A 1
J ¢ o f(x)dx = AVP7! J ¢ o f(x)g(x)dx. (6)
0 0
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Proof. The proof follows from Theorem 2.2, by putting ¢(p) =1/p—1,0<p < 1.
O

The following gives another extension of Theorem 2.1

Theorem 2.4. Let f,g,h,¢ = 0, 0 < g < 1, f is non-increasing, p = 1,
(}5(ll/p) < f;h(x)dx, A—l/p¢(ll/P) Sh, where A = (fol g(t)dt)p. Then

A 1
J ¢ o f (x)h(x)dx — l‘”%(””)f ¢ o f(x)g(x)dx %)
0 0

Proof. As before, ¢ o f is non-increasing. Therefore

A 1
J ¢ o f(x)h(x)dx — l‘”%(?\”p)J ¢ o f(x)g(x)dx
0 0
A A 1
= f ¢ o f(x)h(x)dx — l‘”"(ﬁ(ll/")(J +f )¢ o f(x)g(x)dx
0 0 A
A
=f ¢ o f(x)(h(x) = AP H(AMP)g(x))dx
0
1
- l_”%(ll/P)J ¢ o f(x)g(x)dx
A

A 1
=¢ °f(?\)(f (h(x) = 272 (A P)g(x))dx — l‘”%@””)f g(X)dXJ
0 A

A A 1
=¢°f(7t)u h(x)dx—x-upw(xm’)(f +J )g(x)dx)
0 0 A

A

=¢°f(l)(f h(x)dx—qb(kl/l’)) > 0. 0
0

The following gives a reverse inequality

Theorem 2.5. Let f,g,¢ > 0, ¢ is concave with ¢(0) = 0, f is non-decreasing,
p
0<g<lp>landA= (folg(t)dt) . Then

A 1
f ¢ o f(x)dx < ¢(A“/PJ f(x)g(x)dx). ®
0 0

Proof.

A 1
f ¢ o f(x)dx— (A”/Pf f(X)g(x)dx)
0 0
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A 1
= f b0 reax = (2577 J Fgadx
0 0
A 1 1
< J b0 Fex =29 317 f Fga)dx
0 0

(as ¢ is concave with ¢(0) =0)

p f
< f ¢ o f (x)dx — AP (f ¢ of(x)g(x)dx)
0 0

(by Jensen’s inequality)

A A 1
=J ¢°f(X)dx—7tl_1/p(f +J )¢°f(X)g(X)dx
0 0 A

A 1
= J ¢ o f()(1 = A VPg(x))dx — /lll/pf ¢ o f(x)g(x)dx
0 A

A 1
<¢ Of(l)(f (1—-21"Pg(x))dx — ll_”pf g(X)dX)
0 A

A 1
—$of(N) (A - AH/PU i f )g(x)dx)
0 A

1

=¢of(d) (A — Al f g(x)dx)
0

=¢of(A)(A-2)=0. O

Corollary 2.6. Let f,g >0, f is non-decreasing, 0 < g<1,p>1,0<g <1, and
p
A= (fol g(t)dt) . Then

2 1 q
J Fix)dx < Aq-q/PU FgCd ) ©
0 0
Proof. The proof follows from Theorem 2.5 by pitting ¢(x) =x?,0<q<1. O
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