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1. Introduction
Rolling contact is used in many areas of robotics and engineering such as spherical robots,
single wheel robots, and multifingered robotic hands to drive from one configuration (position
and orientation) to another. In mechanical systems, rolling contact without sliding engenders a
non-integrable kinematic constraints on the system’s velocity which are called non-holonomic
constraints. This non-holonomy calls for the two contact loci have equal arc lengths in a given
time interval [10].

There are two categories of kinematics of the rolling contact. The first is pure-rolling motion
and the second is spin-rolling motion [8]. On the other hand, in the rolling contact, there are two
geometric constraints. The first is that the unit normal vectors of the two surfaces are made to
coincide at the contact point. The second is that the contact points have the same velocity. To put
it another way, the two contact trajectory curves are tangent to each other and have the same
rolling rate. Thus, a moving surface has spin-rolling motion or pure-rolling motion under these
two geometric constraints. Further, there is another constraint for a surface to have pure-rolling
motion. This constraint is explicitly demonstrated to be that the two contact trajectories have
the same geodesic curvature, that is, the angular velocity ω3 in the direction of the unit normal
vector n to the surface is zero. Thus, the contact trajectories are not arbitrary [9]. Pure-rolling
motion has 2 degrees of freedom (DOFs). It has instantaneous rotation axis passes through
the contact point in all cases and this axis is parallel to the common tangent plane of two
surfaces. Spin-rolling motion, which is also called twist-rolling motion, has 3 degrees of freedom
(DOFs) consisting of three angular velocity components: ω1, ω2 about the axes T and g on
the tangent plane, respectively, and ω3 about the common normal axis n at the contact point.
Its instantaneous rotation axis can be in any arbitrary direction which is the characteristic
difference from pure-rolling motion [8].

The contact kinematics is given in two classifications. The first is forward kinematics and the
second is inverse kinematics. The forward kinematics includes the problem of using kinematic
equations as the inputs of the geometry of the two surfaces and the contact locus on each surface
to compute the motion of the moving surface as the output. The inverse kinematics includes the
problem of determining the control parameters that give the moving surface the desired motion
as the inputs of the geometry of two surfaces and the desired angular velocity of the moving
surface. These inputs are the angular velocity components ω1, ω2 and ω3 [9,10].

Many researchers have extensively studied kinematics of a point contact between rigid
bodies. Neimark and Fufaev [17] were the first to adopt the moving frame along the lines of
curvature to derive the velocity equation of spin-rolling motion. Cai and Roth [4,5] investigated
instantaneous time-based kinematics of rigid objects in point contact, both in planar and
spatial cases, and focused on two special motions, including sliding and pure-rolling motion
and they aimed to measure the relative motion at the point of contact. Montana [15] studied
the kinematics of sliding-spin-rolling motion and derived a differential-geometric model of the
rolling constraint between general bodies. Li and Canny [13] used Montana’s contact equations
to investigate the existence of an admissible path between two configurations in the case of
pure rolling and, if it does, then how to find it. Sarkar et al. [21] extended Montana’s definition
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but with a different approach by obtaining the acceleration equations and they demonstrated
the obvious dependence on Christoffel symbols and they simplified the derivative of the metric
tensor. Marigo and Bicchi [14] obtained similar equations with Montana’s contact equations
using a different approach that allowed an analysis of admissibility of a pure-rolling contact.
Agrachev and Sachkov [1] solved the controllability problem of a pair of pure-rolling rigid bodies.
Chelouah and Chitour [6] gave two procedures to analyze the motion-planning problem when one
manifold was a plane and the other was a convex surface. Chitour et al. [7] investigated the pure-
rolling of a pair of smooth convex objects, with one being over another under quantized control.
Tchon [22] identified the property of repeatability of inverse-kinematics algorithms for mobile
manipulators and formulated a necessary and sufficient condition under repeatability. Tchon
and Jakubiak [23] designed an extended Jacobian repeatable inverse kinematics algorithm for
doubly nonholonomic mobile manipulators based on the concept of endogenous configuration
space. Cui and Dai [8] investigated the forward kinematics of spin-rolling motion without sliding
by applying the moving-frame method and then Cui [9] studied the kinematics of sliding-rolling
motion of two contact surfaces. Cui and Dai [10] also investigated the inverse kinematics of
rolling contact by using polynomial formulation when the desired angular velocity and the
coordinates of the contact point on each surface were given in Euclidean 3-space. Then, they
obtained admissible rolling motion between two contact surfaces. For the fundamental concepts
of kinematics (see [3,12,16]).

This paper is organized as follows: In Section 2, we give basic concepts in Lorentzian 3-space.
In Section 3, we study the forward kinematics of spin-rolling without sliding of one timelike
surface on another timelike surface by applying the moving-frame method. Initially, we give
the Darboux-frame-based translational velocity formulation of an arbitrary point in Lorentzian
3-space. Then, we obtain a new equation of angular velocity with respect to the rolling speed and
two sets of geometric invariants containing the geodesic curvature, the normal curvature, and
the geodesic torsion, namely {kg,kn,τg}, {k̄g, k̄n, τ̄g}. We determine the instantaneous kinematics
of a timelike moving surface by applying the translational velocity formulation and the angular
velocity equation. Then, we give two examples that present spin-rolling motion and pure-rolling
motion of two timelike surfaces without sliding, respectively. In Section 4, we give a conclusion.

2. Preliminaries
In this section, we give a brief summary of basic concepts for the reader who is not familiar
with Lorentzian 3-space ([2,19,20,24]).

Lorentzian space R3
1 is the real vector space R3

1 endowed with the Lorentzian inner product
given by

〈a,b〉 = a1b1 +a2b2 −a3b3,

where a = (a1,a2,a3), b = (b1,b2,b3) ∈R3
1.

According to this metric, an arbitrary vector a = (a1,a2,a3) in R3
1 can have one of three

Lorentzian causal characters: if 〈a,a〉 > 0 or a = 0 then a is called a spacelike vector; if 〈a,a〉 < 0
then a is called a timelike vector; if 〈a,a〉 = 0 and a 6= 0 then a is called a null (lightlike)
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vector [19]. We note that a timelike vector is future pointing or past pointing if the first
compound of vector is positive or negative, respectively. The norm of a vector a ∈R3

1 is given by
‖a‖ =p|〈a,a〉|. If the vector a is a spacelike vector, then ‖a‖2 = 〈a,a〉; if a is a timelike vector,
then ‖a‖2 =−〈a,a〉 [24].

Let a = (a1,a2,a3) and b = (b1,b2,b3) be two vectors in R3
1. Then Lorentzian vector product

of a and b can be defined by

a×b = (a3b2 −a2b3,a1b3 −a3b1,a1b2 −a2b1) [24].

Definition 2.1 ([2,20]). (i) Hyperbolic angle: Let a and b be future pointing (or past
pointing) timelike vectors in R3

1. Then there is a unique real number θ ≥ 0 such that
〈a,b〉 =−‖a‖‖b‖coshθ, and this number is called the hyperbolic angle between the vectors
a and b.

(ii) Central angle: Let a and b be spacelike vectors in R3
1 and they span a timelike vector

subspace. Then there is a unique real number θ ≥ 0 such that 〈a,b〉 = ‖a‖‖b‖coshθ, and
this number is called the central angle between the vectors a and b.

(iii) Spacelike angle: Let a and b be spacelike vectors in R3
1 and they span a spacelike vector

subspace. Then there is a unique real number θ ≥ 0 such that |〈a,b〉| = ‖a‖‖b‖cosθ, and
this number is called the spacelike angle between the vectors a and b.

(iv) Lorentzian timelike angle: Let a be a spacelike vector and b be a timelike vectors in
R3

1. Then there is a unique real number θ ≥ 0 such that |〈a,b〉| = ‖a‖‖b‖sinhθ, and this
number is called the Lorentzian timelike angle between the vectors a and b.

An arbitrary curve α=α(s) in R3
1 can locally be spacelike, timelike, or null (lightlike), if all

of its velocity vectors dα/ds are spacelike, timelike, or null (lightlike), respectively. A surface in
Lorentzian space R3

1 is called a spacelike (timelike) surface if the normal vector of the surface is
a timelike (spacelike) vector [19]. The Lorentzian and hyperbolic unit spheresare given by

S2
1 = {a = (a1,a2,a3) ∈R3

1 : 〈a,a〉 = 1} and H2
0 = {a = (a1,a2,a3) ∈R3

1 : 〈a,a〉 =−1},

respectively. It is easy to show that the hyperbolic unit sphere is a timelike surface and
Lorentzian unit sphere is a timelike surface. Let S be a timelike surface and α=α(s) be any
curvelying on the surface S. Then, the curve α is either spacelike, timelike or lightlike. When α

is given as a spacelike curve, Darboux frame (T, g,n) of α is a solid perpendicular trihedron in
R3

1 associated with each point M ∈α, where T is the unit tangent spacelike vector to the curve
α, n is the unit spacelike normal vector to the timelike surface S and g = n×T (that is, g is
tangential to S which is also a timelike vector) at the point M. We should note that

T × g =−n, g×n =−T, n×T = g and 〈T,T〉 = 1, 〈g, g〉 =−1, 〈n,n〉 = 1 .

Then the derivative formulae (the equations of motion) of the Darboux frame (trihedron) is
given by

dm
ds

= T,
d
ds

T
g
n

=
 0 kg −kn

kg 0 τg
kn τg 0

T
g
n

 ,
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where m is the position vector of the point M that depends on the choice of the coordinate
system. Furthermore, the position vector corresponding to an arbitrary trajectory curve on
a surface in R3

1 may have three causal characters. Hence, we can express that m is either
spacelike, timelike or lightlike position vector. The components of the vector m are obtained
from the measurement along the axes of the coordinate system. In these formulae, kg, kn and
τg are called the geodesic curvature, the normal curvature and the geodesic torsion, respectively.
It is easy to see that the geodesic curvature kg, the normal curvature kn and the geodesic
torsion τg of the spacelike curve α can be given by

kg =−〈dT/ds, g〉, kn =−〈dT/ds,n〉, τg = 〈dg/ds,n〉.
The Darboux instantaneous rotation vector of the Darboux trihedron is defined by

ω=−τgT −kn g+kgn [24].

Then, for a spacelike curve α(s) lying on a timelike surface S, we have the following
characterizations [24]: α(s) is

(i) geodesic ⇔ kg = 0,

(ii) asymptotic ⇔ kn = 0,

(iii) principal ⇔ τg = 0.

3. The Forward Kinematics of Rolling Contact of Timelike Surfaces

In this section, we study the forward kinematics of rolling contact of timelike surfaces with
spacelike trajectory curve by applying the Darboux frame method in Lorentzian 3-space. The
main contribution of this section is that a new equation of the angular velocity of the spin-rolling
motion of a timelike moving surface is formed. The new formulation is specified with regards to
three contravariant vectors and geometric invariants, which are arc lengths of the spacelike
contact trajectory curves and the induced curvatures of the two timelike surfaces.

In tensor analysis, a contravariant vector is a type (1,0) tensor. While the components
of a contravariant vector may change depending on the change of a coordinate system, the
contravariant vector itself does not change. When the angular velocity formulation is formed in
a coordinate system, change of the coordinate system results only in the change of components
of contravariant vectors, and it does not change the formulation. In this context, the formulation
is coordinate-invariant.

3.1 The Geometric Kinematics of Spin-rolling Motion
Firstly, we give the geometric kinematics of spin-rolling motion of two contact timelike surfaces.
We note that during the rolling motion, both of the two timelike surfaces have the same spacelike
unit normal vectors at the contact point. When a timelike fixed surface and a timelike moving
surface relative to fixed surface undergo spin-rolling motion without sliding as in Figure 1, they
maintain their timelike surface characters at every moment.
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Figure 1. Timelike moving surface S2 spin-rolling on timelike fixed surface S1 along spacelike curves β
and α

Now, let α and β be spacelike contact-trajectory curves on timelike surfaces S1 and S2,
respectively. Let us denote the Darboux frames (the right-handed orthonormal frames)attached
to the contact point M of spacelike curves α and β as (T, g,n) and (T̄, ḡ, n̄), respectively. The
vectors T, g,n and T̄, ḡ, n̄ are the contravariant vectors of the timelike fixed and timelike moving
surfaces, respectively and there is not any intrinsic coordinate system for these contravariant
vectors. By rolling constraints,the contravariant vectors T and T̄ are always collinear and,
consequently, are n and n̄. Therefore, the two frames can always be made to coincide, as shown
in Figure 1, where n points outward of the surface S1, and n̄ points inward of the surface S2.
Let s and s̄ be the arc lengths of spacelike curve α and spacelike curve β, respectively. Then the
derivative formulas of the Darboux frames (T, g,n) and (T̄, ḡ, n̄) are

dm
ds

= T,
d
ds

T
g
n

=
 0 kg −kn

kg 0 τg
kn τg 0

T
g
n


and

dm̄
ds̄

= T̄,
d
ds̄

T̄
ḡ
n̄

=
 0 k̄g −k̄n

k̄g 0 τ̄g
k̄n τ̄g 0

T̄
ḡ
n̄

 ,

where m and m̄ are the position vectors of the point M with respect to the Darboux frames
(T, g,n) and (T̄, ḡ, n̄), respectively. Both m and m̄ have three causal characters. Now, let P
denote an arbitrary point on S2. Then we can write the (spacelike, timelike or lightlike) position
vector,denoted by p̄, of the point P in the frame (T̄, ḡ, n̄) as

p̄ = m̄+ λ̄1T̄ + λ̄2 ḡ+ λ̄3n̄ .

Differentiating p̄ with respect to s̄ gives
dp̄
ds̄

=
(
1+ dλ̄1

ds̄
+ λ̄2k̄g + λ̄3k̄n

)
T̄ +

(
dλ̄2

ds̄
+ λ̄1k̄g + λ̄3τ̄g

)
ḡ+

(
dλ̄3

ds̄
− λ̄1k̄n + λ̄2τ̄g

)
n̄, (1)
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where k̄g , k̄n and τ̄g are the geodesic curvature, the normal curvature, and the geodesic torsion
at point M of β, respectively. Since P is a fixed point of S2, then

dp̄
ds̄

= 0 .

Not that dp̄
ds̄ is a spacelike vector. Putting this into (1) gives

dλ̄1

ds̄
=−λ̄2k̄g − λ̄3k̄n −1 ,

dλ̄2

ds̄
=−λ̄1k̄g − λ̄3τ̄g ,

dλ̄3

ds̄
= λ̄1k̄n − λ̄2τ̄g .

We can also write the (spacelike, timelike or lightlike) position vector, denoted by p, of the point
P in the frame (T, g,n) as

p = m+λ1T +λ2 g+λ3n .

Differentiating p with respect to s gives
dp
ds

=
(
1+ dλ1

ds
+λ2kg +λ3kn

)
T +

(
dλ2

ds
+λ1kg +λ3τg

)
g+

(
dλ3

ds
−λ1kn +λ2τg

)
n, (2)

where kg , kn and τg are the geodesic curvature, the normal curvature, and the geodesic torsion
at point M of α, respectively. The vector p has three causal characters and, therefore, dp

ds has
three causal characters. By the constraints for rolling contact, two spacelike contact trajectory
curves have the same arc lengths at the contact point. Since the Darboux frames (T, g,n) and
(T̄, ḡ, n̄) are made to coincide at any moment, it follows that

λ1 = λ̄1, λ2 = λ̄2, λ3 = λ̄3

and consequently
dλ1

ds
= dλ̄1

ds̄
,

dλ2

ds
= dλ̄2

ds̄
,

dλ3

ds
= dλ̄3

ds̄
. (3)

Substituting (1) and (3) into (2) gives
dp
ds

= (−λ2k∗
g −λ3k∗

n)T + (−λ1k∗
g −λ3τ

∗
g)g+ (λ1k∗

n −λ2τ
∗
g)n, (4)

where

k∗
g = k̄g −kg , k∗

n = k̄n −kn , τ∗g = τ̄g −τg .

The scalars k∗
g, k∗

n and τ∗g are called induced geodesic curvature, induced normal curvature,
and induced geodesic torsion, respectively. In Euclidean 3-space, for the Darboux trihedron and
the induced curvatures (see [9,11]).

3.2 Darboux-frame-based Velocity Formulation of Spin-rolling Motion
The velocity of an arbitrary point P on the timelike moving surface S2 in terms of time t can be
obtained from (4) as follows:

vP = dp
ds

ds
dt

=σ(−λ2k∗
g −λ3k∗

n)T +σ(−λ1k∗
g −λ3τ

∗
g)g+σ(λ1k∗

n −λ2τ
∗
g)n, (5)

where σ= ds/dt is the magnitude of rolling velocity. Not that vP has three causal characters.
This equation gives the Darboux-frame-based translational-velocity formulation of an arbitrary
point. Let the angular velocity of S2 relative to timelike fixed surface S1 be

ω=ωxT +ωy g+ωzn . (6)
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If rMP =λ1T +λ2 g+λ3n is also given, then the velocity of the point P can be obtained as

vP =ω× rMP = (λ2ωz −λ3ωy)T + (λ1ωz −λ3ωx)g+ (λ1ωy −λ2ωx)n . (7)

When the eq. (5) is compared with the eq. (7), we obtain that

ωx =στ∗g , ωy =σk∗
n , ωz =−σk∗

g . (8)

From (6) and (8), the angular velocity of S2 can be obtained as

ω=σ(τ∗gT +k∗
n g−k∗

gn) . (9)

The equation (9) contains three terms. The first two terms give the pure-rolling velocity about
an axis in the timelike tangent plane at the contact point and the third term gives the velocity
of spin motion about the spacelike unit normal direction at the contact point in Lorentzian
3-space. Therefore, the pure-rolling velocity can be given by στ∗gT +σk∗

n g and the velocity of
spin motion can be given by −σk∗

gn. As a result, the timelike moving surface can follow the
desired trajectory spacelike curve on the timelike fixed surface by the help of these three terms.
We note that a pure-rolling motion does not have spin-rolling motion in the direction of the unit
spacelike normal of the timelike surfaces. Then we give the following results:

(i) Let two timelike surfaces undergo pure-rolling motion in Lorentzian 3-space. Then the
geodesic curvatures of the two corresponding contact-trajectory spacelike curves have to
be equal, that is, kg = k̄g.

(ii) Let contact-trajectory spacelike curves α and β be geodesics on timelike surfaces S1 and
S2, respectively. Then the rolling motion consists of a pure-rolling motion in Lorentzian
3-space.

3.3 Examples
In this section, two examples are presented. The first example demonstrates the spin-rolling
motion of a unit timelike cylinder on a timelike plane. The second example demonstrates the
pure-rolling motion of a Lorentzian unit sphere on a timelike cylinder with radius 1

2 .

3.3.1 Spin-rolling Motion of a Unit Timelike Cylinder on a Timelike Plane

Let a unit timelike cylinder (surface S2) rolls without sliding on a timelike plane (surface S1)
at a contact point M along spacelike curves α and β (see Figure 2).

Assume that spacelike curves α and β are parameterized by arc lengths s and s̄, respectively.
Let denote the Darboux frames (the right-handed orthonormal frames) attached to the contact
point M of the curves α and β as (T, g,n) and (T̄, ḡ, n̄), respectively.Suppose the parametric
equation of timelike plane is given by

x(u,v)= (−v,0,u),

and let α be a spacelike ellipse lying on the timelike plane parameterized as

α(t)= x(u(t),v(t))= (2sinh t,0,−1+cosh t).

The derivative of s with respect to t is

ds
dt

=
√〈

dα
dt

,
dα
dt

〉
=

√
1+3cosh2 t .
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Figure 2:Spin-rolling of a unit timelike cylinderon a timelike plane  
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Figure 2. Spin-rolling of a unit timelike cylinder on a timelike plane along spacelike curves β and α.

The unit spacelike tangent vector T is obtained as

T = dα
ds

= dα
dt

/ds
dt

= 1√
1+3cosh2 t

(2cosh t,0,sinh t) . (10)

We assume that the unit spacelike normal vector n be outward and it is obtained as

n = xu × xv

‖xu × xv‖
=

∣∣∣∣∣∣
−i − j k
0 0 1
−1 0 0

∣∣∣∣∣∣
/
‖xu × xv‖ = (0,1,0) (11)

The unit timelike vector g, which is tangential to S1, is obtained as

g = n×T = 1√
1+3cosh2 t

(−sinh t,0,−2cosh t) . (12)

When the algebraic operation is applied, the geodesic curvature, the normal curvature, and
the geodesic torsion of the spacelike curve α is obtained as

kg =−〈dT/dt, g〉/ds
dt = −2

(1+3cosh2 t)3/2 ,

kn =−〈dT/dt,n〉/ds
dt = 0,

τg = 〈dg/dt,n〉/ds
dt = 0,

 (13)

respectively. It is clear that the curve α is both principal and asymptotic.

Now, if we parameterize the unit timelike cylinder as

y(ū, v̄)= (sin v̄,1+cos v̄, ū),

(see Figure 2). Let β be a spacelike v̄-parametric curve (namely, a unit spacelike circle) lying on
the unit timelike cylinder parameterized as

β(v̄)= y(0, v̄)= (sin v̄,1+cos v̄,0),
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where ū = ū0 = 0. Since the differentiation of arc length s̄ of the curve β with respect to v̄ is
ds̄
dv̄ =

∥∥∥dβ
dv̄

∥∥∥= 1, it is clear that β is a unit-speed curve.

The unit spacelike tangent vector T̄ is given by

T̄ = (cos v̄,−sin v̄,0). (14)

Let the unit spacelike normal vector n̄ be inward and it is obtained as

n̄ =− yū × yv̄

‖yū × yv̄‖

=−
∣∣∣∣∣∣
−i − j k
0 0 1

cos v̄ −sin v̄ 0

∣∣∣∣∣∣
/
‖yū × yv̄‖

= (sin v̄,cos v̄,0). (15)

The unit timelike vector ḡ, which is tangential to S2, is obtained as

ḡ = n̄× T̄ = (0,0,−1) . (16)

The geodesic curvature, the normal curvature, and the geodesic torsion of the spacelike curve
β is obtained as

k̄g =−〈dT̄/dv̄, ḡ〉/ ds̄
dv̄ = 0,

k̄n =−〈dT̄/dv̄, n̄〉/ ds̄
dv̄ = 1,

τ̄g = 〈dḡ/dt, n̄〉/ ds̄
dv̄ = 0,

 (17)

respectively. It is clear that the curve β is both principal and geodesic. From (9), the angular
velocity of the unit timelike cylinder is obtained as

ω=σ
(
g− 2

(1+3cosh2 t)3/2
n
)
. (18)

The coordinate of the center point P of the unit cylinder in the frame (T, g,n) at point m is
origin. From Darboux-frame-based translation formulation (5) and (7), the velocity of point P is

vP =ω× rMP =σ
(
g− 2

(1+3cosh2 t)3/2
n
)
× (n)=−σT .

After the information is used from the velocity formulation to control the timelike moving
surface to follow the desired trajectory spacelike curve α lying on the fixed timelike surface,
a brief discussion is provided. Moving surface has 2 DOFs. At any instant, the first term σ of
(18) gives the angular velocity about the axis that is perpendicular to the unit timelike cylinder.
The second term −2σ/(1+3cosh2 t)3/2 gives the information about how fast the unit cylinder
spins to follow the curve α and, in this way, yields the new tangent direction of the trajectory
curve α. This information is used as the inputs of the control system to make unit cylinder
follow the trajectory curve α.

3.3.2 Pure-rolling Motion of the Lorentzian Unit Sphere on a Timelike Cylinder with Radius 1/2

Let a Lorentzian unit sphere (surface S2) S2
1 rolls without sliding on a timelike cylinder with

radius 1/2 (surface S1) at a contact point M along spacelike curves α and β (see Figure 3).
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Assume that spacelike curves α and β are parameterized by arc lengths s and s̄, respectively.
Let denote the Darboux frames (the right-handed orthonormal frames) attached to the contact
point M of the curves α and β as (T, g,n) and (T̄, ḡ, n̄), respectively. Suppose the parametric
equation of the timelike cylinder with radius 1

2 is given by

x(u,v)=
(
1+cosv

2
,− up

3
+ sinvp

3
,
−2up

3
+ sinv

2
p

3

)
,

which is generated by rotating the surface x1(u,v) = (1+cosv
2 , sinv

2 ,−u
)

around x-axis with the

central angle arccosh
(

2p
3

)
in the negative direction, and let α be a spacelike helix curve lying

on the timelike cylinder parameterized as

α(t)= x (u(t),v(t))= x
(

t
4

, t
)
=

(
1+cos t

2
,− t

4
p

3
+ sin tp

3
,
−t

2
p

3
+ sin t

2
p

3

)
.

The differentiation of s of curve α with respect to t is obtained as

ds
dt

=
√〈

dα
dt

,
dα
dt

〉
=

p
3

4
.

The unit spacelike tangent vector T of curve α is obtained as

T = T(
t
4

, t)= dα
ds

= dα
dt

/
ds
dt

= 4p
3

(−sin t
2

,− 1

4
p

3
+ cos tp

3
,− 1

2
p

3
+ cos t

2
p

3

)
(19)

Let the unit spacelike normal vector n be outward and it is obtained as

n = n(
t
4

, t)=
(
−cos t,−2sin tp

3
,−sin tp

3

)
(20)

The unit timelike vector g, which is tangential to S1, is obtained as

g = g(
t
4

, t)= 4p
3

(
−sin t

4
,
−1+cos t

2
p

3
,
−4+cos t

4
p

3

)
(21)
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The geodesic curvature, the normal curvature, and the geodesic torsion of the spacelike helix
curve α lying on timelike cylinder is obtained as

kg =−〈dT/dt, g〉
/ds

dt
= 0, kn =−〈dT/dt,n〉

/ds
dt

=−8
3

, τg = 〈dg/dt,n〉
/ds

dt
= 4

3
, (22)

respectively. It is clear that the curve α is a geodesic.

Now, let us parameterize the Lorentzian unit sphere S2
1 as

y(ū, v̄)= (cos v̄cosh ū,sin v̄cosh ū,sinh ū) .

Let β be a spacelike v̄-parametric curve (namely, a unit spacelike circle) lying on S2
1

parameterized as

β(v̄)= y(0, v̄)= (cos v̄,sin v̄,0),

where ū = 0. Since the differentiation of s̄ with respect to v̄ is ds̄
dv̄ =

∥∥∥dβ
dv̄

∥∥∥= 1, it is clear that β is
a unit-speed curve. The unit spacelike tangent vector T̄ of curve β is given by

T̄ = dβ
dv̄

= (−sin v̄,cos v̄,0) . (23)

Let the unit spacelike normal vector n̄ of S2
1 be inward (points origin) and it is obtained as

n̄ =− yū × yv̄

‖yū × yv̄‖
= (−cos v̄,−sin v̄,0). (24)

The unit timelike vector ḡ, which is tangential to S2, is obtained as

ḡ = n̄× T̄ = (0,0,−1) (25)

The geodesic curvature, the normal curvature, and the geodesic torsion of the spacelike curve β
is obtained as

k̄g =−〈dT̄/dv̄, ḡ〉 = 0, k̄n =−〈dT̄/dv̄, n̄〉 =−1, τ̄g = 〈dḡ/dv̄, n̄〉 = 0, (26)

respectively. It is clear that the curve β is both principal and geodesic. From (9), the angular
velocity of Lorentzian unit sphere is obtained as

ω=σ
(
−4

3
T + 5

3
g
)
.

Consequently, we can see that this method is expressed with regards to geometric invariants
that can be easily applied to arbitrary timelike parametric surfaces and spacelike curves.

4. Conclusion
In this paper, we adopt the Darboux frame method to investigate the forward kinematics of the
instantaneous spin-rolling motion and pure-rolling motion between the timelike moving surface
and the timelike fixed surface through the contact point in Lorentzian 3-space. We remark
that both the fixed and moving surfaces always maintain their causal character during the
rolling motion. The forward kinematics of the moving surface is determined by the magnitude
of rolling velocity σ and induced curvatures k∗

g ,k∗
n and τ∗g . The result was given with regards to

geometric invariants that can be easily generalized to arbitrary timelike parametric surfaces
and spacelike contact curves.
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