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Abstract. A labeling of a graph is a mapping that carries some set of graph elements into numbers
(usually positive integers). Graceful labeling of a graph with q edges is an injection from the set of
its vertices to the sequence {0,1,2, . . . , q} such that the values of edges are all integers from 1 to q,
the value of an edge being absolute value of the difference between the integers attributed to its
end vertices. In 2009, Sethuraman [8] posed a problem of labeling of arbitrary supersubdivision of
graph. Fact that all cycles are not graceful in general, it was intresting to study same for arbitrary
supersubdivisions of cycles. This inspiration lead us to some good results. In this paper, we prove that
Even arbitrary supersubdivision of cycle is graceful. We also prove that Odd arbitrary supersubdivision
of cycle Cn, for n even is graceful and for n odd is not graceful.
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1. Introduction
We consider finite undirected graphs without loops and multiple edges. The class of graceful

labeling was first introduced by A. Rosa, 1967 which he had named as β-valuation [7]. The name
graceful labeling was later given by Solomon Golomb. A lot of research has been done on graceful
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graphs. Kathiresan [4] has proved that subdivision of ladder are graceful. Sethuraman and
Selvaraju [8] have introduced supersubdivision of graphs and proved that there exists a graceful
arbitrary supersubdivision of Cn, n ≥ 3 with certain conditions. Later, in 2004, Kathiresan [3]
also proved that arbitrary supersubdivision of stars are graceful. Ramchandran and Sekar [6]
have given graceful labeling of supersubdivision of ladder.

First we understand few basic definitions which we need throughout the discussion. We also
have to decide certain notations for various graphs for better reference. Then we proceed for
main section of results which are already mentioned in abstract.

2. Definitions
Definition 2.1 (Cycle). Cycle is a graph with an equal number of vertices and edges where
vertices can be placed around circle so that two vertices are adjacent if and only if they appear
consecutively along the circle. The cycle is denoted by Cn.

Definition 2.2 (Subdivision of a Graph). Let G be a graph with p vertices and q edges. A graph
H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once.
H is denoted by S(G). Thus, |V | = p+ q and |E| = 2q.

Definition 2.3 (Supersubdivision of a Graph). Let G be a graph with p vertices and q edges.
A graph H is said to be a supersubdivision of G if it is obtained from G by replacing every
edge e of G by a complete bipartite graph K2,m. H is denoted by SS(G). Thus, |V | = p+mq and
|E| = 2mq.

Definition 2.4 (Arbitrary Supersubdivision of a Graph). Let G be a graph with p vertices and
q edges. A graph H is said to be a arbitrary supersubdivision of G if it is obtained from G by
replacing every edge e i of G by a complete bipartite graph K2,mi , i = 1,2, . . . , q. H is denoted by

ASS(G). Thus, |V | = p+
q∑

i=1
mi and |E| =

q∑
i=1

2mi .

Definition 2.5 (Even Arbitrary Supersubdivision of a Graph). Let G be a graph with p vertices
and q edges. A graph H is said to be a even arbitrary supersubdivision of G if it is obtained
from G by replacing every edge e i of G by a complete bipartite graph K2,mi , where mi is even,

i = 1,2, . . . , q. H is denoted by EASS(G). Thus, |V | = p+
q∑

i=1
mi and |E| =

q∑
i=1

2mi .

Definition 2.6 (Odd Arbitrary Supersubdivision of a Graph). Let G be a graph with p vertices
and q edges. A graph H is said to be a odd arbitrary supersubdivision of G if it is obtained
from G by replacing every edge e i of G by a complete bipartite graph K2,mi , where mi is odd,

i = 1,2, . . . , q. H is denoted by OASS(G). Thus, |V | = p+
q∑

i=1
mi and |E| =

q∑
i=1

2mi .

Definition 2.7 (Graceful Labelling). Let G be a graph with q edges. A graceful labeling of G
is an injection from the set of its vertices to the sequence {0,1,2, . . . , q} such that the values of
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edges are all integers from 1 to q, the value of an edge being the absolute value of the difference
between the integers attributed to its end vertices.

3. Notations
In the complete bipartite graph K2,m, we call the part consisting of two vertices, the

2-vertices part of K2,m and the part consisting of m vertices, the m-vertices part of K2,m.
Let Cn be a cycle of length n. Let c1, c2, . . . , cn be the vertices of cycle. Let ck

i,i+1, k = 1,2, . . . ,mi

be the vertices of the mi-vertices part of K2,mi merged with the edge ci ci+1 for i = 1,2, . . . ,n−1
and k = 1,2, . . . ,mi . Let ck

n,1, k = 1,2, . . . ,mn be the vertices of the mn-vertices part of K2,mn

merged with the edge cnc1 and k = 1,2, . . . ,mn.

|V | = n+
n∑

i=1
mi = n+m ,

|E| = 2m1 +2m2 + . . .+2mn = 2

(
n∑

i=1
mi

)
= 2m, where

n∑
i=1

mi = m .

For example, if n = 7 and m1 = 5, m2 = 4, m3 = 6, m4 = 2, m5 = 5, m6 = 4, m7 = 3 then vertex
labeling is as follows:

c1

c2

c3

c4
c5

c6

c7

c1
7,1

c2
7,1

c3
7,1

c1
1,2

c2
1,2

c3
1,2

c4
1,2

c5
1,2

c1
2,3

c2
2,3

c3
2,3

c4
2,3

c1
3,4

c2
3,4

c3
3,4

c4
3,4

c5
3,4

c6
3,4

c1
5,6

c2
5,6

c3
5,6

c4
5,6

c5
5,6

c1
4,5

c2
4,5

c1
6,7

c2
6,7

c3
6,7

c4
6,7

Figure 1. Graph with n = 7 with general vertex labels
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4. Main Results
Theorem 4.1. Even Arbitrary supersubdivision of Cn, i.e. EASS(Cn) is graceful.

Proof. Define the following labeling f : V → {0,1,2, . . . ,2m}

f (c1)= 0 .

Case (i): If n is even.

f (cr)= 2(r−1) for r = 2,3, . . . ,
n
2

f (cn−r)= 1+2r for r = 0,1,2, . . . ,
n
2
−2

f
(
c n

2 +1
)= f

(
c n

2

)+1

Case (ii): If n is odd.

f (cr)= 2(r−1) for r = 2,3, . . . ,
n+1

2

f (cn−r)= 1+2r for r = 0,1,2, . . . ,
n−3

2
f
(
ck

n,1
)= 2m−2(k−1) k = 1,2, . . . ,mn.

α1 = f (c1)+2m−2mn

If n is even, for i = 2, . . . , n−2
2 and if n is odd, for i = 2, . . . , n−1

2

αi = f (ci)+2m−2

(
i−1∑
r=1

mr

)
−2

(
i−1∑
r=0

mn−r

)
.

For k = 1,3,5, . . . ,mi −1,

f
(
ck

i,i+1
)=αi −4(l−1)=αi +4−4l , l = 1,2, . . . ,

mi

2
.

For k = 2,4,6, . . . ,mi,

f
(
ck

i,i+1
)=αi −1−4(l−1)=αi +3−4l , l = 1,2, . . . ,

mi

2
.

If n is even, for r = 1,2, . . . , n
2 −1 and if n is odd, for r = 1,2, . . . , n−3

2

βr = f (cn−r+1)+2m−2

(
r−1∑
i=0

mn−i

)
−2

(
r∑

i=1
mi

)
.

For k = 1,3,5, . . . ,mn−r −1,

f
(
ck

n−r,n−r+1
)=βr −4(l−1)=βr +4−4l , l = 1,2, . . . ,

mn−r

2
.

For k = 2,4,6, . . . ,mn−r,

f
(
ck

n−r,n−r+1
)=βr −1−4(l−1)=βr +3−4l, l = 1,2, . . . ,

mn−r

2
.

For n even,

f
(
ck

n
2 , n

2 +1

)= f
(
c n

2

)+2k, where k = 1,2, . . . ,m n
2

.

For n odd,

f
(
ck

n+1
2 , n+3

2

)= f
(
c n+3

2

)+2k, where k = 1,2, . . . ,m n+1
2

.
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From Table 1 and Table 2, labels of vertices, of mr-part of K2,mr , where r = 1 to n
2 −1, for

n even and r = 1 to n−1
2 , for n odd, are αr to αr −2mr +3 following arithmetic progressions Al

and Bl alternatively where

Al =αr −4(l−1) and Bl = (αr −1)−4(l−1) for l = 1,2, . . . ,
mr

2
as

A i = Bi +1, A i 6= B j for all i and j.

Thus vertex labels of mr-parts of K2,mr are distinct.

Table 1. Range of vertex label for n even

Graphs

K2,mn 2m to 2m−2mn +2

K2,m1 α1 = 2m−2mn to α1 −2m1 +3

K2,mn−1 β1 =α1 −2m1 +1 to β1 −2mn +3

K2,m2 α2 =β1 −2mn +1 to α2 −2m2 +3

K2,mn−2 β2 =α2 −2m2 +1 to β2 −2mn−1 +3

...
...

...
...

K2,mr αr =βr−1 −2mn−(r−2) +1 to αr −2mr +3

r = 2,3, . . . , n
2 −1

K2,mn−r βr =αr −2mr +1 to βr −2mn−(r−1) +3

r = 1,2, . . . , n
2 −2

K2,m n
2

β n
2 −1 −2m n

2 +1 +1 to β n
2 −1 −2m n

2 +1 −2m n
2
+3

Table 2. Range of vertex label for n odd

Graphs

K2,mn 2m to 2m−2mn +2

K2,m1 α1 = 2m−2mn to α1 −2m1 +3

K2,mn−1 β1 =α1 −2m1 +1 to β1 −2mn +3

K2,m2 α2 =β1 −2mn +1 to α2 −2m2 +3

K2,mn−2 β2 =α2 −2m2 +1 to β2 −2mn−1 +3

...
...

...
...

K2,mr αr =βr−1 −2mn−(r−2) +1 to αr −2mr +3

r = 1,2, . . . , n−1
2

K2,mn−r βr =αr −2mr +1 to βr −2mn−(r−1) +3

r = 1,2, . . . , n−3
2

K2,m n+1
2

α n−1
2

−2m n−1
2

+1 to α n−1
2

−2m n−1
2

−2m n+1
2

+3

Also, labels of vertices, of mn−r-part of K2,mn−r , where r = 1 to n
2 −1, for n even and r = 1 to n−3

2 ,
for n odd, are βr to βr −2mn−r +3 following arithmetic progressions Al and Bl alternatively,
where

Al =βr −4(l−1) and Bl =
(
βr −1

)−4(l−1) for l = 1,2, . . . ,
mn−r

2
as

A i = Bi +1, A i 6= B j for all i and j.

Thus vertex labels of mn−r-parts of K2,mn−r are distinct.
For n even,

f (cr)= 2(r−1) , r = 1,2,3, . . . ,
n
2

: i.e. 2,4, . . . , (n−2) .

f (cn−r)= 1+2r, r = 0,1, . . . ,
n
2
−2 : i.e. 1,3, . . . , (n−3) .

f
(
c n

2 +1
)= n−1
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For n odd,

f (cr)= 2(r−1) , r = 1,2,3, . . . , n+1
2 : i.e. 2,4, . . . , (n−1)

f (cn−r)= 1+2r, r = 0,1, . . . , n−3
2 : i.e. 1,3, . . . , (n−2)

and, we know that

f
(
c

m n
2
+1

n
2 +1, n

2 +2

)
= f

(
c n

2

)+2= n−2+2= n .

Thus, labels of vertices on cycle are in any case less than least label of outer vertex in any way.
Thus vertex labels are distinct.

In Table 3 and in Table 4, the edge weights covered are given if n is even and odd, respectively.
It can be clearly seen that all edge weights are distinctly covered.

Table 3. Edge weights of cycle with n even, for r = 1,2, . . . , n−2
2 and s = 1,2, . . . , n

2 −2

Graphs

K2,m1 2m−2mn to 2m− (2mn +2m1)+1
...

...
...

...

K2,mr 2m−
(r−1∑

i=0
2mn−i +

r−1∑
i=0

2mi

)
to 2m−

(r−1∑
i=0

2mn−i +
r∑

i=0
2mi

)
+1

...
...

...
...

K2,m n
2

2m n
2

to 1

...
...

...
...

K2,mn−s 2m−
(s−1∑

i=0
2mn−i +

s∑
i=0

2mi

)
to 2m−

( s∑
i=0

2mn−i +
s∑

i=0
2mi

)
+1

...
...

...
...

K2,mn 2m to 2m−2mn +1

Table 4. Edge weights of cycle with n odd, for r = 1,2, . . . , n−1
2 and s = 1,2, . . . , n−3

2

Graphs

K2,m1 2m−2mn to 2m− (2mn +2m1)+1
...

...
...

...

K2,mr 2m−
(r−1∑

i=0
2mn−i +

r−1∑
i=0

2mi

)
to 2m−

(r−1∑
i=0

2mn−i +
r∑

i=0
2mi

)
+1

...
...

...
...

K2,m n+1
2

2m n+1
2

to 1

...
...

...
...

K2,mn−s 2m−
(s−1∑

i=0
2mn−i +

s∑
i=0

2mi

)
to 2m−

( s∑
i=0

2mn−i +
s∑

i=0
2mi

)
+1

...
...

...
...

K2,mn 2m to 2m−2mn +1

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 4, pp. 599–611, 2018



Gracefulness of Some Arbitrary Supersubdivision of Cycle: U. Deshmukh and S. A. Bhatavadekar 605

0

2

4

6

8

9

7

5

3

1

123
124

126
128
130
132
134
136
138
140
142
144
146
148

10
12

14
15
18
19
22
23
26
27

85
86

89
90

29
30

33
34

37
38

40
41

44
45

48
49

52
53

56
57

92
93

96
97

100
101

104
105

108
109

112
113

116
117

120
121

59606364 66 67 70 71 74 75 78 79 82 83

Figure 2. Graceful EASS (C10) with m1 = m5 = 2, m2 = m3 = 4, m4 = 6, m6 = 8, m7 = m8 = 10, m9 = 16,
m10 = 12

We draw EASS (C7) with m1 = 4, m2 = 6, m3 = 4, m4 = 10, m5 = 8, m6 = 2, m7 = 8.
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Figure 3. Graceful EASS (C7) with m1 = m3 = 4, m2 = 6, m4 = 10, m5 = 8, m6 = 2, m7 = 8
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Theorem 4.2. Odd arbitrary supersubdivision of cycle of odd length Cn, i.e. OASS (Cn), is not
graceful.

Proof. Consider a cycle of odd length Cn, where n = 2t+1. Let mi = 2(r i)+1, for i = 1,2, . . .n.
Let c1, c2, . . . , cn be the vertices of cycle. Let ck

i,i+1, k = 1,2, . . . ,mi be the vertices of the mi-
vertices part of K2,mi merged with the edge ci ci+1 for i = 1,2, . . . ,n−1 and k = 1,2, . . . ,mi . Let
ck

n,1, k = 1,2, . . . ,mn be the vertices of the mn-vertices part of K2,mn merged with the edge cnc1

and k = 1,2, . . . ,mn.
After arbitrary supersubdivision of cycle Cn by K2,mi , number of edges = |E| = 2m1 +2m2 +
2m3 + . . .+2mn

|E| = 2m1 +2m2 +2m3 + . . .+2mn

= 2(m1 +m2 +m3 + . . .+mn)

= 2(2r1 +2r2 +2r3 + . . .+2rn +n)

= 4(r1 + r2 + . . .+ rn)+4t+2

= 4(r1 + r2 + . . .+ rn + t)+2

≡ 2(mod 4) .

Every vertex of the type ck
i,i+1 is of degree 2 i.e. even.

Every vertex ci is of degree mi−1 +mi , which is even, where i = 2,3, . . .n−1.
Also, the vertex c1 has degree m1 +mn, the vertex cn has degree mn−1 +mn, both even.
Therefore, every vertex is of even degree, as all mi ’s are odd. Hence OASS (Cn) is an Eularian
graph, with size 2(mod 4).
Thus, OASS(Cn) is not graceful for n odd by Rosa’s theorem, an Eularian graph with number of
edges q ≡ 1(mod 4) or q ≡ 2(mod 4) can not be graceful [7].

Theorem 4.3. Odd Arbitrary supersubdivision of Cn, i.e. OASS(Cn) for n even is graceful if
mi≥3.

Proof. Define the following labeling f : V → {0,1,2, . . . ,2m}

f (c1)= 0

f (cr)= 2(r−1) for r = 2,3, . . . , n
2

f (cn−r)= 1+2r for r = 0,1,2, . . . , n
2 −2

f
(
ck

n,1
)= 2m−2(k−1) k = 1,2, . . . ,mn.

α1 = 2m−2mn

For i = 2, . . . , n
2 −1

αi = f (ci)+2m−2

(
i−1∑
r=1

mr

)
−2

(
i−1∑
r=0

mn−r

)
.

For k = 1,3,5, . . . ,mi −2,

f
(
ck

i,i+1
)=αi −4(l−1)=αi +4−4l l = 1,2, . . . ,

mi −1
2

.
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For k = 2,4,6, . . . ,mi −1,

f
(
ck

i,i+1
)=αi −1−4(l−1)=αi +3−4l l = 1,2, . . . ,

mi −1
2

.

For k = mi,

f
(
cmi

i,i+1

)=βi −2mn−i .

For i = 1,2, . . . , n
2 −1

βi = f (ci)+2m−2

(
i∑

r=1
mr

)
−2

(
i−1∑
r=0

mn−r

)
+3 .

For k = 1,3,5, . . . ,mn−i,

f
(
ck

n−i,n−i+1
)=βi −4(l−1)=βi +4−4l, l = 1,2, . . . ,

mn−i −1
2

+1 .

For k = 2,4,6, . . . ,mn−i −1,

f
(
ck

n−i,n−i+1
)=βi −1−4(l−1)=βi +3−4l l = 1,2, . . . ,

mn−i −1
2

f
(
ck

n
2 , n

2 +1

)= f
(
c n

2

)+2k, where k = 1,2, . . . ,m n
2

.

From Table 5, labels of vertices, of mi-part of K2,mi are αi to αi −2mi +5, following arithmetic
progressions Al and Bl alternatively, where

Al =αi −4(l−1) and Bl = (αi −1)−4(l−1) , for l = 1,2, . . . ,
mi −1

2
as A i = Bi +1, A i 6= B j for all i and j.
Also, labels of vertices, of mn−i-part of K2,mn−i , where i = 1 to n

2 −1, are βi to βi −2mn−i +2,
following arithmetic progressions Al and Bl alternatively where

Al =βi −4(l−1) and Bl =
(
βi −1

)−4(l−1) , for l = 1,2, . . . ,
mn−i +1

2
.

as

A i = Bi +1, A i 6= B j for all i and j.

Thus vertex labels of mn−i-parts of K2,mn−i are distinct.

Table 5. Range of vertex labels

Graphs Range of vertex labels

K2,mn 2m to 2m−2mn +2

K2,m1 α1 = 2m−2mn to α1 −2m1 +5,β1 −2mn−1

K2,mn−1 β1 =α1 −2m1 +3 to β1 −2mn−1 +2

K2,m2 α2 =β1 −2mn−1 −1 to α2 −2m2 +5,β2 −2mn−2

K2,mn−2 β2 =α2 −2m2 +3 to β2 −2mn−2 +2
...

...
...

...

K2,mi αi =βi−1 −2mn−(i−1) −1 to αi −2mi +5,βi −2mn−i , i = 2,3, . . . , n
2 −1

K2,mn−i βi =αi −2mi +3 to βi −2mn−i +2, i = 1,2, . . . , n
2 −2

K2,m n
2

β n
2 −1 −2m n

2 +1 −1 to β n
2 −1 −2m n

2 +1 −2m n
2
+1
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Table 6. Edge weights of cycle for i = 1,2, . . . , n
2 −1

Graphs Range of Edge Weights

K2,mn , j = 1 to mn 2m

cnc j
n,1, c1c j

n,1 to

2m−2mn +1

K2,m1 , j = 1 to m1 −1 2m−2mn

c2c j
1,2, c1c j

1,2 to

2m−2(mn +m1 −1)+1

K2,mn−1 , j = 1 to mn−1 2m−2(mn +m1 −1)

cnc j
n−1,n, cn−1c j

n−1,n to

2m−2(mn + (m1 −1)+ (mn−1 −1))+1

K2,mn−1 , 2m−2(mn + (m1 −1)+ (mn−1 −1))

cn−1cmn−1
n−1,n, cncmn−1

n−1,n and

2m−2(mn + (m1 −1)+ (mn−1 −1))−2

K2,m1 , 2m−2(mn + (m1 −1)+ (mn−1 −1))−1

c2cm1
1,2 , c1cm1

1,2 and

2m−2(mn + (m1 −1)+ (mn−1 −1))−3
...

...

K2,mi , j = 1 tomi −1 2m−2
(
mn +

i−1∑
r=1

(mr −1)+
i−1∑
r=1

(mn−r −1)
)
−4(i−1)

ci+1c j
i,i+1, ci c j

i,i+1 to

2m−2
(
mn +

i∑
r=1

(mr −1)+
i−1∑
r=1

(mn−r −1)
)
−4(i−1)+1

K2,mn−i , j = 1 to mn−i −1 2m−2
(
mn +

i∑
r=1

(mr −1)+
i−1∑
r=1

(mn−r −1)
)
−4(i−1)

ci+1c j
i,i+1, ci c j

i,i+1 to

2m−2
(
mn +

i∑
r=1

(mr −1)+
i∑

r=1
(mn−r −1)

)
−4(i−1)+1

K2,mn−i , 2m−2
(
mn +

i∑
r=1

(mr −1)+
i∑

r=1
(mn−r −1)

)
−4(i−1)

ci+1cmn−i
i,i+1 , ci cmn−i

i,i+1 and

2m−2
(
mn +

i∑
r=1

(mr −1)+
i∑

r=1
(mn−r −1)

)
−4(i−1)−2

K2,mi , 2m−2
(
mn +

i∑
r=1

(mr −1)+
i∑

r=1
(mn−r −1)

)
−4(i−1)−1

ci+1cmi
i,i+1, ci cmi

i,i+1 and

2m−2
(
mn +

i∑
r=1

(mr −1)+
i∑

r=1
(mn−r −1)

)
−4(i−1)−3

...
...

K2,m n
2

, j = 1 to m n
2

2m n
2

c n
2 +1c j

n
2 , n

2 +1, c n
2

c j
n
2 , n

2 +1 to

1
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The lable of vertex cmi
i,i+1 is βi −2mn−i =αi+1 +1 giving vertex labels of mi-parts of K2,mi as

distinct.

f (ci)= 2(i−1) , i = 1,2,3, . . . ,
n
2

: i.e. 2,4, . . . , (n−2) .

f (cn−i)= 1+2i, i = 0,1, . . . ,
n
2
−2 : i.e. 1,3, . . . , (n−3) .

f
(
c n

2 +1
)= n−1

and, we know that

f
(
c

m n
2
+1

n
2 +1, n

2 +2

)
= f

(
c n

2

)+2= n−2+2= n .

Thus, labels of vertices on cycle are in any case less than least label of outer vertex in any way.
Thus vertex labels are distinct.
In Table 6, the edge weights covered are given. It can be clearly seen that all edge weights are
distinctly covered.

5. Illustrations
(I): We draw SS (C12) with m = 8.
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Figure 4. Graceful SS (C12) with m = 8
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(II): We draw SS (C12) with m = 9.
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Figure 5. Graceful SS (C12) with m = 9

6. Conclusion
Rosa [7] proved that the n-cycle Cn is graceful if and only if n ≡ 0 or 3(mod 4) whereas

we proved OASS(Cn) and EASS(Cn) are graceful even if n ≡ 1 or 2(mod 4). We have
proved gracefulness of even arbitrary supersubdivision of Cn for any n and odd arbitrary
supersubdivision of Cn for n even with mi ≥ 3. We also have shown nongracefulness of OASS(Cn)
when n is odd. But it is still left to be discussed what happens if few mi ’s are even and few mi ’s
are odd. One can head towards the solution of ‘Is ASS(Cn) graceful, in general?’
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