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Abstract. Nonnegative Matrix Factorization (NMF) is an unsupervised learning algorithm that
produces a linear, parts-based approximation of a data matrix. NMF constructs a nonnegative low
rank basis matrix and a nonnegative low rank matrix of weights which, when multiplied together,
approximate the data matrix of interest using some cost function. The NMF algorithm can be modified
to include auxiliary constraints which impose task-specific penalties or restrictions on the cost function
of the matrix factorization. In this paper we propose a new NMF algorithm that makes use of non-data-
dependent auxiliary constraints which incorporate a Toeplitz matrix into the multiplicative updating
of the basis and weight matrices. We compare the facial recognition performance of our new Toeplitz
Nonnegative Matrix Factorization (TNMF) algorithm to the performance of the Zellner Nonnegative
Matrix Factorization (ZNMF) algorithm which makes use of data-dependent auxiliary constraints.
We also compare the facial recognition performance of the two aforementioned algorithms with
the performance of several preexisting constrained NMF algorithms that have non-data-dependent
penalties. The facial recognition performances are evaluated using the Cambridge ORL Database of
Faces and the Yale Database of Faces.
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1. Introduction
In the last several decades, facial detection and recognition via algorithmic-based approaches
have become quite popular. These tasks are often complicated due to variation in illumination,
orientation, emotional expression and physical location of a face within an image. With the rise
of big data, facial databases have become massively large. This has further complicated the
already complex tasks of facial detection and recognition. The need to process these large and
complex datasets has caused a surge in the utilization of subspace methods, such as nonnegative
matrix factorization (Paatero and Tapper [12], and Seung and Lee [16]). These methods are
used for the purpose of reducing data dimensionality while simultaneously identifying and
preserving latent underlying structure in the dataset.

For facial databases, the data matrix X contains p vectorized images, each containing n
pixel value intensities. The NMF algorithm produces an approximate representation of the
nonnegative data matrix X ∈Rn×p in the form of a matrix product:

WH≈X . (1)

The NMF problem can be generalized as follows. Given a nonnegative data matrix X ∈Rn×p and
a positive integer k ¿min(n, p), find nonnegative matrices W ∈Rn×k and H ∈Rk×p to minimize
a cost function in the form of some distance measure such as:

f (W,H)= 1
2
‖X−WH‖2

F . (2)

The matrix product consists of a nonnegative basis matrix W ∈ Rn×k and a nonnegative
matrix of weights or coefficients H ∈Rk×p . The basis matrix W contains k basis column vectors,
each of length n. These basis vectors or basis images contain the underlying features of the
dataset X. Additive linear combinations of the basis images are obtained when taking the
product of W and H because of the nonnegativity constraints. Each of the linear combinations
represents or approximates a face in the data matrix X. It is intuitive to associate the process
with combining individual parts to form a whole face.

The nonnegative matrix factorization algorithm was first proposed by Paatero and Tapper
in 1994 under the name “Positive Matrix Factorization” (Paatero and Tapper [12]). Lee and
Seung proposed an efficient multiplicative updating algorithm (Seung and Lee [16]) as well
as using the Kullback-Leibler divergence as an alternative to the Euclidean distance for the
cost function (Lee and Seung [10]). There are many published works which explore various cost
functions on the matrix factorization (Cichocki et al. [3], Wang et al. [19], Hamza and Brady
[7], and Sr and Dhillon [17], Xue et al. [22], Sandler and Lindenbaum [15]). Many different
minimization methods for the solution of (2) have been explored for the purpose of decreasing
the convergence time of Lee and Seung’s iterative algorithm (Lin [11], Gonzalez and Zhang
[6], Zdunek and Cichocki [23]). W and H are initialized with nonnegative random values in
Lee and Seung’s multiplicative iterative algorithm (Seung and Lee [16]). Various alternative
initialization strategies for W and H have been proposed for the purpose of increasing the speed
of convergence or to manipulate convergence to a specific desired result (Wild [20], Wild et al.
[21], and Boutsidis and Gallopoulos [1]).
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Various authors have adapted the NMF algorithm by applying auxiliary constraints to the
matrix W and/or H. Often these constraints take the form of smoothness constraints (Piper et
al. [14], Pauca et al. [13], and Chen and Cichocki [2]) or sparsity constraints (Hoyer [8], and
Hoyer [9]). Recently a set of data-dependent auxiliary constraints was explored (Corsetti and
Fokoué [4]). These types of auxiliary constraints are usually incorporated so as to take into
account prior information about the application under examination or to guarantee desired
characteristics in the solution for the W and H matrices. The secondary constraints are enforced
through the use of penalty terms which extend the cost function of equation (2) as follows:

f (W,H)= 1
2
‖X−WH‖2

F +αJ1(W)+βJ2(H) . (3)

For equation (3), J1(W) and J1(W) are the penalty terms and α and β (0 ≤ α ≤ 1 and 0 ≤
β ≤ 1) are the regularization parameters which serve to control the trade-off between the
approximation error of WH in approximating X and the auxiliary constraints. This method is
commonly referred to as “Constrained Nonnegative Matrix Factorization”.

We propose a novel constrained NMF algorithm by incorporating a Toeplitz matrix in the
penalty terms of equation (3). We refer to this algorithm as “Toeplitz Nonnegative Matrix
Factorization” (TNMF). We compare the recognition performance of the TNMF algorithm with
the recognition performance of the Zellner Nonnegative Matrix Factorization (ZNMF) algorithm
(Corsetti and Fokoué [4]) which makes use of data-dependent penalties, unlike the TNMF
algorithm. We also compare the recognition performance of the TNMF algorithm with several
other constrained NMF algorithms (Pauca et al. [13], and Wang et al. [19]). We assess the
recognition performance of the aforementioned algorithms using the Cambridge ORL Database
of Faces as well as the Yale Database of Faces. We find that the ZNMF algorithm outperforms
the constrained NMF algorithms for the ORL dataset simulations and the TNMF algorithm
outperforms the other NMF algorithms for the Yale dataset simulations.

2. Constrained Nonnegative Matrix Factorization

Constrained Nonnegative Matrix Factorization extends the cost function of traditional NMF
shown in (2) to that of (3). The functions J1(W) and J2(H) represent penalty terms that are
meant to constrain the solution of (3). α and β are the respective regularization parameters of
J1(W) and J2(H) such that 0≤α≤ 1 and 0≤β≤ 1. In accordance with (Pauca et al. [13]) we set:

J1(W)= ‖W‖2
F (4)

and

J2(H)= ‖H‖2
F . (5)

We enforce smoothness in the basis matrix W and statistical sparseness (Hoyer [8]) in
the weights matrix H by setting J1(W) and J2(H) equal to the square of their respective
Frobenius norms (Pauca et al. [13]). Using the penalties shown in (4) and (5), the standard NMF
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multiplicative updating equations for W and H (Seung and Lee [16]) are modified as follows:

W(t+1) =W(t) X(H(t))T

W(t)H(t)(H(t))T +α ∂
∂W J1(W(t))

(6)

and

H(t+1) =H(t) (W(t+1))TX
(W(t+1))TW(t+1)H(t) +β ∂

∂H J2(H(t))
(7)

where t denotes the iteration.

3. Zellner Nonnegative Matrix Factorization

The inspiration for the ZNMF algorithm and its details are described in (Corsetti and Fokoué [4]).
The ZNMF algorithm incorporates Zellner’s g-prior (Zellner [24]) and alters the objective
function of equation 3 by setting:

J1(W)= 1
g

trace(WTXXTW) (8)

and

J2(H)= 1
g

trace(HXTXHT) (9)

where

g =max(n, p2). (10)

Consequently,
∂

∂W
J1(W)= 2XXTW (11)

and
∂

∂H
J2(H)= 2HXTX. (12)

For the ZNMF algorithm, the updating equations for W and H are:

W(t+1) =W(t) X(H(t))T

W(t)H(t)(H(t))T + (αg )XXT(W)(t)
(13)

and

H(t+1) = gH(t)
[

(W(t+1))TX
g(W(t+1))TW(t+1)H(t) +βH(t)XTX

]
. (14)

4. Toeplitz Nonnegative Matrix Factorization

Tipping [18] demonstrated the possibility of deriving sparse representations in kernel regression
via suitably specified Gamma hyperpriors on the independent precisions of a Gaussian prior on
the weights of the kernel expansion. Fokoué [5] explored a modified version of Tipping [18] by
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using structured matrix of the form
1 ρ · · · ρ

ρ 1 ρ
...

... ρ
. . . ρ

ρ · · · ρ 1

 . (15)

In this paper, we adopt a different approach that seeks to achieve sparsity by directly exploiting
the properties of Toeplitz type structured matrices. We argue that our approach makes sense for
both variable selection in linear models and atom selection in kernel methods, because all our
proposed matrices are reminiscent of matrices encountered in the analysis of autoregressive
time series models. Indeed, such matrices do inherently capture correlations of varying degrees
and can therefore isolate variables or atoms that are more dominant, leaving the least dominant
ones as secondary members of a group. In a sense, our selected features are somewhat like
representatives of a group with which the other members have a strong correlation.

si j =
{

1 if i = j
ρ|i− j| if i 6= j .

We specify a Gaussian prior for w with a variance-matrix that is structured à la Toeplitz,
namely

w∼N n(0,rS)

with

Σn ≡



1 ρ ρ2 · · · ρn−2 ρn−1

ρ 1 ρ ρ2 · · · ρn−2

ρ2 ρ 1 . . . . . . ...
... ρ2 . . . 1 . . . ρ2

ρn−2 ... . . . . . . 1 ρ

ρn−1 ρn−2 · · · ρ2 ρ 1


(16)

where c is constant.

This can be substantially improved upon by using

si j =
1 if i = j

(−1)|i− j|+1
(

ρ

|i− j|
)ν|i− j|

if i 6= j

This new variance-matrix structure has the inherent property of creating a banded matrix so
that associations are gradually lessened.

5. Experimental Results

Simulations were carried out to compare the facial recognition performances of the CNMF,
TNMF and ZNMF algorithms against the facial recognition performances of traditional NMF,
Local NMF (LNMF), Fisher NMF (FNMF), Principle Component Analysis and Principle
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Component Analysis NMF (PNMF) using the results of Wang et al. [19] which carried out
simulations on the ORL dataset exclusively. We further compared the facial recognition
capabilities of the CNMF, TNMF and ZNMF algorithms using the Yale dataset.

The Cambridge ORL Database contains a total of 400 grey-scale images. 10 pictures were
taken of each of the forty subjects. 36 of the 40 subjects are male and 4 are female. Each image
contains a single face with varying levels of illumination, degree of rotation and emotional
expression. In an effort to improve computational efficiency, the resolutions of the ORL images
were reduced from 112 × 92 to 28 × 23 in accordance with Wang et al. [19], which found that
reducing the image resolution to 25% the original size did not have a substantial impact on
the recognition performance of the algorithms. For each of the ORL simulations, the training
dataset X644×200

≥0 consisted of 5 randomly selected images from each of the forty subjects making
for a training set of 200 images each with 644 pixel value intensities. The test set for each
simulation contained the remaining 200 unselected images.

The Yale Database consists of 165 grey-scale images. 11 pictures were taken of each of the
15 subjects. 14 of these subjects are male while only 1 is female. These images have varying
levels of illumination and emotional expression; however, unlike the ORL faces, they are all
forward-facing. A rather apparent difference between the two databases is the severity of the
contrast between the background of the images and the boarder of the faces. This contrast is
severe in the Yale Database and substantially less so in the ORL Database. The resolutions
of the Yale images were also reduced from 243 × 320 to 61 × 80 in an attempt to improve
the computational efficiency. In each of the Yale simulations, the training dataset X4880×90

≥0
contained 6 randomly selected images from each of the 15 subjects, resulting in a training set
of 90 images with 4,880 pixel intensities each. The subsequent test sets for each of the Yale
simulations were composed of the remaining 75 images. Figures 1 and 2 depict the reduction in
resolution for a subset of faces for each of the two datasets.

Figure 1. (left) 6 ORL faces at full 112 × 92 resolution; (right) 6 ORL faces at reduced 28 × 23 resolution
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Figure 2. (left) 4 Yale faces at full 243 × 320 resolution; (right) 4 Yale faces at reduced 61 × 80 resolution

The effects on the facial recognition performance of the ρ parameter and the g-Prior
parameter in the TNMF and ZNMF algorithms respectively were investigated in great detail
via extensive computer simulation, as were the α and β parameters. The α and β parameters
were constrained via the following relationship:

α= 1−β (17)

such that 0≤α≤ 1 and 0≤β≤ 1.

For each algorithm and in each dataset, 25 replications were carried out at each of the unique
parameter setting combinations. In each of these replications a new training set, consisting
of half of the images, was randomly sampled and used in calculating the average recognition
performances of the CNMF, ZNMF and TNMF algorithms. The same seven factorization ranks,
k ∈ {16,25,36,49,64,81,100}, were considered for each algorithm and dataset.

The optimal α and β parameter settings for the CNMF algorithm were obtained by searching
across a space from 0 to 1 in increments of 0.01. The results were smoothed using a loess curve
with a 0.50 degree of smoothing parameter. The smoothed results are displayed in Figure 3. The
large point along each of the factorization rank lines denotes the point at which the maximum
recognition performance occurs for that specific factorization rank.

The initial search space for the optimal α, β and g-prior parameter settings of the ZNMF
algorithm, using the ORL dataset was quite vast and not particularly granular. In this initial
search space, a factorization rank of k = 16 was selected. The g-prior parameter was searched
across an interval from 100 to 10,000 in increments of 100; while the α parameter was explored
across an interval from 0 to 1 in increments of 0.01. As stated previously, 25 replications were
carried out at each of these unique parameter settings. The resulting surface is displayed in the
top left of Figure 4. A promising region, defined by a g-prior less than 100 and α value between
0.20 and 0.80 is quite noticeable in the initial explorative surface. As a result, more granular
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parameter searches were carried out across the seven factorization ranks using values for the
g-prior from 75 to 90 in increments of 0.50 and values of 0.20 to 0.80 in increments of 0.01 for
α. The most promising surface was generated using k = 36 and is displayed in the top right of
Figure 4. The optimal g-prior, α and β settings were 83, 0.44 and 0.56 respectively.

Figure 3. Recognition Performance of CNMF algorithm across various α and β parameter values for the
ORL Dataset (left) and Yale Dataset (right)

A similar approach was used in finding the optimal settings for the α, β and g-prior
parameters for the Yale dataset. The α parameter was explored over a space from 0 to 1 in
increments of 0.02 while the g-prior parameter was explored over a space from 200 to 10,000 in
increments of 50. Again, an initial, broad explorative surface was generated using a factorization
rank of k = 16 and is provided in the lower left of Figure 4. A promising area of the initial
broad surface is defined by a g-prior value between 3,500 and 4,500 and an α value between
0.01 and 0.30. Simulations were carried out within the aforementioned parameter subspace
across the seven different factorization ranks. k = 100 was found to be the optimal setting for
the factorization rank. The resulting surface is displayed in the bottom right of Figure 4. The
optimal g-prior, α and β settings were 3500, 0.00 and 1.00, respectively.
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Figure 4. (top left) The initial search region for the parameters of the ZNMF algorithm using the ORL
dataset with k = 16; (top right) The most promising granular search surface using the ZNMF algorithm
with k = 36 for the ORL dataset; (bottom left) The initial search region for the parameters of the ZNMF
algorithm using the Yale dataset with k = 16

The ρ tuning parameter of the TNMF algorithm, as stated previously, was constrained to
be 0 ≤ ρ ≤ 1; and as a result, granular performance surfaces were constructed in relatively
little time for the ORL dataset. The α and ρ parameters were both explored over an interval
from 0 to 1 in increments of 0.02 across all seven factorization ranks. The optimal surface was
generated using a factorization rank of 25 and is displayed in the top of Figure 5. Optimal ρ, α
and β settings were found to be 0.06, 0.68 and 0.32 respectively.

An initial search surface was generated for the Yale dataset using the TNMF algorithm. The
α and ρ parameters were both searched over an interval from 0 to 1 in increments of 0.02. This
surface is displayed in the bottom left of Figure 5. Again, 25 replications were carried out at each

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 201–215, 2018



210 Nonnegative Matrix Factorization with Toeplitz Penalty: M.A. Corsetti and E. Fokoué

of the unique parameter settings so as to acquire an average predictive performance. A more
detailed surface was produced by searching over α values from 0.30 to 0.70 in increments of
0.02 and ρ values from 0.01 to 0.20 in increments of 0.01. The most promising factorization
rank was discovered to be k = 81 using the TNMF algorithm on the Yale dataset. The resulting
surface is provided in the lower left of Figure 5.

Figure 5. (top) The optimal parameter performance surface generated using the TNMF algorithm on the
ORL dataset with a factorization rank of k = 36; (bottom left) The initial search region for the parameters
of the TNMF algorithm using the Yale dataset with k = 16; (bottom right) The most promising granular
search surface using the TNMF algorithm with k = 81 for the Yale dataset

After identifying the optimal parameter settings in each of the aforementioned scenarios,
500 replications were carried out at each setting. The average recognition performances are
shown in Figure 6 and parameter settings by algorithm and dataset are provided in Tables 1–3.
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Figure 6. Average recognition performance of CNMF, TNMF and ZNMF algorithms using the ORL and
Yale datasets

Table 1. Zellner Nonnegative Matrix Factorization Optimal Tuning Parameter Settings and Recognition
Performances

Dataset Rank (k) g-prior α β Average Recognition

ORL

16 75.0 0.26 0.74 0.8944

25 82.0 0.40 0.60 0.9083

36 83.0 0.44 0.56 0.9097

49 75.0 0.30 0.70 0.9075

64 81.0 0.59 0.41 0.9028

81 75.0 0.31 0.69 0.8924

100 80.5 0.60 0.40 0.8849

Yale

16 3,500 0.30 0.70 0.7462

25 3,500 0.00 1.00 0.7694

36 4,300 0.00 1.00 0.7801

49 4,500 0.30 0.70 0.7931

64 3,500 0.00 1.00 0.8022

81 4,500 0.00 1.00 0.8149

100 3,500 0.00 1.00 0.8218
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Table 2. Toeplitz Nonnegative Matrix Factorization Optimal Tuning Parameter Settings and Recognition
Performances

Dataset Rank (k) ρ α β Average Recognition

ORL

16 0.00 0.48 0.52 0.8853
25 0.06 0.68 0.32 0.8986
36 1.00 0.00 1.00 0.8979
49 1.00 0.00 1.00 0.8938
64 0.00 0.40 0.60 0.8871
81 0.00 0.80 0.20 0.8732

100 0.00 0.36 0.64 0.8643

Yale

16 0.15 0.70 0.30 0.7609
25 0.00 0.56 0.44 0.7963
36 0.00 0.70 0.30 0.8256
49 0.00 0.30 0.70 0.8479
64 0.00 0.42 0.58 0.8572
81 0.00 0.64 0.36 0.8647

100 0.00 0.70 0.30 0.8639

Table 3. Constrained Nonnegative Matrix Factorization Optimal Tuning Parameter Settings and
Recognition Performances.

Dataset Rank (k) α β Average Recognition

ORL

16 0.44 0.56 0.8844
25 0.32 0.68 0.8992
36 0.24 0.76 0.9021
49 0.44 0.56 0.8983
64 0.73 0.27 0.8881
81 0.44 0.56 0.8770

100 0.20 0.80 0.8623

Yale

16 0.69 0.31 0.7616
25 1.00 0.00 0.7935
36 0.83 0.17 0.8262
49 1.00 0.00 0.8491
64 1.00 0.00 0.8602
81 1.00 0.00 0.8617

100 1.00 0.00 0.8636

The ZNMF algorithm managed to outperform, on average, both the CNMF and TNMF
algorithm across all factorization ranks when used on the ORL dataset. The TNMF and
CNMF algorithms remained relatively comparable in terms of their average facial recognition
performances across the factorization ranks for the ORL dataset. It should be noted that
the ZNMF algorithm achieved the three highest average facial recognition performance on the
ORL dataset at relatively small factorization ranks: 36 (90.97%), 25 (90.83%) and 49 (90.75%).
This implies that the ZNMF requires less information, in the form of lower factorization ranks,
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to produce equal and possibly greater recognition performance on the ORL database as other
algorithms (Wang et al. [19]) produce when provided with more information in the form of higher
factorization ranks. This is important for two related reasons: time and storage. A common
problem for many nonnegative matrix factorization algorithms in which a large basis matrix is
multiplied through with a large weights matrix is the often lengthy time with which it takes
a computer to carry out the matrix multiplication. If a matrix factorization algorithm, such
as ZNMF, can produce equally accurate results as other matrix factorization algorithms while
using relatively lower dimensional basis and weights matrices then we might expect the ZNMF
algorithm to take less time in producing its estimation of X depending on the complexity of the
competing algorithms. Similarly, an algorithm that can produce equally impressive results as
another algorithm while using substantially less storage (e.g. lower factorization ranks) may be
beneficial.

The pattern in the algorithms’ performances was quite different in the Yale dataset than
in the ORL dataset. Where ZNMF was clearly superior to the other methods for the ORL
dataset, the opposite is true for the Yale dataset. The CNMF and TNMF algorithms drastically
outperformed the ZNMF algorithm across all factorization ranks. The CNMF algorithm
outperformed the TNMF algorithm at factorization ranks 16, 36, 49, 64 while the TNMF
algorithm outperformed the CNMF algorithm at factorization ranks 25, 81 and 100 for the
Yale dataset. The highest average facial recognition performance on the Yale dataset (86.47%)
occurred when using the TNMF algorithm with a factorization rank of 81. It is interesting that
the average recognition rate continues to increase as the factorization rank increases for all
three algorithms when used on the Yale dataset. This might imply that the performance of
each algorithm might benefit if higher factorization ranks (i.e. > 100) were to be considered in
the future. This is quite different from the performances of the algorithms on the ORL dataset
which seem to reach their maximums at a factorization rank of 36. This may be due to the fact
that, after the resolution reduction, each image in the ORL dataset contains 644 pixel values,
while each image in the Yale dataset contains 4880 pixel values after the resolution reduction.

6. Conclusion and Future Work
In this paper, we proposed the TNMF algorithm for the assessment of facial recognition and
evaluated its capabilities in this regard using both the Cambridge ORL Database of Faces
and the Yale Database of Faces across seven different factorization ranks. We compared the
facial recognition capabilities of TNMF with a constrained version of the nonnegative matrix
algorithm (CNMF) which imposes auxiliary penalties on the solution of (2) and also a second
constrained version of nonnegative matrix factorization (ZNMF) which incorporates data-
dependent penalties into its auxiliary constraints. We found the ZNMF algorithm outperformed
both TNMF and CNMF across all factorization ranks for the ORL dataset and achieved the
highest average recognition rate of 90.97% at a factorization rank of 36. We found that TNMF
and CNMF compared relatively similarly with respect to their recognition performances when
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used on the Yale Dataset and also that ZNMF drastically underperformed when compared
with the other two algorithms across all factorization ranks for the Yale dataset. We found the
TNMF algorithm achieved the highest average recognition rate (86.47%) for the Yale dataset at
a factorization rank of 81.

Though our new TNMF algorithm does not impose data-dependent auxiliary constraints,
we hope to apply other data-dependent constraints to the nonnegative matrix factorization
algorithm. One such possibility would be to use G1(W) = trace(XTWWTX) where XTW ∈ Rn×k,
and G2(H)= trace(XHTHXT) where XHT ∈Rp×k . Note that XTWWTX is n×n and is essentially
the linear gram matrix of the projected X. XHTHXT is p× p and resembles the covariance
matrix in the input space.

Nonnegative matrix factorization is applicable to a variety of tasks and therefore we also
hope to move beyond facial recognition tasks and assess the performance of our collection of
algorithms perhaps in text mining, social network analysis or Bioinformatics, specifically for
the analysis of microarray data.
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