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Monotonicity Properties of the First Eigenvalue of
the Laplacian Operator on Ricci Solitons

Xiang Gao and Qiaofang Xing

Abstract. In this paper, we deal with the monotonicity properties of the first
eigenvalue of the Laplacian operator on Ricci solitons. Firstly, by using the
monotonicity formula of the F functional, we derive a monotonicity formula of
the first eigenvalue of the Laplacian operator on Ricci solitons. Based on this, we
also prove an exponential decreasing property of the first eigenvalue.

1. Introduction and Main Results

Let (M n, g) be an n-dim C∞ complete Riemannian manifold, and ∆ denote the
Laplacian operator. For the compact manifold, it is well known that the eigenvalue
problem −∆ϕ = λϕ has discrete eigenvalues, which are listed as

0= λ0(g)< λ1(g)≤ λ2(g)≤ · · · .
Moreover we call λi

�
g
�

the ith eigenvalue and call a function ϕi satisfying
∆ϕi =−λi

�
g
�
ϕi the ith eigenfunction.

Recall that the first eigenvalue λ1(g) for the closed Riemannian manifold M n is
defined:

λ1
�

g
�
= inf
φ∈Ω

∫
M n

��∇φ
��2

g dµg∫
M n φ

2dµg

, (1)

where Ω is the completing Hilbert space of

Ω0 =
�
φ ∈ C∞(M n)

����
∫

M n

φdµg = 0
�

under the norm ‖φ‖2
1 =
∫

M n φ
2dµg +

∫
M n |∇φ|2g dµg .

We denote the geodesic ball with center p and radius r by B(p, r) in the n-dim
manifold M n. Then the first Dirichlet eigenvalue λD

1 (B(p, r)) of Laplacian operator
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can be denoted as:

λD
1 (B(p, r)) = inf

φ∈H2
0 (B(p,r))

∫
B(p,r)

|∇φ|2dµ
∫

B(p,r)
φ2dµ

, (2)

where H2
0(B(p, r)) is the completing Hilbert space of C∞0 (B(p, r)) under the norm

‖φ‖2
1 =

∫

B(p,r)

φ2dµ+

∫

B(p,r)

|∇φ|2dµ.

The upper bound for the first eigenvalue of Laplacian operator are very useful in
geometry analysis and PDE. In [1], S. Y. Cheng used the approach of Jacobi fields
to obtain an upper bound for the first eigenvalue λ1(g) of Laplacian operator as
follows:

Theorem 1.1 (Cheng). Let (M n, g) be a compact Riemannian manifold satisfying
Rc ≥ 0, then

λ1(g)≤
Cn

d2
M n

,

where Cn = 2n(n+ 4) and dM n is the diameter of M n.

On the other hand, for studying the Ricci flow, in [2] Perelman defined a new
functional named as F functional

F (g, f ) =

∫

M n

(R+ |∇ f |2)e− f dµ,

and proved a monotonicity property of the F functional along the Ricci flow.

Theorem 1.2 (Perelman). Let (M n, g(t)), t ∈ [0, T ), be a solution to the Ricci flow
on closed manifold M n

∂

∂ t
gi j =−2Ri j ,

and the function f satisfies

∂

∂ t
f =−R−∆ f + |∇ f |2, (3)

then we have the following monotonicity property

d

d t
F (g(t), f (t)) = 2

∫

M n

|Rc +∇∇ f |2e− f dµ≥ 0, (4)

and if the equality in (4) holds then (M n, g(t)) is a steady gradient Ricci soliton such
that Rc(g(t)) +∇g(t)∇g(t) f = 0.

Remark 1. Theorem 1.2 states that the manifold (M n, g(t)) being a steady
gradient Ricci soliton is a necessary condition of d

d t
F (g(t), f (t)) = 0.

Furthermore, in this paper, we will prove that it is actually a sufficient condition.
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Theorem 1.3. Let (M n, g(t)) be a steady gradient Ricci soliton which is a special
solution to the Ricci flow on closed manifold M n

Rc(g(t)) +∇g(t)∇g(t) f = 0, (5)

then

d

d t
F (g(t), f (t)) = 2

∫

M n

|Rc +∇∇ f |2e− f dµ= 0.

Then by using Theorem 1.3, we present a monotonicity property of the first
eigenvalue of the Laplacian operator on Ricci solitons by using the monotonicity
formula of the F functional as follows:

Theorem 1.4. Let (M n, g(t)) be a steady gradient Ricci soliton on closed manifold
M n

Rc(g(t)) +∇g(t)∇g(t) f = 0

with positive scalar curvature. Then there exists a time T0, such that when t > T0 we
have λ1(g(t))≤ λ1(g(0)).

Corollary 1.5. Let (M n, g(t)) be a steady gradient Ricci soliton (5) with positive
scalar curvature, which is a special solution to the Ricci flow on closed manifold M n.
Then the time of blowing up for the Ricci flow satisfies

TBlow ≤
n

2

�
1

inf
x∈M n

R(g(0))
− 1

4λ1(g(0)) + sup
x∈M n

R(g(0))

�
.

Then recall that the 2-positive curvature operator is defined as follows:

Definition 1.6 (2-positive curvature operator). A Riemannian manifold (M n, g)
has 2-positive curvature operator if

µα(R) +µβ(R)> 0 (6)

for arbitrary α 6= β .

In [3], Böhm and Wilking derived a convergence result of 2-positive curvature
along the Ricci flow:

Theorem 1.7 (Böhm-Wilking). On a compact manifold the normalized Ricci flow

∂

∂ et egi j =−2eRi j +
2

n
eregi j , (7)

evolves a Riemannian metric with 2-positive curvature operator to a limit metric with
constant sectional curvature.

Then by using Theorem 1.4 and 1.7, we can prove the following comparison
theorem for the first eigenvalue of the Laplacian operator.
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Theorem 1.8. Let (M n, g(t)) be a steady gradient Ricci soliton (5) on closed
manifold M n, and suppose that the curvature operator R(g(0)) is a 2-positive
curvature operator. Then along the Ricci flow, we have

λ1(gM n
K
)≤ exp

�
2

n

∫ ∞

0

r(τ)dτ
�
λ1(g(0))

and

1

2
λ1(gM n

K
)exp

�
−2

n

∫ t

0

r(τ)dτ
�
≤ λ1(g(t))≤

3

2
λ1(gM n

K
)exp

�
−2

n

∫ t

0

r(τ)dτ
�

,

where r(τ) is the average scalar curvature of the metric g(τ) and M n
K is the space

form with the constant curvature K.

The paper is organized as follows: In section 2, we prove Theorem 1.3 and 1.4
by using the monotonicity formula of the F functional. Based on this, in section 3,
we prove Theorem 1.8.

2. Proof of Theorem 1.3 and 1.4

Proof of Theorem 1.3. For the Ricci soliton (5), we have (see [4])
∂

∂ t
f (t) = |∇g(t) f (t)|2g(t).

Furthermore, it follows from (5) that R(g(t)) +∆g(t) f (t) = 0, which implies that

∂

∂ t
f (t) =−R(g(t))−∆g(t) f (t) + |∇g(t) f (t)|2g(t).

Hence the potential function f in the equation of Ricci soliton satisfies (3), then
we can using the monotonicity formula (4) to the Ricci soliton (5) and derive that

d

d t
F (g(t), f (t)) = 2

∫

M n

|Rc +∇∇ f |2e− f dµ= 0.

This implies that for the steady gradient Ricci soliton (5), we have that
F (g(t), f (t)) ≡ C for any time t, where C is a constant independent on the
time t. ¤

Then by using Theorem 1.3 and the monotonicity formula of the F functional,
we can prove Theorem 1.4.

Proof of Theorem 1.4. Let ϕ = e−
f
2 , where f is the corresponding function in

Theorem 1.2. Then we can rewrite the F functional as follows:

F (g, f ) =

∫

M n

(Re− f + 4|∇e−
f
2 |2)dµ=

∫

M n

(Rϕ2 + 4|∇ϕ|2)dµ

=

∫

M n

(−4∆ϕ+ Rϕ)ϕdµ.
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Then by using Theorem 1.3 and the definition of the λ functional, we have

λ(g(t)) = inf
�
F (g(t), f (t))

���� f ∈ C∞(M n),

∫

M n

e− f dµ= 1
�

= inf
�∫

M n

(−4∆ϕ+ Rϕ)ϕdµ

����ϕ ∈ C∞(M n),

∫

M n

ϕ2dµ= 1
�

.

According to the definition, we know that the λ functional is actually the first
eigenvalue of the operator −4∆+ R. Furthermore, for any fixed time t, we know
that the infimum of λ(g(t)) can be attained by a function ϕt according to the proof
of Perelman [2].

For any ε > 0 we consider the geodesic ball B(p,ε) and M n\B(p,ε) in the n-dim
manifold M n. We denote uε and vε as the first Dirichlet eigenfunctions of Laplacian
operator corresponding to B(p,ε) and M n\B(p,ε), and define the following two
functions:

euε(x) =
¨

uε(x), x ∈ B(p,ε)
0, x ∈ M n\B(p,ε)

, evε(x) =
¨

vε(x), x ∈ M n\B(p,ε)
0, x ∈ B(p,ε)

This implies that the volume

Vol(sup peuε(x)∩ sup pevε(x)) = 0. (8)

Thus
∫

M n |∇euε|2dµ
∫

M n eu2
εdµ

=

∫
B(p,ε)

|∇uε|2dµ
∫

B(p,ε)
u2
εdµ

= λD
1 (B(p,ε)) (9)

∫
M n |∇evε|2dµ
∫

M n ev2
ε dµ

=

∫
M n\B(p,ε)

|∇vε|2dµ
∫

M n\B(p,ε)
v2
ε dµ

= λD
1 (M

n\B(p,ε)). (10)

Then we choose a constant C such that
∫

M n (euε + Cevε)dµ = 0. Thus by the
definition of the first eigenvalue of Laplacian operator λ1(g) we have

λ1(g)≤
∫

M n |∇(euε + Cevε)|2dµ
∫

M n (euε + Cevε)2dµ
=

∫
M n |∇euε|2dµ+ C2

∫
M n |∇evε|2dµ

∫
M n eu2

εdµ+ C2
∫

M n ev2
ε dµ

=

∫
B(p,ε)

|∇uε|2dµ+ C2
∫

M n\B(p,ε)
|∇vε|2dµ

∫
B(p,ε)

u2
εdµ+ C2

∫
M n\B(p,ε)

v2
ε dµ

,

where the first equality we use (8). Then let ε→ 0, we have

λ1(g)≤ lim
ε→0

∫
B(p,ε)

|∇uε|2dµ+ C2
∫

M n\B(p,ε)
|∇vε|2dµ

∫
B(p,ε)

u2
εdµ+ C2

∫
M n\B(p,ε)

v2
ε dµ

= lim
ε→0

∫
M n\B(p,ε)

|∇vε|2dµ
∫

M n\B(p,ε)
v2
ε dµ
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= lim
ε→0

�
inf
�∫

M n\B(p,ε)

|∇φ|2dµ

����
∫

M n\B(p,ε)

φ2dµ= 1
��

= inf
�∫

M n

|∇φ|2dµ|φ ∈ C∞(M n),

∫

M n

φ2dµ= 1
�

.

where the second equality we use the fact that (10) satisfies for any ε > 0.
Let λ1(g(t)) denote the first eigenvalue of the Laplacian operator for the time t,

and ϕ0 be the eigenfunction corresponding to the first eigenvalue λ1(g(0)). Then
the combination of Theorem 1.2, 1.3, the definition of λ(g(t)) functional and the
fact

λ1(g(t))≤ inf
�∫

M n

|∇φ|2g(t)dµg(t)

����φ ∈ C∞(M n),

∫

M n

φ2dµg(t) = 1
�

leads to

4λ1(g(t)) +

∫

M n

R(g(t))ϕ2
t dµg(t)

= inf∫
Mn φ

2dµ=1

∫

M n

−4φ∆g(t)φdµg(t) +

∫

M n

R(g(t))ϕ2
t dµg(t)

≤
∫

M n

(−4∆g(t)ϕt + R(g(t))ϕt)ϕt dµg(t)

= λ(g(0))

≤
∫

M n

(−4∆g(0)ϕ0 + R(g(0))ϕ0)ϕ0dµg(0)

= 4λ1(g(0)) +

∫

M n

R(g(0))ϕ2
0dµg(0),

where we use the fact that ϕt is the eigenfunction corresponding to λ(g(t)).
On the other hand, by using the maximum principle and the following evolution

equation ∂ R
∂ t
=∆R+ 2|Rc|2 ≥∆R+ 2

n
R2, we have that

R(g(t))≥ inf
x∈M n

R(g(t))≥
n inf

x∈M n
R(g(0))

n− 2t inf
x∈M n

R(g(0))
. (11)

The combination of the above results we have

4λ1(g(t)) +
n inf

x∈M n
R(g(0))

n− 2t inf
x∈M n

R(g(0))
≤ 4λ1(g(t)) +

∫

M n

R(g(t))φ2
t dµg(t)

= 4λ1(g(0)) +

∫

M n

R(g(0))φ2
0 dµg(0)

≤ 4λ1(g(0)) + sup
x∈M n

R(g(0))
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Since M n is a closed manifold with positive scalar curvature, we can choose the
time

T0 =
n

2

�
1

inf
x∈M n

R(g(0))
− 1

sup
x∈M n

R(g(0))

�

such that when t ≥ T0, we have

n inf
x∈M n

R(g(0))

n− 2t inf
x∈M n

R(g(0))
≥ sup

x∈M n
R(g(0)).

Hence when t ≥ T0, it follows that λ1(g(t))≤ λ1(g(0)). ¤

By using the proof of Theorem 1.4, we can actually estimate the time of blowing
up exactly and prove the Corollary 1.5.

Proof of Corollary 1.5. Firstly by (11), we derive that the time of blowing up
satisfies

TBlow ≤
n

2 inf
x∈M n

R(g(0))
, (12)

which gives a upper bound of TBlow . Furthermore, noting the proof of Theorem 1.4,
we have

4λ1(g(t)) +
n inf

x∈M n
R(g(0))

n− 2t inf
x∈M n

R(g(0))
≤ 4λ1(g(0)) + sup

x∈M n
R(g(0)).

Since the first eigenvalue of the Laplacian operator λ1(g(t)) > 0 for any time t,
we have

n inf
x∈M n

R(g(0))

n− 2t inf
x∈M n

R(g(0))
≤ 4λ1(g(0)) + sup

x∈M n
R(g(0)).

Thus the time of blowing up satisfies

TBlow ≤
n

2

�
1

inf
x∈M n

R(g(0))
− 1

4λ1(g(0)) + sup
x∈M n

R(g(0))

�
,

which is an improvement version of (12). ¤

3. Proof of Theorem 1.8

In this section, we prove Theorem 1.8 by using Theorem 1.4 and 1.7.

Proof of Theorem 1.8. For using the convergence result in Theorem 1.7, we deal
with the normalized Ricci flow. Given a solution g(t) of Ricci flow, the metrics
eg(et) = c(t)g(t), where

c(t) = exp
�

2

n

∫ t

0

r(τ)dτ
�
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and et(t) =
∫ t

0
c(τ)dτ, are the solution of the normalized Ricci flow

∂

∂ et egi j =−2eRi j +
2

n
eregi j ,

with eg(0) = g(0), where

er(eg(et)) =
∫

M n R(eg(et))dµeg(et)∫
M n dµeg(et)

is the average scalar curvature.
Hence, the relation between the first eigenvalue of Laplacian operator along the

Ricci flow λ1(g(t)) and the one along the normalized Ricci flow λ1(eg(et)) satisfies

λ1(eg(et)) = inf
�∫

M n |∇φ|2eg(et)dµeg(et)∫
M n φ

2dµeg(et)

����φ ∈ C∞(M n),

∫

M n

φdµeg(et) = 0
�

= inf
�∫

M n |∇φ|2c(t)g(t)dµc(t)g(t)∫
M n φ

2dµc(t)g(t)

����φ ∈ C∞(M n),

∫

M n

φdµc(t)g(t) = 0
�

= inf
� c(t)

∫
M n |∇φ|2g(t)dµg(t)∫
M n φ

2dµg(t)

����φ ∈ C∞(M n),

∫

M n

φdµg(t) = 0
�

= c(t)λ1(g(t)),

where we use the fact that∫

M n

φdµeg(et) = c(t)
n
2

∫

M n

φdµg(t) = 0

if and only if
∫

M n φdµg(t) = 0.
Thus by using Theorem 1.4, we have

λ1(eg(et))
c(t)

≤ λ1(eg(0))
c(0)

= λ1(g(0)).

Since the curvature operator R(g(0)) is a 2-positive curvature operator, then let
t →∞, by Theorem 1.7 we have the metrics g(t) convergent to a space form M n

K

with constant positive curvature K . Thus

λ1(gM m
K
)

exp
�

2
n

∫∞
0

r(τ)dτ
� =

lim
et→∞

λ1(eg(et))
lim
t→∞

c(t)
= lim

t→∞
λ1(eg(et))

c(t)
≤ λ1(g(0)),

which implies that

λ1(gM n
K
)≤ exp

�
2

n

∫ ∞

0

r(τ)dτ
�
λ1(g(0)).

On the other hand, when t is large enough, we have

1

2
λ1(gM n

K
)≤ λ1(eg(et))≤

3

2
λ1(gM n

K
),
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which implies that
1

2
λ1(gM n

K
)≤ c(t)λ1(g(t))≤

3

2
λ1(gM n

K
).

Thus

1

2
λ1(gM n

K
)exp

�
−2

n

∫ t

0

r(τ)dτ
�
≤ λ1(g(t))

≤ 3

2
λ1(gM n

K
)exp

�
−2

n

∫ t

0

r(τ)dτ
�

.
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