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Optimizing the Sum of Linear Absolute
Value Functions on An Interval

M.M. Khashshan

Abstract. In this paper we give a new result for solving the problem of optimizing
the sum of absolute values in the form |x − ar | over any interval.

1. Introduction

Consider the following problem

Optimize

f (x) =
n∑

r=1

|x − ar |, where ar−1 < ar for each 2≤ r ≤ n

Over any given interval I.

This problem has different applications in different aspects such as digital
communication and approximation techniques, see [2]. Also, Han-Lin and Chian-
Son [1] solved obtained minimized this sum over the set of all real numbers using
so-called goal programming. In [3], we obtained an explicit formula that gives the
minimum of this sum over the set of all real numbers. In this paper we introduce
and prove a theorem which directly gives the optimum value of f (x) over any
given interval. Our proof depends on rewriting f as a piecewise linear function.
We do so by generalizing the case when n = 2, that is; f (x) = |x − a1|+ |x − a2|,
a1 < a2, to the case when n is any positive integer, that is;

f (x) =
n∑

r=1

|x − ar |, where ar−1 < ar for each 2≤ r ≤ n.

For the case when n= 2 ; if f (x) = |x − a1|+ |x − a2|, a1 < a2 then

f (x) =

¨
−(x − a1); x ≤ a1

x − a1; x > a1
+

¨
−(x − a2); x ≤ a2

x − a2; x > a2

2010 Mathematics Subject Classification. 90C05, 90C90.
Key words and phrases. Absolute value functions; Piecewise linear function; Convex function.



200 M.M. Khashshan

and hence

f (x) =




−(x − a1)− (x − a2); x ≤ a1

(x − a1)− (x − a2); a1 < x ≤ a2

(x − a1) + (x − a2); x > a2

.

2. The main results

We start this section with the solution of the proposed problem when the
interval I is of the form [b1, b2], where b1 < b2 .

Theorem 2.1. Consider the function f (x) =
n∑

r=1
|x − ar | over [b1, b2] where

ar−1 < ar for each 2≤ r ≤ n, b1, b2 ∈ R. Then
A. If n is odd, then f (x) has an absolute maximum value at

(
x = b1 if b2 ≤ a n+1

2
or (b1 < a n+1

2
< b2 and f (b1)≥ f (b2))

x = b2 if b1 ≥ a n+1
2

or (b1 < a n+1
2
< b2 and f (b1)≤ f (b2))

and f (x) has an absolute minimum value at




x = b1 if b1 ≥ a n+1
2

x = b2 if b2 ≤ a n+1
2

x = a n+1
2

if b1 < a n+1
2
< b2

B. If n is even, then f (x) has an absolute maximum value at




x = b1 if b2 ≤ a n
2

or (b1 < a n
2

and a n
2
< b2 ≤ a n

2
+1)

or (b1 < a n
2

and b2 > a n
2
+1 and f (b1)≥ f (b2))

x = b2 if b1 ≥ a n
2
+1 or (a n

2
≤ b1 < a n

2
+1 and b2 > a n

2
+1)

or (b1 < a n
2

and b2 > a n
2
+1 and f (b1)≤ f (b2))

and f (x) has an absolute minimum value at




x = b1 if b1 ≥ a n
2
+1

x = b2 if b2 ≤ a n
2

x = t ∀ t ∈ [a n
2
, b2] if b1 ≤ a n

2
and a n

2
< b2 ≤ a n

2
+1

x = t ∀ t ∈ [b1, a n
2
+1] if a n

2
≤ b1 < a n

2
+1 and b2 ≥ a n

2
+1

x = t ∀ t ∈ [a n
2
, a n

2
+1] if b1 ≤ a n

2
and b2 ≥ a n

2
+1

and f (x) is constant if a n
2
≤ b1 < a n

2
+1 and a n

2
< b2 ≤ a n

2
+1.

Proof. Our goal is to show that f is convex on R in both cases, either n is odd
or n is even, and we will see that f has an absolute minimum value at x = a n+1

2

when n is odd and it has an absolute minimum value at x = t ∀ t ∈ [a n
2
, a n

2
+1]

when n is even. After that we will restrict the natural domain of f to be the closed
bounded interval [b1, b2], and then we will discuss all possible situations of b1, b2
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in relation with a n+1
2

when n is odd and in relation with a n
2
, a n

2
+1 when n is even.

First, we rewrite the function f as a piecewise linear function as follows:

f (x) =





−
n∑

r=1
(x − ar) = g1(x); x ≤ a1

i∑
r=1
(x − ar)−

n∑
r=i+1

(x − ar) = gi+1(x); ai < x ≤ ai+1, i = 1, . . . , n− 1

n∑
r=1
(x − ar) = gn+1(x); x > an

Now, we consider the cases when n is odd and when n is even:

A. Let n be odd. Then the functions g1, . . . , g n+1
2

are strictly decreasing linear
functions (each of them has x ’s with negative sign more than x ’s with positive
sign). On the other hand, the functions g n+3

2
, . . . , gn+1 are strictly increasing linear

functions (each of them has x ’s with positive sign more than x ’s with negative
sign). Since f is continuous on R (sum of continuous functions), then we can
conclude that f is strictly decreasing over (−∞, a n+1

2
] and strictly increasing over

[a n+1
2

,∞). This implies that min( f ) = f (a n+1
2
), that is; f has an absolute minimum

value at x = a n+1
2

. We can see that f is convex on R, and the general shape of f
when n is odd appears in Figure 1. Now, let x ∈ [b1, b2]. When b2 ≤ a n+1

2
then f is

strictly decreasing over [b1, b2], implies that f has an absolute maximum value at
x = b1 and has an absolute minimum value at x = b2. When b1 < a n+1

2
< b2 then

f is strictly decreasing over [b1, a n+1
2
], strictly increasing over [a n+1

2
, b2], which

implies that f has an absolute maximum value at x = b1 if f (b1) ≥ f (b2), and
f has an absolute maximum value at x = b2 if f (b1) ≤ f (b2), and moreover f
has an absolute minimum value at x = a n+1

2
. When b1 ≥ a n+1

2
then f is strictly

increasing over [b1, b2], which implies that f has an absolute maximum value at
x = b2 and has an absolute minimum value at x = b1.

B. Let n be even. Then the functions g1, . . . , g n
2

are strictly decreasing linear
functions, g n

2
+1 is a constant function, and the functions g n

2
+2, . . . , gn+1 are strictly

increasing linear functions. Since f is continuous on R, then we can conclude that
f is strictly decreasing over (−∞, a n

2
], is a constant over [a n

2
, a n

2
+1], and is strictly

increasing over [a n
2
+1,∞), this implies that min( f ) = f (t)∀t ∈ [a n

2
, a n

2
+1]. We

can see that f is convex on R, and the general shape of f when n is even appears
in Figure 2. Now, let x ∈ [b1, b2]. When b2 ≤ a n

2
then f is strictly decreasing

over [b1, b2], implies that f has an absolute maximum value at x = b1 and has an
absolute minimum value at x = b2. When b1 ≥ a n

2
+1 then f is strictly increasing

over [b1, b2], which implies that f has an absolute maximum value at x = b2

and has an absolute minimum value at x = b1. When b1 < a n
2
, a n

2
< b2 ≤ a n

2
+1

then f is strictly decreasing over [b1, a n
2
] and constant over [a n

2
, b2], implies that

f has an absolute maximum value at x = b1 and has an absolute minimum
value at x = t ∀t ∈ [a n

2
, b2]. When a n

2
≤ b1 < a n

2
+1, a n

2
< b2 ≤ a n

2
+1 then
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b1, b2 ∈ [a n
2
, a n

2
+1], since f is constant over [a n

2
, a n

2
+1] when x ∈ R then f is

constant when x ∈ [b1, b2]. In addition, when a n
2
≤ b1 < a n

2
+1, b2 > a n

2
+1 then

f is constant over [b1, a n
2
+1] and strictly increasing over [a n

2
+1, b2], implies that f

has an absolute maximum value at x = b2 and has an absolute minimum value at
x = t ∀t ∈ [b1, a n

2
+1]. ¤

Figure 1 Figure 2
The general shape of f when n is odd The general shape of f when n is even

Remark 2.2. The solution of the proposed problem is summarized in the following
four tables for all other forms of the interval I. The proof of each one of them is
similar to the proof of the previous theorem.

Table 1. n is odd and I is a finite interval

Interval Conditions Absolute max( f ) at Absolute min( f ) at

x ∈ (b1, b2]

b2 ≤ a n+1
2

None x = b2

b1 < a n+1
2
< b2 and f (b1)≤ f (b2) x = b2 x = a n+1

2

b1 < a n+1
2
< b2 and f (b1)> f (b2) None x = a n+1

2

b1 ≥ a n+1
2

x = b2 None

x ∈ [b1, b2)

b2 ≤ a n+1
2

x = b1 None

b1 < a n+1
2
< b2 and f (b1)< f (b2) None x = a n+1

2

b1 < a n+1
2
< b2 and f (b1)≥ f (b2) x = b1 x = a n+1

2

b1 ≥ a n+1
2

None x = b1

x ∈ I= (b1, b2)
a n+1

2
∈ I None x = a n+1

2

a n+1
2
/∈ I None None
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Table 2. n is odd and I is an infinite interval

Interval Conditions Absolute max( f ) at Absolute min( f ) at

(−∞,∞) None x = a n+1
2

x ∈ (−∞, b]
b ≤ a n+1

2
None x = b

b > a n+1
2

None x = a n+1
2

x ∈ [b,∞)
b < a n+1

2
None x = a n+1

2

b ≥ a n+1
2

None x = b

x ∈ I= (−∞, b) or (b,∞)
a n+1

2
∈ I None x = a n+1

2

a n+1
2
/∈ I None None

Table 3. n is even and I is a finite interval

Interval Conditions Absolute max( f ) at Absolute min( f ) at

x ∈ (b1, b2]

b2 ≤ a n
2

None x = b2

b1 < a n
2

and a n
2
< b2 ≤ a n

2
+1 None x = t ∀t ∈ [a n

2
, b2]

b1 < a n
2
, b2 > a n

2
+1 and f (b1)> f (b2) None x = t ∀t ∈ [a n

2
, a n

2
+1]

b1 < a n
2
, b2 > a n

2
+1 and f (b1)≤ f (b2) x = b2 x = t ∀t ∈ [a n

2
, a n

2
+1]

b1 ≥ a n
2

and b2 ≤ a n
2
+1 x = t ∀t ∈ (b1, b2] x = t ∀t ∈ (b1, b2]

a n
2
≤ b1 < a n

2
+1 and b2 > a n

2
+1 x = b2 x = t ∀t ∈ (b1, a n

2
+1]

b1 ≥ a n
2
+1 x = b2 None

x ∈ [b1, b2)

b2 ≤ a n
2

x = b1 None

b1 < a n
2

and a n
2
< b2 ≤ a n

2
+1 x = b1 x = t ∀t ∈ [a n

2
, b2)

b1 < a n
2
, b2 > a n

2
+1 and f (b1)≥ f (b2) x = b1 x = t ∀t ∈ [a n

2
, a n

2
+1]

b1 < a n
2
, b2 > a n

2
+1 and f (b1)< f (b2) None x = t ∀t ∈ [a n

2
, a n

2
+1]

b1 ≥ a n
2

and b2 ≤ a n
2
+1 x = t∀t ∈ [b1, b2), x = t∀t ∈ [b1, b2)

f is constant

a n
2
≤ b1 < a n

2
+1 and b2 > a n

2
+1 None x = t ∀t ∈ [b1, a n

2
+1]

b1 ≥ a n
2
+1 None x = b1

x ∈ (b1, b2)

b2 ≤ a n
2

None None

b1 < a n
2

and a n
2
< b2 ≤ a n

2
+1 None x = t ∀t ∈ [a n

2
, b2)

b1 < a n
2

and b2 > a n
2
+1 None x = t∀t ∈ [a n

2
, a n

2
+1]

b1 ≥ a n
2

and b2 ≤ a n
2
+1 x = t∀t ∈ (b1, b2), x = t∀t ∈ (b1, b2)

f is constant

a n
2
≤ b1 < a n

2
+1 and b2 > a n

2
+1 None x = t∀t ∈ (b1, a n

2
+1]

b1 ≥ a n
2
+1 None None
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Table 4. n is even and I is an infinite interval

Interval Conditions Absolute max( f ) at Absolute min( f ) at

(−∞,∞) None x = t ∀t ∈ [a n
2
, a n

2
+1]

b ≤ a n
2

None x = b

x ∈ (−∞, b] a n
2
< b ≤ a n

2
+1 None x = t ∀t ∈ [a n

2
, b]

b > a n
2
+1 None x = t ∀t ∈ [a n

2
, a n

2
+1]

b < a n
2

None x = t ∀t ∈ [a n
2
, a n

2
+1]

x ∈ [b,∞) a n
2
≤ b < a n

2
+1 None x = t ∀t ∈ [b, a n

2
+1]

b ≥ a n
2
+1 None x = b

b ≤ a n
2

None None

x ∈ [−∞, b) a n
2
< b ≤ a n

2
+1 None x = t ∀t ∈ [a n

2
, b)

b > a n
2
+1 None x = t ∀t ∈ [a n

2
, a n

2
+1]

b < a n
2

None x = t ∀t ∈ [a n
2
, a n

2
+1]

x ∈ (b,∞) a n
2
≤ b < a n

2
+1 None x = t ∀t ∈ (b, a n

2
+1]

b ≥ a n
2
+1 None None
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