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1. Introduction
The current paper is devoted to discuss Haar wavelet technique for finding the numerical
solutions of fourth order singular singularly perturbed boundary value problems, given by

Ly(x)= εy4(x)+ a
x

y′′′(x)+ b
x

y′′(x)+ c
x

y′(x)+ d
x

y(x)= f (x), x ∈ (0,1), (1.1)

y(0)= p, y(1)= r, y′′(0)= q, y′′(1)= s, p, q, r, s ∈ R, (1.2)

where ε is a small positive parameter (0 < ε ¿ 1) premultiplying the higher derivative of
the differential equation and f (x) is sufficiently smooth function and a, b, c and d are
constants and p, q, r, s are known constants. Singularly perturbed problems are classified
on the basis that how the order of the original differential equation is affected if one sets
ε→ 0. Singularly perturbed problems are very popular in the field of science and engineering
e.g., quantum mechanics, optimal control, chemical reactor theory, fluid dynamics etc. (one
can follow [2],[7],[6],[10],[11],[16],[17],[21],[20],[22]). There are three standard approaches to
solve singularly perturbed boundary value problems numerically the ideal equation (1.1),
namely, finite difference method ([1],[2],[10],[11],[17],[22]), finite element method [5] and spline
approximation ([4],[15],[18],[19]). In this paper, we have used the technique of Haar wavelet
method to approximate highest derivative appearing in the differential equation by Haar
series and other derivatives are obtained through integration of Haar series. The integration of
Haar wavelets is preferred because the differentiation of Haar wavelet always results impulse
functions. Through integration we can expand differential equation into Haar Matrix H with
Haar coefficient matrix of 2M×2M order on collocation points. The main idea of this technique
is to convert a differential equation into algebraic one. In order to approximate the solution of
differential equation, we collocate the algebraic equations at collocation points. The benefits of
Haar wavelets transform are sparse matrix of representations than other existing method. In
this article, the error analysis is mentioned that shows high order convergence can be achieved
on increasing the value of M to obtain the required approximation.

The Haar wavelet family for x ∈ [0,1), defined as ([8],[9],[12],[14]) The scaling function for
the family of Haar wavelets is defined on the interval [0,1) and is given as follows:

h1(x)=
{

1 for x ∈ [0,1) ,
0 elsewhere.

(1.3)

All other functions in Haar wavelet family are defined on subintervals of [0,1) and are given as
follows:

hi(x)=


1 for x ∈ [ξ1,ξ2) ,
−1 for x ∈ [ξ2,ξ3) ,
0 otherwise,

(1.4)

where

ξ1 = k
m

, ξ2 = k+0.5
m

, ξ3 = k+1
m

, i = 2,3, . . . ,2M. (1.5)

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 699–710, 2017



Solution of a Class of Fourth Order Singular Singularly Perturbed Boundary. . . : K. Yadav and J.P. Jaiswal 701

The integer m = 2 j, where j = 0,1, . . . , J, and M = 2J , and integer k = 0,1, . . . ,m−1. The relation
between i, m and k is given by i = m+ k+1. The integer k is translation parameter and j
indicates the level of the wavelet. The maximal level of resolution is the integer J .

The function h2(x) is called the mother wavelet, and all other functions in the Haar wavelet
family except the scaling function are generated from the mother wavelet by the operations of
dilation and translation.

The Haar wavelet functions are orthogonal to each other because∫ 1

0
hi(x)hl(x)dx =

{
2− j for l = i,
0 for l 6= i.

(1.6)

Any function f (x) which is square integrable in the interval (0,1) can be expressed as an
infinite sum of Haar wavelets in the form

f (x)=
∞∑

i=1
aihi(x). (1.7)

The above series terminates at finite terms if f (x) is piecewise constant or can be approximated
as piecewise constant during each subinterval.

These integrals can be evaluated using (1.4), by doing it first four of them are given by

pi,1(x)=


x−ξ1 for x ∈ [ξ1,ξ2) ,

ξ3 − x for x ∈ [ξ2,ξ3) ,

0 otherwise,

(1.8)

pi,2(x)=



1
2 (x−ξ1)2 for x ∈ [ξ1,ξ2) ,

1
4m2 − 1

2 (ξ3 − x)2 for x ∈ [ξ2,ξ3) ,
1

4m2 for x ∈ [ξ3,1),

0 otherwise,

(1.9)

pi,3(x)=



1
6 (x−ξ1)3 for x ∈ [ξ1,ξ2) ,

1
4m2 (x−ξ2)+ 1

6 (ξ3 − x)3 for x ∈ [ξ2,ξ3) ,
1

4m2 (x−ξ2) f or x ∈ [ξ3,0),

0 otherwise,

(1.10)

pi,4(x)=



1
24 (x−ξ1)4 for x ∈ [ξ1,ξ2) ,

1
8m2 (x−ξ2)2 − 1

24 (ξ3 − x)4 + 1
192m4 for x ∈ [ξ2,ξ3) ,

1
8m2 (x−ξ2)2 + 1

192m4 f or x ∈ [ξ3,0)

0 otherwise.

(1.11)

We also consider the following notation:

Ci,v =
∫ 1

0
pi,v(x)dx, v = 1,2, . . . . (1.12)
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The rest of the paper is organized as follows: Section 2, general formulation of the numerical
technique based on Haar wavelets. Just before final section, we consider two numerical problems
for comparison with existing methods. Finally, in the last section, we give the concluding
remarks.

2. Haar Wavelet Method for Solving Fourth Order Differential
Equations

To apply Haar wavelet method for problem (1.1) we approximate highest order derivative y(4)(x)
using Haar wavelet series as follows

y(4)(x)=
2M∑
i=1

aihi(x). (2.1)

On integrating (2.1) and using the boundary conditions (1.2) with a = 0, b = 1, we can get y′′′(x),
y′′(x), y′(x) and finally y(x) can be expanded in form of Haar wavelet series.

y′′′(x)= y′′′(0)+
2M∑
i=1

ai pi,1(x), (2.2)

y′′(x)= q+ xy
′′′

(0)+
2M∑
i=1

ai pi,2(x), (2.3)

y
′
(x)= y′(0)+ qx+ x2

2
y′′′(0)+

2M∑
i=1

ai pi,3(x), (2.4)

y(x)= p+ xy′(0)+ q
x2

2
+ x3

6
y′′′(0)+ x4

24
y(4)(0)+

2M∑
i=1

ai pi,4(x), (2.5)

where pi,1, pi,2, pi,3 and pi,4 are defined in equations (1.8), (1.9), (1.10) and (1.11), respectively.
The presence of two integration constants allow us the additional of two more equations which
can be done by using particulars on the above equation and boundary conditions at both ends
of the rule. Discretization using collocation points. x j = j−0.5

2M , j = 1,2, . . . ,2M of the equations
(2.1)-(2.5) can be reduced into the following matrix form

y(4) =


h1(x1) . . . h2M(x1) 0 0
h1(x2) . . . h2M(x2) 0 0

...
...

...
h1(x2M) . . . h2M(x2M) 0 0





a1
a2
...

a2M
y′(0)
y′′′(0)


, (2.6)

y′′′ =


p1,1(x1) . . . p2M,1(x1) 0 1
p1,1(x2) . . . p2M,1(x2) 0 1

...
...

...
p1,1(x2M) . . . p2M,1(x2M) 0 1





a1
a2
...

a2M
y′(0)
y′′′(0)


, (2.7)
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y′′ =


p1,2(x1) . . . p2M,2(x1) 0 x1
p1,2(x2) . . . p2M,2(x2) 0 x2

...
...

...
p1,2(x2M) . . . p2M,2(x2M) 0 x2M





a1
a2
...

a2M
y′(0)

y(3)(0)


+


q
q
...
q

 , (2.8)

y′ =


p1,3(x1) . . . p2M,3(x1) 1 x2

1/2
p1,3(x2) . . . p2M,3(x2) 1 x2

2/2
...

...
...

p1,3(x2M) . . . p2M,3(x2M) 1 x2
2M /2





a1
a2
...

a2M
y′(0)
y′′′(0)


+


qx1
qx2

...
qx2M

 , (2.9)

and

y=


p1,4(x1) . . . p2M,4(x1) x1 x3

1/2
p1,4(x2) . . . p2M,4(x2) x2 x3

2/2
...

...
...

p1,4(x2M) . . . p2M,4(x2M) x2M x3
2M /2





a1
a2
...

a2M
y′(0)
y′′′(0)


+


p+ qx2

1/2
p+ qx2

2/2
...

p+ qx2
2M /2

 . (2.10)

The value of unknown term y′′′(0) and y′(0) be calculated by integrating equation (2.2) and (2.4)
from 0 to 1 and is given by

y′′′(0)= s− q−
2M∑
i=1

aiCi,1 (2.11)

and

y′(0)= r− p− 1
3

q− 1
6

s+
2M∑
i=1

ai

(
1
6

Ci,1 −Ci,3

)
. (2.12)

These values are substituted in the expressions (2.3), (2.5) in order to obtain system of equations
whose and solution gives us the Haar coefficients. Babolian and Shahsavaran [3] have shown
that the error bound is inversely proportional to the level of resolution of Haar wavelet. This
ensures the convergence of Haar wavelet approximation when M is increased.

3. Numerical Examples

To demonstrate the applicability of the method, we consider the two linear singular perturbed
problems, which have been widely discussed in the approximate and exact solutions are available
for comparison. The computer characteristic is Microsoft Windows 10 Intel(R) Core(TM) i3 CPU
M 380@ 2.53 GHz with 3.00 GB of RAM, 64-bit operating system throughout this paper. Here
we use the software MATLAB R2014a, for numerical computing.
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Example 3.1. Consider the following 4th order singular perturbation problem [13]:

−εy(4) − 1
x

y(x)= f (x), (3.1)

with boundary conditions

y(0)= 0, y(1)= 0, y′′(0)= 0, y′′(1)= 0, (3.2)

where f (x)= ex {
ε(8+7x+ x2)− (1− x)

}+ 2
3ε(1− x2).

The exact solution for the above example is

y(x)= x(1− x)ex − 2
3

ex(1− x2). (3.3)

The numerical results for the Example 3.1 are presented in Table 1. Table 1 shows the maximum
absolute errors for different values of M and ε. Tables 3-6 provide a comparison of maximum
absolute errors along with quintic B-spline (QBSM) method discussed in [13] and it is concluded
that the present method gives better results than QBSM. Figure 1, compares the exact and
numerical solution of the Example 3.1 for ε= 0.0001 and M = 32.

Example 3.2. Consider the another 4th order singular perturbation problem [13]:

εy(4) + 1
x

y′′+ 1
x

y(x)= f (x), (3.4)

with boundary conditions

y(0)= 0, y(1)= 0, y′′(0)= 0, y′′(1)= 0, (3.5)

where f (x)= ex {
ε(x+4)+2+ 2

x
}− 2

x + 8
3 − 7

2 e− x+ (1
3 − 1

2 e)x2.

The exact solution is given by

y(x)= xex +
(
2
3
− 1

2
e
)

x− x2 +
(
1
3
− 1

2
e
)

x3. (3.6)

Table 6 shows the maximum absolute error of the Example 3.2 for different values of ε and M.

Tables 7-10 show the maximum absolute errors at collocation points along with the existing
method QBSM and it is concluded that the present method gives better results than QBSM.
Figure 2, compares the exact and numerical solutions of the Example 3.2 for ε= 0.0001 and
M = 32.

Table 1. Maximum absolute error of Example 3.1 for different value of M and various small value of ε.

ε= 10−K M = 8 M = 16 M = 32 M = 64 M = 128 M = 256 M = 512
K = 0 4.12E-04 1.05E-04 2.65E-05 6.63E-06 1.66E-06 4.14E-07 1.04E-07
K = 1 3.40E-04 8.68E-05 2.18E-05 5.45E-06 1.36E-06 3.41E-07 8.52E-08
K = 2 1.30E-04 3.28E-05 8.25E-06 2.06E-06 5.16E-07 1.29E-07 3.23E-08
K = 3 2.44E-05 6.14E-06 1.55E-06 3.89E-07 9.72E-08 2.43E-08 6.08E-09
K = 4 3.52E-06 9.21E-07 2.32E-07 5.81E-08 1.45E-08 3.63E-09 9.08E-10
K = 5 4.48E-07 1.16E-07 2.95E-08 7.40E-09 1.85E-09 4.63E-10 1.16E-10
K = 6 4.81E-08 1.36E-08 3.39E-09 8.57E-10 2.14E-10 5.37E-11 1.34E-11
K = 7 4.88E-09 1.48E-09 3.66E-10 9.34E-11 2.34E-11 5.86E-12 1.47E-12
K = 8 4.88E-10 1.51E-10 4.06E-11 9.69E-12 2.45E-12 6.17E-13 1.54E-13
K = 9 4.88E-11 1.51E-11 4.19E-12 1.06E-12 2.54E-13 6.35E-14 1.59E-14
K = 10 4.88E-12 1.52E-12 4.21E-13 1.10E-13 2.66E-14 6.43E-15 1.68E-15
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Table 2. Comparison of maximum absolute error of Example 3.1 for different value of M and ε= 10−K .

ε= 10−K M = 8 M = 16
Lodhi et al. [13] Present method Lodhi et al. [13] Present method

K = 0 8.51E-04 4.12E-04 2.21E-04 1.05E-04
K = 1 6.99E-04 3.40E-04 1.74E-04 8.68E-05
K = 2 2.62E-04 1.30E-04 6.62E-05 3.28E-05
K = 3 4.90E-05 2.44E-05 1.25E-05 6.14E-06
K = 4 7.52E-06 3.52E-06 1.86E-06 9.21E-07
K = 5 1.07E-06 4.48E-07 2.43E-07 1.16E-07
K = 6 1.30E-07 4.81E-08 2.87E-08 1.36E-08
K = 7 1.34E-08 4.88E-09 3.62E-09 1.48E-09
K = 8 1.35E-09 4.88E-10 3.82E-10 1.51E-10
K = 9 1.35E-10 4.88E-11 3.84E-11 1.51E-11

K = 10 1.35E-11 4.88E-12 3.84E-12 1.52E-12

Table 3. Comparison of maximum absolute error of Example 3.1 for different value of M and ε= 10−K .

ε= 10−K M = 32 M = 64
Lodhi et al. [13] Present method Lodhi et al. [13] Present method

K = 0 5.30E-05 2.65E-05 1.33E-05 6.62E-06
K = 1 4.36E-05 2.18E-05 1.09E-05 5.45E-06
K = 2 1.65E-05 8.25E-06 4.13E-06 2.06E-06
K = 3 3.11E-06 1.55E-06 7.78E-07 3.89E-07
K = 4 4.65E-07 2.32E-07 1.16E-07 5.81E-08
K = 5 5.94E-08 2.95E-08 1.48E-08 7.40E-08
K = 6 6.92E-09 3.39E-09 1.72E-09 8.57E-10
K = 7 7.59E-10 3.66E-10 1.89E-10 9.34E-11
K = 8 9.40E-10 4.06E-11 2.04E-11 9.69E-12
K = 9 1.01E-11 4.19E-12 2.43E-12 1.05E-12

K = 10 1.02E-12 4.21E-13 2.60E-13 1.10E-13

Table 4. Comparison of maximum absolute error of Example 3.1 for different value of M and ε= 10−K .

ε= 10−K M = 128 M = 256

Lodhi et al. [13] Present method Lodhi et al. [13] Present method

K = 0 3.31E-06 1.66E-06 8.29E-07 4.14E-07

K = 1 2.73E-06 1.36E-06 6.82E-07 3.41E-07

K = 2 1.03E-06 5.16E-07 2.57E-07 1.29E-07

K = 3 1.94E-07 9.72E-08 4.86E-08 2.43E-08

K = 4 2.90E-08 1.45E-08 7.24E-09 3.63E-09

K = 5 3.70E-09 1.85E-09 9.25E-10 4.63E-10

K = 6 4.30E-10 2.14E-10 1.07E-10 5.37E-11

K = 7 4.70E-11 2.34E-11 1.17E-11 5.86E-12

K = 8 4.98E-12 2.45E-12 1.24E-12 6.17E-13

K = 9 5.21E-13 2.54E-13 1.28E-13 6.35E-14

K = 10 5.70E-14 2.66E-14 3.50E-14 6.42E-15
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Table 5. Comparison of maximum absolute error of Example 3.1 for different value of M and ε= 10−K .

ε= 10−K M = 512
Lodhi et al. [13] Present method

K = 0 1.99E-07 1.04E-07
K = 1 1.76E-07 8.52E-08
K = 2 4.39E-08 3.23E-08
K = 3 1.22E-08 6.08E-09
K = 4 1.28E-09 9.08E-10
K = 5 2.13E-10 1.16E-10
K = 6 2.65E-11 1.34E-11
K = 7 2.92E-12 1.47E-12
K = 8 2.94E-13 1.54E-13
K = 9 3.12E-14 1.59E-14
K = 10 3.25E-15 1.68E-15

Table 6. Maximum absolute error of Example 5.2 for different value of M and various small value of ε.

ε= 10−K M = 8 M = 16 M = 32 M = 64 M = 128 M = 256 M = 512

K = 0 2.98E-05 7.51E-06 1.88E-06 4.70E-07 1.18E-07 2.94E-08 7.34E-09

K = 1 8.68E-06 2.12E-06 5.27E-07 1.31E-07 3.28E-08 8.21E-09 2.05E-09

K = 2 1.74E-06 7.14E-07 1.40E-07 3.47E-08 8.67E-09 2.17E-09 5.42E-10

K = 3 6.41E-08 3.14E-08 8.79E-09 2.27E-09 5.68E-10 1.43E-10 3.57E-11

K = 4 7.21E-08 1.95E-09 5.72E-10 2.05E-10 5.50E-11 1.40E-11 3.51E-12

K = 5 8.47E-08 5.03E-09 2.49E-10 3.04E-12 4.33E-12 1.32E-12 3.46E-13

K = 6 8.59E-08 5.35E-09 3.28E-10 1.88E-11 7.69E-13 6.11E-14 3.00E-14

K = 7 8.60E-08 5.38E-09 3.36E-10 2.08E-11 1.26E-12 6.87E-14 2.37E-15

K = 8 8.61E-08 5.38E-09 3.36E-10 2.10E-11 1.31E-12 8.12E-14 5.47E-15

K = 9 8.61E-08 5.38E-09 3.36E-10 2.10E-11 1.31E-12 8.24E-14 5.69E-15

K = 10 8.60E-08 5.38E-09 3.36E-10 2.10E-11 1.31E-12 8.23E-14 5.94E-15

K = 10 4.88E-12 1.52E-12 4.21E-13 1.10E-13 2.66E-14 6.43E-15 1.68E-15

Table 7. Comparison of maximum absolute error of Example 3.2 for different value of M and ε= 10−K .

ε= 10−K M = 8 M = 16

Lodhi et al. [13] Present method Lodhi et al. [13] Present method

K = 0 2.41E-04 2.95E-05 6.02E-05 7.51E-06

K = 1 8.12E-05 8.68E-06 1.77E-05 2.12E-06

K = 2 1.40E-05 1.74E-06 5.01E-05 7.14E-07

K = 3 6.50E-07 6.41E-08 2.58E-07 3.14E-08

K = 4 4.26E-07 7.21E-08 6.36E-09 1.95E-09

K = 5 5.26E-07 8.47E-08 3.02E-08 5.03E-09

K = 6 5.36E-07 8.59E-08 3.28E-08 5.35E-09

K = 7 5.37E-07 8.60E-08 3.30E-08 5.38E-09

K = 8 5.38E-07 8.61E-08 3.30E-08 5.38E-09

K = 9 5.38E-07 8.61E-08 3.30E-08 5.38E-09

K = 10 5.37E-07 8.60E-08 3.30E-08 5.38E-09
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Table 8. Comparison of maximum absolute error of Example 3.2 for different value of M and ε= 10−K .

ε= 10−K M = 32 M = 64
Lodhi et al. [13] Present method Lodhi et al. [13] Present method

K = 0 1.50E-05 1.88E-06 3.76E-06 4.70E-07
K = 1 4.26E-06 5.27E-07 1.05E-06 1.31E-07
K = 2 1.10E-06 1.40E-07 2.73E-07 3.47E-08
K = 3 7.09E-08 8.79E-09 1.82E-08 2.27E-09
K = 4 5.20E-09 5.72E-10 1.68E-09 2.05E-10
K = 5 1.35E-09 2.49E-10 5.72E-11 3.04E-12
K = 6 1.98E-09 3.27E-10 1.11E-10 1.88E-11
K = 7 2.05E-09 3.36E-10 1.26E-10 2.08E-11
K = 8 2.05E-09 3.36E-10 1.28E-10 2.10E-11
K = 9 2.05E-09 3.36E-10 1.28E-10 2.10E-11

K = 10 2.05E-09 3.36E-10 1.28E-10 2.10E-11

Table 9. Comparison of maximum absolute error of Example 3.2 for different value of M and ε= 10−K .

ε= 10−K M = 128 M = 256
Lodhi et al. [13] Present method Lodhi et al. [13] Present method

K = 0 9.40E-07 1.77E-07 2.35E-07 2.94E-08
K = 1 2.63E-07 1.18E-07 6.56E-08 8.21E-09
K = 2 6.91E-08 8.67E-09 1.73E-08 2.17E-09
K = 3 4.56E-09 5.68E-10 1.14E-09 1.43E-10
K = 4 4.49E-10 5.50E-11 1.11E-10 1.40E-11
K = 5 3.71E-11 4.33E-12 1.07E-11 1.32E-12
K = 6 3.68E-12 7.68E-13 6.23E-13 6.11E-14
K = 7 7.55E-12 1.26E-12 3.80E-13 6.87E-14
K = 8 7.97E-12 1.31E-12 5.28E-13 8.12E-14
K = 9 7.99E-12 1.31E-12 5.37E-13 8.24E-14

K = 10 8.02E-12 1.31E-12 4.75E-13 8.25E-14

Table 10. Comparison of the absolute error for Example 3.2 for M = 512.

ε= 10−K M = 512
Lodhi et al. [13] Present method

K = 0 5.34E-08 7.34E-09
K = 1 1.50E-08 2.05E-09
K = 2 3.39E-09 5.42E-10
K = 3 2.81E-10 3.57E-11
K = 4 7.18E-12 3.51E-12
K = 5 1.08E-12 3.45E-13
K = 6 2.59E-13 3.00E-14
K = 7 4.90E-14 2.37E-15
K = 8 1.34E-14 5.47E-15
K = 9 9.71E-14 5.69E-15
K = 10 1.77E-15 5.94E-15
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Figure 1. Physical behavior of exact and approximate
solutions at collocation points of Example 5.1for ε =
0.0001 and M = 32 .
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4. Conclusion
In the present study, a numerical algorithm is developed using Haar wavelet method for
solution of a class of fourth order singular singularly perturbed boundary value problems. The
developed method has been utilized to improve a Solution of a class of fourth order singular
singularly perturbed boundary value problems by quintic B-spline method. The proposed
method is computationally efficient and the algorithm can be easily implemented on computer.
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The Haar solution are very good in agreement with exact solutions available in the literature.
The comparison with analytical solution shows that Haar wavelets gives better results with
less computational cost. It is due to the sparsity of the transformation matrix and the small
number of the wavelets coefficients.
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