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1. Introduction

In 1986, Atanassov [4] introduced the concept of intuitionistic fuzzy sets as a generalization of
fuzzy sets. Later in 1996, Coker [9] introduced the concept of intuitionistic set and intuitionistic
points. This is a discrete form of intuitionistic fuzzy sets where all the sets are crisp set. In 2000,
Coker [11] also introduced the concept of “intuitionistic topological space” and investigated basic
properties of continuous functions and compactness. In general topological space (Levine [16])
introduced semi open sets and semi continuity and Abd El. Monsef et al. [1] introduced “β-open
sets and β-continuous mapping” and discussed some of their basic properties. Andrijevic [3]
introduced and discussed some more properties of semi pre open set in topological space. Csaszar
[5, 6] introduced and discussed generlazied open set, γ-interior and γ-closure in topological
space.

Recently Gnanambal Ilango and Selvanayaki [14], introduced and studied generalized pre
regular closed sets in intuitionistic topological spaces. Singaravelan [21] introduced intuitionistic
β-open sets in intuitionistic topological space.

In this paper, properties of intuitionistic β-open mappings and intuitonistic β-closed
mappings are discussed.

2. Preliminaries

Let us recall some basic definitions and results which are useful for this sequel. Throughout
the present study, a space X means an intuitionistic topological space.

Definition 2.1 ([9]). Let X is a non empty set. An intuitionistic set (IS for short) A is an object
having the form A = 〈X , A1, A2〉, where A1 and A2 are subsets of X satisfying A1 ∩ A2 = φ.
The set A1 is called the set of members of A, while A2 is called the set of non-members of A.

Definition 2.2 ([9]). Let X be a non empty set and let A, B are intuitionistic sets in the form
A = 〈X , A1, A2〉, B = 〈X ,B1,B2〉, respectively. Then

(a) A ⊆ B iff A1 ⊆ B1 and B2 ⊆ A2

(b) A = B iff A ⊆ B and B ⊆ A

(c) Ac = 〈X , A2, A1〉
(d) []A = 〈X , A1, (A1)c〉
(e) A−B = A∩BC .

(f) φ∼ = 〈X ,φ, X 〉, X∼ = 〈X , X ,φ〉,
(g) A∪B = 〈X , A1 ∪B1, A2 ∩B2〉,
(h) A∩B = 〈X , A1 ∩B1, A2UB2〉.

Furthermore, let {Aα : α ∈ J} be an arbitrary family of intuitionistic sets in X , where
Aα = 〈X , A(1)

α , A(2)
α 〉. Then
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(i) ∩Aα = 〈X ,∩A(1)
α ,U A(2)

α 〉.
(j) ∪Aα = 〈X ,∪A(1)

α ,∩A(2)
α 〉.

Definition 2.3 ([11]). An intuitionistic topology (for short IT) on a non empty set X is a family
of IS’s in X satisfying the following axioms.

(i) φ∼, X∼ ∈ τ
(ii) G1 ∩G2 ∈ τ for any G1,G2 ∈ τ.

(iii) ∪Gα ∈ τ for any arbitrary family {G i : Gα/α ∈ J}⊆ τ where (X ,τ) is called an intuitionistic
topological space (for short ITS(X)) and any intuitionistic set in is called an intuitionistic
open set (for short IOS) in X . The complement Ac of an IOS A is called an intuitionistic
closed set (for short ICS) in X .

Definition 2.4 ([11]). Let (X ,τ) be an intuitionistic topological space (for short ITS(X)) and
A = 〈X , A1, A2〉 be an IS in X . Then the interior and closure of A are defined by

Icl(A)=∩{K : K is an ICS in X and A ⊆ K},

I int(A)=∪{G : G is an IOS in X and G ⊆ A}.

It can be shown that Icl(A) is an ICS and I int(A) is an IOS in X and A is an ICS in X iff
Icl(A)= A and is an IOS in X iff I int(A)= A.

Definition 2.5 ([9]). Let X be a non empty set and p ∈ X . Then the ISP defined by
p = 〈X , {p}, {p}c〉 is called an intuitionistic point (IP for short) in X . The intuitionistic point p is
said to be contained in A = 〈X , A1, A2〉 (i.e., p ∈ A) if and only if p ∈ A1.

Definition 2.6 ([14]). Let (X ,τ) be an ITS(X ). An intuitionistic set A of X is said to be

(i) Intuitionistic semiopen if A ⊆ Icl(Iint(A)).

(ii) Intuitionistic preopen if A ⊆ Iint(Icl(A)).

(iii) Intuitionistic regular open if A = Iint(Icl(A)).

(iv) Intuitionistic α-open if A ⊆ Iint(Icl(Iint(A))).

The family of all intuitionistic pre open, intuitionistic regular open and intuitionistic α-open
sets of (X ,τ) are denoted by IPOS, IROS and IαOS, respectively.

Definition 2.7 ([21]). A subset A of anintuitionistic topological space X is intuitionistic β-open,
if there exists a intuitionistic preopen set U in X , such that U ⊆ A ⊆ Icl(U). The family of all
intuitionistic β-open sets in X will be denoted by IβOS(X ). The complement of intuitionistic
Iβ-open set is Iβ-closed set.

Definition 2.8 ([9, 11]). Let A, A i (i ∈ J) be IS’s in X ,B,B j ( j ∈ K) IS’s in Y and f : X → Y a
function. Then

(a) A1 ⊆ A2 ⇒ f (A1)⊆ f (A2)
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(b) B1 ⊆ B2 ⇒ f −1(B1)⊆ f −1(B2)

(c) A ⊆ f −1( f (A)) and if f is 1-1,then A = f −1( f (A)).

(d) f ( f −1(B)) and if f is onto, then f ( f −1(B))= B.

(e) f −1(∪B j)=∪ f −1(B j).

(f) f −1(∩B j)=∩ f −1(B j).

(g) f (∪A i)=∪ f (A i).

(h) f (∩A i)⊆∩ f (A i) and if f is 1-1, then f (∩A i)=∩ f (A i).

(i) f −1(Y∼)= X .

(j) f −1(φ∼)=φ∼.

(k) f (X∼)=Y∼. If f is onto.

(l) f (φ∼)=φ∼.

(m) If f is onto, then f (A)⊆ f (Ā): and if furthermore, f is 1-1, we have f (A)⊆ f (Ā).

(n) f −1(B̄)= f −1(B)

(o) B1 @B2 ⇒ f −1(B1)@ f −1(B2).

Definition 2.9 ([11]). Let (X ,τ) and (Y ,Φ) be two ITS’s and let f : X →Y be a function. Then
f is said to be continuous iff the preimage of each intuitionistic open in Φ is an intuitionistic
open in τ.

Definition 2.10 ([5]). Let (X ,τ) and (Y ,Φ) be two ITS’s and let f : X →Y be a function. Then f
is said to be open iff the preimage of each intuitionistic open in τ is an intuitionistic open in Φ.

Definition 2.11. Let (X ,τ) and (Y ,Φ) be two ITS’s and let f : X → Y is called intuitionistic
semi continuous if for every intuitionistic open V of Y , f −1(V ) is semi open in X .

Definition 2.12. Let (X ,τ) and (Y ,Φ) be two ITS’s and let f : X → Y is called intuitionistic
regular continuous if for every intuitinistic open set V of Y , f −1(V ) is regular open in X .

Definition 2.13. Let (X ,τ) and (Y ,Φ) be two ITS’s and let f : X →Y is called intuitionistic pre
continuous if for every intuitinistic open set V of Y , f −1(V ) is pre open in X .

Definition 2.14. Let (X ,τ) and (Y ,Φ) be two ITS’s and let f : X → Y is called intuitionistic
α-continuous if for every intuitinistic open set V of Y , f −1(V ) is α-open in X .

Definition 2.15 ([11]). Let (X ,τ1) and (Y ,τ2) be two ITS on X . Then τ1 is said to be contained
in τ2 (in symbols, τ1 ⊆ τ2), if G ∈ τ2 for each G ∈ τ1. In this case, we also say that τ1 is coarser
than τ2.

Definition 2.16 ([21]). Let (X ,τ) be an intuitionistic topological space and let A = 〈X , A1, A2〉
be the subset of X . Then Iβ-cl(A)=∩{F : F is intuitionistic β-closed in X and A ⊆ F}.

Definition 2.17 ([21]). Let (X ,τ) be an intuitionistic topological space and let A = 〈X , A1, A2〉
be the subset of X . Then Iβ-int(A)=U{F : F is intuitionistic β-open in X and F ⊆ A}.
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Proposition 2.18 ([21]). A subset A = 〈X , A1, A2〉 of an ITS(X) is intuitionistic β-open set iff
A ⊆ Icl(Iint(Icl(A))).

Lemma 2.19 ([21]). Let A and B be subsets of ITS(X ), then the following results are obvious.

(i) Iβ-cl(X )= X and Iβ-cl(∅∼)=∅∼.

(ii) If A ⊆ B, then Iβ-cl(A)⊆ Iβ-cl(B)

(iii) Iβ-cl(Iβ-cl(A))= Iβ-cl(A).

3. Properties of Iβ-Open and Iβ-Closed Mappings

Definition 3.1. A mapping f : X →Y is said to be Iβ-open, if the image of each open set in X
is Iβ-open in Y .

Definition 3.2. A mapping f : X →Y is said to be Iβ-closed, if the image of each closed set in
X is Iβ-closed in Y .

Definition 3.3. A mapping f : X →Y is said to be IP-closed, if the image of each closed set in
X is IP-closed in Y .

Definition 3.4. A mapping f : X →Y is said to be IS-closed, if the image of each closed set in
X is IS-closed in Y .

Definition 3.5. A mapping f : X →Y is said to be Ir-closed, if the image of each closed set in X
is Ir-closed in Y .

Definition 3.6. A mapping f : X →Y is said to be Iα-closed, if the image of each closed set in
X is Iα-closed in Y .

Lemma 3.7. Let A = 〈X , A1, A2〉 be a subset of intuitionistic topological space X , then the
following conditions are equivalent.

(i) A ∈ IβO(X )

(ii) A ⊆ Icl(Iint(Icl(A)))

(iii) A ⊆ Isint(Iscl(A))

Proof. Obvious.

Theorem 3.8. Let (X ,τ) and (Y ,σ) be intuitionistic topological spaces. Then the following
statements are equivalent.

(i) f : (X ,τ)→ (Y ,σ) is a Iβ-closed function.

(ii) Iβ-cl( f (A))⊆ f (Iβ-cl(A)) for each Iβ-closed set A in X .
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Proof. (a)⇒(b): Let A = 〈X , A1, A2〉 be any Iβ-closed set in X, clearly Iβ-cl(A) is an Iβ-closed in
X . Since f is Iβ-closed function, f (Iβ-cl(A))⊆ Iβ-cl( f (Iβ-cl(A)))= f (Iβ-cl(A)).

⇒ f (Iβ-cl(A))⊆ f (Iβ-cl(A)).

(b)⇒(c): Let A be any Iβ-closed set in X , then Iβ-cl(A)= A, by (b)

⇒ Iβ-cl( f (A)) ⊆ f (Iβ-cl(A)) = f (A) ⊆ Iβcl( f (A)). Thus f (A) = Iβ-cl( f (A)) and hence f (A) is an
Iβ-closed set in Y . Therefore f is an Iβ-closed function.

Theorem 3.9. Let f : (X ,τ)→ (Y ,σ) be a intuitionistic continuous and intuionistic open ,then
for each Iβ-open set A of X , f (A) is Iβ-open subset of Y .

Proof. Let A = 〈X , A1, A2〉 be any Iβ-open set. Then A ⊆ Icl(Iint(Icl(A))),

⇒ f (A)⊆ f (Icl(Iint(Icl(A))))⊆ Icl(Iint(Icl( f (A))))

⇒ f (A)⊆ Icl(Iint(Icl( f (A)))))

Therefore f (A) is Iβ-open subset of Y .

Theorem 3.10. Let f : (X ,τ)→ (Y ,σ) be intuitionistic topological space, then the followings are
equivalent

(i) f : (X ,τ)→ (Y ,σ) is Iβ-open.

(ii) f (Iβ-int(A))⊆ Iβ-int( f (A)) for each intuitionistic set A in X .

(iii) Iβ-int( f −1(B))⊆ f −1(Iβ-int(B)) for each intutionistic set B in Y .

Proof. (i)⇒(ii): Let f be an Iβ-open function. Since f (Iβ-int(A)) is an Iβ-open set contained in
f (A), f (Iβ-int(A))⊆ Iβ-int( f (A))) by definition Iβ-interior.

(ii)⇒(iii): Let B be any Iβ-set in Y . Then f −1(B) is an Iβ-set in X , by (ii), f (Iβ-int( f −1(B)))⊆ Iβ-
int( f ( f −1(B))))⊆ Iβ-int(B),

⇒ Iβ-int( f −1(B))⊆ f −1(β-int(B)).

(iii)⇒(i): Let A be any Iβ-open in X . Then Iβ-int(A) = A and f (A) is an Iβ-open in Y by
(iii), A = Iβ-int(A) ⊆ Iβ-int( f −1( f (A))) ⊆ f −1(Iβ-int( f (A))). Hence we have f (A) ⊆ f ( f −1(Iβ-
int( f (A)))⊆ Iβ-int( f (A))⊆ f (A). Thus f (A)= Iβ-int( f (A)) and hence f (A) is an Iβ-open set in
Y . Therefore f is an Iβ-open function.

Theorem 3.11. Let f : (X ,τ)→ (Y ,σ) be a Iβ-continuous and Iα-open function then the inverse
image of each intuitionistic open set in Y is Iβ-open in X .

Proof. Let A = 〈X , A1, A2〉 is a Iβ-open, then A ⊆ Icl(Iint(Icl(A))) and so

f −1(A)⊆ f −1(Icl(Iint(Icl(A))))⊆ Icl( f −1(I in(Icl(A)))
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as f is Iα-open and Iint(Icl(A)) is intuitionistic preopen. Since f is Iβ-continuous,

⇒ f −1(A)⊆ Icl(Iint(Icl( f −1(I in(Icl(A))))⊆ Icl(Iint(Icl( f −1(Icl(I in(Icl(A))))))

⇒ f −1(A)⊆ Icl(Iint(Icl( f −1(A)))), because f is Iα-open function.

Theorem 3.12. Let f : (X ,τ)→ (Y ,σ) be a Iβ-continuous and intuitionistic open function then
the following statements are hold.

(a) The inverse image of each intuitionistic preopen in Y is Iβ-open in X .

(b) The inverse image of each intuitionistic semi open in Y is Iβ-open in X .

Proof. (a): Let A = 〈X , A1, A2〉 is intuitionistic preopen in Y , A ⊆ Iint(Icl(A)). Then f −1(A) ⊆
f −1(Iint(Icl(A)))⇒ f −1(A)⊆ f −1(Iint(Icl(A)))⊆ Icl(Iint(Icl( f −1(Iint(Icl(A)))), as f −1(Iint(Icl(A)))
is Iβ-open being f is Iβ-continuous. That is f −1(A) ⊆ Icl(Iint(Icl( f −1(Iint(Icl(A))))), f −1(A) ⊆
Icl(Iint(Icl( f −1(Icl(A)))), f −1(A)⊆ Icl(Iint(Icl( f −1(A)))), as f is open function. Therefore inverse
image of intuitionistic preopen in Y is Iβ-open in X .

(b): Let B = 〈X ,B1,B2〉 is an intuitionistic semi open in Y , B ⊆ Icl(Iint(B)). Then

f −1(B)⊆ f −1(Icl(Iint(B)))⊆ Icl( f −1(Iint(B))) (as f is intuitionistic open mapping)

f −1(B)⊆ Icl(Iint(Icl( f −1(Iint(B)))) (as f is Iβ-continuous)

f −1(B)⊆ Icl(Iint(Icl( f −1(B)))).

Therefore inverse image of intuitionistic preopen in Y is Iβ-open in X .

Theorem 3.13. A intuitionistic bijective function is Iβ-open iff it is Iβ-closed.

Proof. Let f : (X ,τ) → (Y ,σ) is an intuitionistic bijective Iβ-open function and let F be any
intuitionistic closed subset of X . Then X -F is intuitionistic open and hence f (X −F)= X − f (F)
is Iβ-open implies f (F) is Iβ-closed. Therefore f is Iβ-closed function.

Conversely, let f : (X ,τ)→ (Y ,σ) is an intuitionistic bijective Iβ-closed and U be intuitionistic
open and subset of X . Then X −U is intuitionistic closed subset of X and hence f (X −U) =
X − f (U) is Iβ-closed implies f (U) is Iβ-open. Therefore f is Iβ-open function.

Theorem 3.14. Let f : (X ,τ) → (Y ,σ) be bijective Iβ-continuous and g : (Y ,σ) → (Z,Ψ) be
bijective continuous function then g ◦ f : (X ,τ)→ (Z,Ψ) is Iβ-continuous function.

Proof. Let A = 〈X , A1, A2〉 be any intuitionistic open subset of Z, then g−1(A) be open in Y and
as f is Iβ-continuous, f −1(g−1(A)) is Iβ-open in X , (g ◦ f )−1(A) is Iβ-open in X implies g ◦ f is
Iβ-continuous function.

Theorem 3.15. Let f : (X ,τ) → (Y ,σ) and g : (Y ,σ) → (Z,Ψ) be two mappings. If f is
intuitionistic continuous and onto and g ◦ f : (X ,τ) → (Z,Ψ) is Iβ-closed mappings, then g
is intuitionistic Iβ-closed mapping.
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Proof. Let A = 〈X , A1, A2〉 be a intuitionistic closed set in Y . Then f −1(A) is intuitionistic
closed in X . Since f is intuitionistic continuous, now g ◦ f is Iβ-closed and f is onto,
(g ◦ f )−1( f −1(A)) = g(A) is intuitionistic β-closed in Z. Hence g is a intuitionistic β-closed
mapping.

Theorem 3.16. A mapping f : (X ,τ)→ (Y ,σ) is Iβ-open if and only if f (Iint(A))⊆ Iβ-int( f (A)),
for every intuitionistic set A of X .

Proof. (Necessity): If f is Iβ-open mapping, then f (Iint(A)) ∈ IβO(Y ). Hence f (Iint(A)) = Iβ-
int( f (Iint(A))))⊆ Iβ-int( f (A))⇒ f (Iint(A))⊆ Iβ-int( f (A)).

(Sufficiency): Let A = 〈X , A1, A2〉 be a intuitionistic open set of X . then by hypothesis,
f (A)= f (Iint(A))⊆ Iβ-int( f (A))⇒ f (A)⊆ Iβ-int( f (A)). Hence f (A) is Iβ-open set in Y .

Theorem 3.17. A mapping f : (X ,τ)→ (Y ,σ) is Iβ-closed if and only if Iβ-cl( f (A))⊆ f (Icl(A)),
for every intuitionistic set A of X .

Proof. (Necessity): If f is Iβ-closed mapping, then f (Icl(A)) is Iβ-closed set containing f (A)
and therefore Iβ-cl( f (A))⊆ f (Icl(A)).

(Sufficiency): Let A = 〈X , A1, A2〉 be a intuitionistic closed set of X . Then by hypothesis, Iβ-
cl( f (A)) ⊆ f (Icl(A)) = f (A). By the definition of Iβ-closure, we have f (A) ⊆ Iβ-cl( f (A)) and so
f (A) is Iβ-closed in Y . Hence f is a Iβ-closed mapping.

Theorem 3.18. A mapping f : (X ,τ)→ (Y ,σ) is intuitionistic open mapping (res. intuitionistic
closed) and g : (Y ,σ)→ (Z,Ψ) is Iβ-open mapping (res. Iβ-closed) then g ◦ f is Iβ-open mapping
(res. Iβ-closed).

Proof. Obvious.

Theorem 3.19. Let f : X → Y be a Iβ-open mapping. If A = 〈X , A1, A2〉 is a intuitionistic set
in Y and B = 〈X ,B1,B2〉 is intuitionistic closed set in X containing f −1(A), then there exists a
intuitionistic β-closed set C in Y such that A ⊆ C and f −1(C)⊆ B.

Proof. Let C =Y − f (X −B). Since f −1(A)⊆ B, we have f (X −B)⊆ (Y − A). Since f is Iβ-open,
then C is a Iβ-closed set of Y and f −1(C)= X− f −1( f (X−B))⊆ X−(X−B)= B ⇒ f −1(C)⊆ B.
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