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A Classification of Classical Billiard Trajectories

Bijan Bagchi and Atreyee Sinha

Abstract. We examine the possible trajectories of a classical particle, trapped in
a two-dimensional infinite rectangular well, using the Hamilton-Jacobi equation.
We observe that three types of trajectories are possible: periodic orbits, open
orbits and some special trajectories when the particle gets pocketed.

1. Introduction

The so-called ‘Billiard systems’, describing the motion of a classical particle (a
point ball) moving within a closed boundary of different shapes, and bouncing
perfectly from the walls, have attracted the attention of various scientists for a
long time [1]. Though the system appears simple, nevertheless it is very rich and
instructive, as the dynamics depends particularly on the shape of the enclosure
[2, 3]. Consequently, such systems have been studied both classically as well as
in the realm of quantum mechanics [4, 5]. It is assumed that motion between
collisions with the wall is in a straight line, and at each bounce there is simple
reflection with no dissipation, i.e., the ball follows a path just like a light ray
with a boundary wall which is a perfect mirror [2]. Enclosures of different
shapes have been studied widely in the framework of Hamilton-Jacobi theory and
interesting results obtained. For example, circular and elliptic enclosures with rigid
boundaries have been considered in [2] and the orbits traced out. In particular, for
such circular and elliptic enclosures a second conserved quantity has been found
other than the Hamiltonian, leading to integrability and order. The trajectory for
a circular enclosure is found to be a succession of chords such that the angular
momentum of the particle about the centre remains constant through successive
bounce at the boundary. For the elliptical enclosure the second conserved quantity
is the product of the angular momentum of the particle measured about the two
foci of the ellipse. In [6] the periodic trajectories of a particle trapped in an
infinite square well have been explored, using the Hamilton-Jacobi equation in
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2-dimensions. Motivated by such efforts, our aim in this work is to study the same
for a conventional billiard, modelled by an infinite rectangular well potential.

In section 2, we touch upon the Hamilton-Jacobi (H-J) equation [3, 7, 8]
and discuss the action-angle variables. In Section 3, we apply the H-J equation
to investigate the periodic classical trajectories of a particle trapped inside a
rectangular billiard with infinite barriers. The different types of orbits, viz.,
periodic orbits, open trajectories, and those special trajectories when the ball hits
one of the corners and gets pocketed, are discussed in detail in Section 4, with
suitable illustrations. Finally, Section 5 is kept for Conclusions and remarks.

2. Hamilton-Jacobi equation

If (q, p, t) is cannonically related to (Q, P, t) under the influence of a
Hamiltonian H(q, p, t) where q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn) are
generalized coordinates and canonical momenta respectively, then, as is well
known, the Hamilton Jacobi equation is

∂ S

∂ t
+H

�
q,
∂ S

∂ q
, t
�
= 0 , (2.1)

where S is the Hamilton’s principal function.
Writing,

S =W (q1, q2, . . . , qn)−α1 t , (2.2)

where the time-independent function W (q) is Hamilton’s characteristic function and
the constant α1 is the energy E. This transforms the H-J equation to

H
�

q,
∂ S

∂ q

�
= E . (2.3)

For integrable systems there is a natural set of co-ordinates and momenta
which is particularly convenient and useful [3, 7]. These systems have n distinct
constants of motion and we can transform to a new set of coordinates wi and
momenta Ji in such a way that

• the Hamiltonian form of the equations of motion is preserved: K(J j)≡ H,
• the new momenta Ji are all constants of motion,
• the new coordinates wi are all ignorable.

Writing the Hamilton’s characteristic function as W =W (q, J), the angle variables
wi and the corresponding canonically conjugate action variables Ji are given by

ẇ j =
∂ K(J)
∂ J j

≡ ν(J) , (2.4)

J̇ j =−
∂ K

∂ w j
= 0 . (2.5)

For Hamilton’s equations to be form-invariant it is necessary that the change of
variables (q, p) → (w, J) should preserve areas, so that a natural choice for J is
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given by

J =

∮
pdq , (2.6)

where the integration is carried over a complete period of libration or rotation, as
the case may be. The angle variable, which is the generalized coordinate conjugate
to J , is defined by the transformation equation

w(J) =
∂W

∂ J
. (2.7)

It is evident from (2.4) that the angle variables evolve at a uniform rate, given by

w j = ν j t + β j , (2.8)

where ν j is the frequency associated with the periodic motion and β j are constants.
The use of action-angle variables thus provides a powerful technique for obtaining
the frequency of periodic motion without finding a complete solution to the motion
of the system.

3. Motion of a particle in a 2-dimensional rectangular well

With the above background, let us investigate the nature of the trajectories
when the particle is in an infinite rectangular well, with centre at (0, 0) and vertices
at (±a,±b):

V (x , y) =

¨
0 |x |< a and |y |< b
∞ |x |> a and |y |> b .

(3.1)

A canonical transformation from (q, p) → (Q, P), i.e., to new variables (β ,α)
which are constants in time, and, employing a type-two generating function
F2(q, P, t)≡ S(q,α, t), with the assumption that H does not depend on t explicitly,
(2.3) reduces to the form

1

2m

��
∂W

∂ x

�2

+
�
∂W

∂ y

�2�
= E . (3.2)

Writing W (q) = X (x) + Y (y) in (3.2), the constants of motion are obtained as
�

dX

d x

�2

= α2
x ,

�
dY

d y

�2

= α2
y (3.3)

with E = 1
2m
(α2

x +α
2
y), yielding

px =±αx , py =±αy (3.4)

the signs showing the reversal in the direction of motion of the particle each time
it hits the barriers at x =±a and y =±b.

The action variables can now be calculated easily from (2.6) and turn out to be

Jx = 4aαx (3.5)

Jy = 4bαy (3.6)
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so that E becomes

E =
1

32m

 
J2

x

a2 +
J2

y

b2

!
. (3.7)

Thus the natural frequencies of the system are obtained from (2.4) to be

νx =
∂ E

∂ Jx
=

Jx

16ma2 , νy =
∂ E

∂ Jy
=

Jy

16mb2 (3.8)

which, with the help of (3.5) and (3.6) read equivalently

νx =
px

4ma
, νy =

py

4mb
. (3.9)

Thus the natural frequencies are functions of the particle velocity and the
dimensions of the well. Consequently, three types of trajectories are possible for
the particle trapped in the rectangular well, as discussed below.

4. Possible Trajectories

In this section we shall discuss in detail the three possible trajectories of the
trapped particle, viz.,

1. Periodic Trajectories;
2. Open Trajectories;
3. Special Trajectories when the particle hits one of the corners and gets

pocketed.

4.1. Periodic Trajectories

One of our primary aims in this work is to study periodic or closed trajectories.
It is evident from equation (3.9), for the particle to execute periodic motion, it
must return to the starting point with its initial momenta after a certain time. This
is possible only if

T = nx Tx = ny Ty , (4.1)

where Tx and Ty represent the time in which the particle reaches the starting point
with its initial momenta in the x and y directions respectively, T is the time period
of the orbit, and nx , ny are integers. Thus, if the particle starts from the origin at
an angle θ to the x direction, where

tanθ =
py

px
(4.2)

then, for closed orbits tanθ must be rational∗, with the time period given by (4.1).
With the help of (3.9), eq. (4.2) may be rearranged to give

tanθ =
bνy

aνx
=

bTx

aTy
=

bny

anx
. (4.3)

∗We consider those cases where the linear momentum in the x and y directions, viz., px , py are
expressible in rational form, so that the action variables Jx , Jy , as well as the natural frequencies νx ,
νy are also rational.
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We shall illustrate this with a couple of explicit examples below, the particle
starting from the origin in each case. The corresponding closed orbits are plotted
in Figures 1 and 2; the starting trajectory is shown in blue, the intermediate ones
in red, and the closing one in black.

4.1.1. Some explicit examples for periodic trajectories.

Case 1: ny = 1,nx = 4, i.e.,
py

px
=

b

4a

This case is illustrated in Figure 1. The trajectories traced out by the particle are

x=
px

m
t y=

py

m
t t16(r−1)≤ t≤ t16r−15

x=− px

m
(t − t16r−15) + a y=

py

m
(t − t16r−15) +

b

4
t16r−15≤ t≤ t16r−14

x=− px

m
(t − t16r−14) y=

py

m
(t − t16r−14) +

b

2
t16r−14≤ t≤ t16r−13

x=
px

m
(t − t16r−13)− a y=

py

m
(t − t16r−13) +

3b

4
t16r−13≤ t≤ t16r−12

x=
px

m
(t − t16r−12) y=−

py

m
(t − t16r−12) + b t16r−12≤ t≤ t16r−11

x=− px

m
(t − t16r−11) + a y=−

py

m
(t − t16r−11) +

3b

4
t16r−11≤ t≤ t16r−10

x=− px

m
(t − t16r−10) y=−

py

m
(t − t16r−10) +

b

2
t16r−10≤ t≤ t16r−9

x=
px

m
(t − t16r−9)− a y=−

py

m
(t − t16r−9) +

b

4
t16r−9≤ t≤ t16r−8

x=
px

m
(t − t16r−8) y=−

py

m
(t − t16r−8) t16r−8≤ t≤ t16r−7

x=− px

m
(t − t16r−7) + a y=−

py

m
(t − t16r−7)−

b

4
t16r−7≤ t≤ t16r−6

x=− px

m
(t − t16r−6) y=−

py

m
(t − t16r−6)−

b

2
t16r−6≤ t≤ t16r−5

x=
px

m
(t − t16r−5)− a y=−

py

m
(t − t16r−5)−

3b

4
t16r−5≤ t≤ t16r−4

x=
px

m
(t − t16r−4) y=

py

m
(t − t16r−4)− b t16r−4≤ t≤ t16r−3

x=− px

m
(t − t16r−3)− a y=

py

m
(t − t16r−3)−

b

4
t16r−3≤ t≤ t16r−2

x=− px

m
(t − t16r−2) y=

py

m
(t − t16r−2)−

b

2
t16r−2≤ t≤ t16r−1

x=
px

m
(t − t16r−1)− a y=

py

m
(t − t16r−1)−

b

4
t16r−1≤ t≤ t16r

(4.4)
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where r = 1, 2, . . . and tn = (2n− 1)ma
px

, n= 1, 2, . . ..
Thus, in this case, the trajectories are periodic when the velocities of the particle

in the x and y directions are such that the time taken by the particle to cover
distance a in the x direction, is the same as the time it takes to cover the distance
b/4 in the y direction:

t1 =
ma

px
=

mb

4py
.

This gives the time period as T = 4Tx = Ty , where Tx = 4t1 and Ty = 16t1. This
is a new result not discussed for a = b in ref. [6].
Case 2: ny = 2,nx = 3, i.e.,

py

px
=

2b

3a

This case is illustrated in Figure 2. The particle can be shown to trace out the
following trajectories:

x=
px

m
t y=

py

m
t t12(r−1)≤ t≤ t12r−11

x=− px

m
(t − t12r−11) + a y=

py

m
(t − t12r−11) +

2b

3
t12r−11≤ t≤ t12r−10

x=− px

m
(t − t12r−10) +

a

2
y=−

py

m
(t − t12r−10) + b t12r−10≤ t≤ t12r−9

x=
px

m
(t − t12r−9)− a y=−

py

m
(t − t12r−9) t12r−9≤ t≤ t12r−8

x=
px

m
(t − t12r−8) +

a

2
y=

py

m
(t − t12r−8)− b t12r−8≤ t≤ t12r−7

x=− px

m
(t − t12r−7) + a y=

py

m
(t − t12r−7)−

2b

3
t12r−7≤ t≤ t12r−6

x=− px

m
(t − t12r−6) y=

py

m
(t − t12r−6) t12r−6≤ t≤ t12r−5

x=
px

m
(t − t12r−5)− a y=

py

m
(t − t12r−5) +

2b

3
t12r−5≤ t≤ t12r−4

x=
px

m
(t − t12r−4)−

a

2
y=−

py

m
(t − t12r−4)− b t12r−4≤ t≤ t12r−3

x=− px

m
(t − t12r−3) + a y=−

py

m
(t − t12r−3) t12r−3≤ t≤ t12r−2

x=− px

m
(t − t12r−2)−

a

2
y=

py

m
(t − t12r−2)− b t12r−2≤ t≤ t12r−1

x=
px

m
(t − t12r−1)− a y=

py

m
(t − t12r−1)−

2b

3
t12r−1≤ t≤ t12r

(4.5)

where r = 1, 2, . . . and tn = (2n− 1)ma
px

, n= 1, 2, . . . .
It is easy to observe from Figure 2 that in this case t2 = 3t1/2, t3 = 3t1,

t4 = 9t1/2, t5 = 5t1, etc. Thus Tx = t5 − t1 = 4t1 and Ty = t8 − t2 = 6t1,
where t1 =

ma
px
= 2mb

3py
, giving T = 12t1 = 3Tx = 2Ty . Note that we get back the

result of [6] for a = b.
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Figure 1. This shows a periodic trajectory for ny = 1, nx = 4, so that
tanθ =

py

px
= b

4a

Figure 2. This shows a periodic trajectory for ny = 2, nx = 3, so that
tanθ =

py

px
= 2b

3a

4.2. Open Trajectories

If the initial angle θ is such that
py

px
is irrational, then the orbit is an open one.

This is due to the fact that the time periods in the x and y directions are such that
one cannot find integral values of nx , ny satisfying equation (4.1). We have traced
out such a trajectory in Figure 3, for θ = 30◦, starting with the blue line. Even after
multiple reflections from the perfectly elastic walls of the rectangular well (shown
by the red paths) the orbit does not close as is evident from the black line with the
arrowhead.
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Figure 3. This shows an open trajectory for θ = 30◦

4.3. Special Trajectories when the billiard ball hits a corner

We now address the interesting case of special non-periodic trajectories when
the particle hits one of the corners of the billiard table and gets pocketed. For the
ball to hit either the right or left wall, the distance travelled in the x direction
is (4n ± 1)a, where n is an integer. Similarly, to hit the top or bottom wall the
distance travelled in the y direction is (4m± 1)b, where m is also an integer. If
the ball hits a corner then these two conditions must be satisfied simultaneously.
Thus, if the particle hits a corner in time t, then

vy t

vx t
=
(4m± 1)b
(4n± 1)a

(4.6)

and the condition for the billiard ball to get pocketed reduces to

py

px
=
(4m± 1)b
(4n± 1)a

. (4.7)

If the numerator has +ve (−ve)) sign in (4.7), then the ball hits one of the two
corners where y is positive (negative). Similarly, if the denominator has +ve
(−ve)) sign in (4.7), then the ball hits one of the two corners where x is positive
(negative). From equations (4.2), (4.3) and (4.7), it is obvious that this occurs for
odd integral values of both nx and ny . Based on this we summarize in Table 1 the
corner in which the ball will get pocketed. It may be mentioned that we assign
the following numbers to the respective corners: (a, b) as corner 1, (−a, b) as
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Table 1

ny/nx Sign (numerator, denominator) Corner

1/3 (−,+) 2

1/5 (+,+) 1

1/7 (−,+) 2

1/9 (+,+) 1

3/7 (−,−) 3

5/7 (−,+) 2

3/5 (+,−) 4

5/9 (+,+) 1

7/9 (+,−) 4

Figure 4. This shows some of the special trajectories for odd integral
values of both ny and nx , when the billiard ball hits one of the corners
and gets pocketed. The corners predicted in Table 1 agree with those
actually traced out in this figure

corner 2, (−a,−b) as corner 3, and (a,−b) as corner 4. We shall trace out the
actual trajectories in Figure 4. It is observed that the predicted corners are in fact
the actual ones.
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5. Conclusions

To conclude, we have studied the motion of a classical point particle, trapped
in an infinite rectangular well with perfectly elastic boundaries, using the
action-angle variables in the Hamilton-Jacobi formalism. In particular, we have
determined the natural frequencies of the system in the x and y directions. These
frequencies given by νx , νy in eq. (3.8), are found to be functions of the velocity
of the trapped particle, and the dimensions of the rectangular well, viz., a, b
respectively. It may be worth mentioning here that since the potential V = 0
inside the enclosure, the magnitudes of the particle momenta in the x and y
directions (px and py) do not change inside the well. We have established a
definite relationship between the orbit traced out by the classical particle and the
initial angle (say θ with the x axis) at which the particle starts from rest from the
origin, i.e., on the ratio py/px . When px , py are both rational, depending on the
values of nx and ny , some orbits with definite periodicity have been illustrated in
Figures 1 and 2. In these cases one can find integral values of nx ny for which
the relationship nx Tx = ny Ty holds, and the time period of the periodic motion is
obtained as T = nx Tx = ny Ty .

On the other hand, if the initial angle θ is such that tanθ = py/px is irrational,
the orbit is an open one. Such an open orbit has been sketched in Figure 3, for the
particular value of θ = 30◦.

Still more interesting are the cases when the billiard ball falls into one of the
pockets. We have shown that this occurs for odd integral values of both nx and
ny . A few such trajectories are plotted in Figure 4. In fact, our conjecture can even
predict accurately which corner the particle would hit. The excellent agreement
between Table 1 and Figure 4 gives credence to our conjecture.

Additionally, we have observed that the qualitative picture does not depend on
the dimensions of the well, i.e., on the ratio a/b. For the special case a = b, i.e.,
an infinite square well, our results reduce to those of ref. [6].
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