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1. Introduction

Let G = (V ,E) be a simple connected graph with vertex set V and edge set E. A subset D of
vertex set V is a dominating set if every vertex v ∈ V \ D is adjacent to at least one vertex of
D. The domination number γ(G) is the minimum cardinality dominating set of G. A function
f : V → [0,1,2] is defined as a Roman dominating function (RDF) on a graph G = (V ,E) if
the function satisfies the condition that every vertex u for which f (u) = 0 has at least one
neighboring vertex v with f (v) = 2. The weight of a Roman dominating function is the value
f (V )= ∑

v∈V
f (v).

If f : V → [0,1,2] be a Roman dominating function then V0,V1,V2 be a partition of the vertex
set V induced by f , i.e., f = (V0,V1,V2) with Vi = {v ∈V : f (v)= i} where i = 0,1,2.

The set V2 dominates the set V0, i.e., every vertex in V0 is adjacent to a vertex in V2. The
weight of a Roman dominating function is the value f (V )= ∑

v∈V
f (v)= 2 |V2|+ |V1|. The Roman

domination number (RDN) of G is the minimum weight Roman dominating function and is
denoted by γR(G). Cockayne et al. observed that γ(G)≤ γR(G)≤ 2γ(G) [3].

A graph G with vertex set V = {1,2,3, . . . ,n} is called a permutation graph if there exists a
permutation π= {π(1),π(2), . . . ,π(n)} on V , such that for all i, j ∈V and (i, j) ∈ E if and only if

(i− j)(π−1(i)−π−1( j))< 0.

For each i ∈ V , π−1(i) denotes the position of the number i in π. Consider two parallel line
segments and consider n points 1,2,3, . . . ,n from left to right on each line segment. Let π denote
a permutation of {1,2, . . . ,n}. Draw n line segments, connecting i in top line to point π−1(i) in
bottom line. Each line segments i represent a vertex and (i, j) ∈ E if and only if the two line
segments (i,π−1(i)) and ( j,π−1( j)) intersect.
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Figure 1. A acyclic permutation graph and its graphical representation
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1.1 Review of Previous Work

In 1967 Gallai characterized permutation graphs in terms of forbidden induced sub graphs [7].
Pnnueli et al. suggested an algorithm for recognizing permutation graphs, by applying the
transitive orientation algorithm to the graph and to its complement [18]. Spinard designed an
O(n2) time algorithm for recognizing permutation graphs [25]. The permutation graph have
been widely discussed in the literature, see [1,8,14,15,17,19,20,22].

Domination and its variations have been extensively studied in the literature, see
[2,10,11,23,24]. Roman domination have both historical and mathematical implication. In 4th
century A.D., Constantine the Great (Emperor of Rome) decreed that any city without a legion
stationed to secure it must adjacent another city having two stationed legions.

The definition of the Roman dominating function (RDF) was given implicitly by Stewart [26],
Revelle and Rosing [21]. Cockaynea et al. [3] studied the graph theoretic properties of this
variant of the domination number of a graph. They computed the Roman domination number
on path Pn and cycle Cn of any graph G with n vertices. Xing et al. [27] gave a characterization
of graphs for which γR(G)=γ(G)+ K(2≤ K ≤ γ(G)). The Roman domination function have been
widely discussed in the literature, see [4–6,9,12,13,28].

1.2 Application

Roman domination have military implication to use arm force and ammunition to protect their
neighboring area. It may be used to mobilize the rescue operation so that the minimum effort
results maximum benefits of the affected people. Permutation graphs have been applied to
model and solve problems concerning memory allocation, circuit layout, altitude assignment
problem in airlines.

1.3 Main Result

To the best of our knowledge, no algorithm is available to solve Roman domination number
on acyclic permutation graph. First we present an O(n2) time algorithm to construct a tree on
acyclic permutation graph. Then we design an O(n) time algorithm for computing the Roman
domination numbers on the tree which is obtained from acyclic permutation graph.

1.4 Organization of the Research Work

The remainder of this paper is organized as follows. In Section 2, we introduce the notations and
definitions used throughout the paper. In Section 3, we study the approaches towards solving
Roman domination number on acyclic permutation graph and present some intermediate results
for the same. In Section 4, we present an O(n2) time algorithm for Roman domination problem
on acyclic permutation graph. In Section 5, conclusion is made.
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2. Notations and Preliminaries

Let T(i) is the farthest right line segment on the top channel intersecting the line segment i,
such that T(i)> i or T(i)= i, if such line segment does not exist.

Again B(i) is the farthest left line segment on the bottom channel intersecting the line
segment i, such that B(i)< i or B(i)= i, if such line segment does not exist.

If T(i)= j and B( j)= i, then the vertices from i to j make a span such that span L(i, j)= {u :
(u, i) ∈ E or (u, j) ∈ E and u ≤ j}, where i, j = 1,2,3, . . . ,n, i.e., span L(i, j) is the set of all vertices
u such that u is adjacent to i or adjacent to j and u ≤ j.

Clearly, there is finite number of spans in an acyclic connected permutation graph. Since
T(i) = j and B( j) = i, are the necessary and sufficient condition to make a span L(i, j), there
exist at least two members i and j in every span.

Consider the two successive span L(i, j+1) and span L( j,k) where T(i)= j+1 and B( j+1)= i;
T( j)= k and B(k)= j such that i < j < j+1< k. Here the line segment j and the line segment
j+1 are the common members of the two successive span L(i, j+1) and span L( j,k). So the
span which is lying between two spans have minimum four line segments. But there exists only
one span on the right side of the first span and there exists only one span on the left side of the
last span. Therefore, in the case of the first span and the last span, there exist minimum three
line segments.

If there exist three or four line segments in a span, then the line segments make a path. If a
span has more than four line segments then we construct a block Bm such that Bm = span L(i, j).
Here Bm denotes the m-th block in G. Ps denotes the path with path length s lie between 1st
line segment and 1st block of G. Pb denotes the path lies between two successive block of G
where b is the path length. Pt denotes the path with path length t lies between the last block
and the last line segment of G.

3. Some Results

Lemma 3.1. For acyclic permutation graph, if i < j < k and (i,k), ( j,k) ∈ E, then (i, j) ∉ E.

Proof. If possible, let (i, j) ∈ E. Since (i,k), ( j,k) ∈ E for i < j < k, therefore, there exists a clique
of order 3. In this case, every vertex is adjacent to each other which makes a circuit.

Therefore in acyclic permutation graph there does not exists any clique of order 3 which
makes a circuit. Hence (i, j) ∉ E.

In this paper, at first an acyclic permutation graph is converted to a tree. For this,
construction of a span is required. There are two type of spans. One makes a path and other
makes a block. Properties of span is discussed in the following lemma.

Lemma 3.2. There exists only one edge between any two successive spans.
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Proof. Let us consider the two successive span L(i, j+1) and span L( j,k). Here the vertices j
and j+1 are intersect each other. Hence ( j, j+1) ∈ E.

Since the graph is acyclic, there exists one and only one edge between any two vertices.
Again, since ( j, j+1) ∈ E, there exists only one edge between two successive spans. Hence the
lemma.

If the number of vertices in a span is more than four then the vertices make a block Bm. The
two successive blocks Bm and Bm+1 may have two common vertices i and j (i < j) such that
they are adjacent to each other.

Definition 3.3. If more than one line segments of the block Bm intersect the first line segment
i of the block Bm, then the line segment i is called the core point of the block Bm. Similarly if
more than one line segments of the block Bm intersect the last line segment j of the block Bm,
then the line segment j is called the core point of the block Bm. It is obvious that in each block
there may exist maximum two core points.

We state the following lemma about the core point of a block.

Lemma 3.4. If j and i are the core point of the blocks Bm and Bm+1 respectively and if
Bm ∩Bm+1 = {i, j}, i < j, then the core points i and j are adjacent to each other.

Proof. To prove this lemma, we consider the vertex j as the core point of the block Bm and
consider i as the core point of the block Bm+1. Since Bm ∩Bm+1 = {i, j} then the core point j of
the block Bm is also a member of the block Bm+1. Again the vertex i which is the core point of
the block Bm+1 is also a member of the block Bm. This is possible if the vertices i and j are
adjacent to each other. Hence the lemma.

Lemma 3.5. If j and k are the core point of the blocks Bm and Bm+1 respectively and if
Bm ∩Bm+1 = {i, j} (i < j < k), where T(i)= k then the vertex i is adjacent to both the core points j
and k.

Proof. Consider j and k are the core point of the blocks Bm and Bm+1 respectively. Since T(i)= k,
so the vertex i is adjacent to the core point k of the block Bm. Again since Bm∩Bm+1 = {i, j} and
the vertex i is adjacent to the core point k, where i < j < k, then the vertex i is adjacent to the
core point j. Hence vertex i is adjacent to both the core points j and k.

There exist three type of paths Ps, Pb and Pt. We state the following lemma about the path
Pb which lies between two blocks.

Lemma 3.6. If the blocks Bm and Bm+1 has no common vertex, i.e., Bm ∩Bm =Φ, then either
there exists a path Pb(b ≥ 2) between the two blocks Bm and Bm+1 or there exists an edge between
two blocks.

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 635–648, 2017



640 Roman Domination on Acyclic Permutation Graphs: A.K. Sinha et al.

Proof. Since the graph is connected, so there must exists at least one vertex i which is adjacent
to both the blocks Bm and Bm+1. Since i is adjacent to the block Bm, then there exists one edge
between i and one of the vertex of block Bm. Again since i is adjacent to the block Bm+1, then
there exists one edge between i and one of the vertex of block Bm+1. Hence the vertex i makes
a path Pb of length 2 between the two blocks.

Now if there exist more than one vertex between the two blocks Bm and Bm+1, obviously
this vertices make a path Pb of length b > 2. The path Pb is adjacent to both the blocks. Hence
if Bm ∩Bm+1 =Φ, then there exists a path Pb(b ≥ 2).

Now consider the case that there does not exist a path Pb(b ≥ 2) between two blocks such
that Bm∩Bm+1 =Φ. Since the graph is connected, there must exist a vertex i ∈ Bm and a vertex
j ∈ Bm+1 such that they are adjacent to each other which make an edge between two blocks.
Hence proof the lemma.

We compute RDN along the paths Pb, Ps, Pt in the following lemma by Induction method.
This was stated by Ernie J. Cockaynea et al. [3]

Lemma 3.7. If there exists a path Pb , b ≥ 2 between the two blocks Bm and Bm+1 then the value

of RDN along this path is
∑

v∈Pb

f (v)=
⌈

2(b−1)
3

⌉
.

Proof. Consider a vertex i lies between two blocks Bm and Bm+1 where m ≥ 1. Then the vertex
i makes a path Pb of length 2 between two blocks Bm and Bm+1. By the property of RDF the
core point of each block belongs to the set V2 and adjacent vertices to each core point belong to
the set V0. Therefore obviously i belongs to the set V1.

Hence RDN=
∑

v∈Pb=2

f (v)= 1=
⌈

2(2−1)
3

⌉
.

Again consider the two vertices i and j lie between the two blocks Bm and Bm+1 such that
the two vertices makes a path Pb of length 3. In this case by the definition of RDF , either i or
j belongs to V2.

Hence RDN = ∑
v∈Pb=3

f (v)= 2=
⌈

2(3−1)
3

⌉
.

Now if the three vertices i, j, k lie between the two blocks Bm and Bm+1, then the three
vertices makes a path Pb of length 4. In this case by the same property of RDF , i and k belongs
to V0 and j belongs to V2.

Hence RDN = ∑
v∈Pb=4

f (v)= 2=
⌈

2(4−1)
3

⌉
.

For generalization we can say

(i) if b = 3p, then RDN = ∑
v∈Pb=3p

f (v)= 2p =
⌈

2(3p−1)
3

⌉
, where p ∈ z+.

(ii) if b = 3p+1, then RDN = ∑
v∈Pb=3p+1

f (v)= 2p =
⌈

2((3p+1)−1)
3

⌉
, where p ∈ z+.
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(iii) if b = 3p+2, then RDN = ∑
v∈Pb=3p+2

f (v)= 2p+1=
⌈

2((3p+2)−1)
3

⌉
, where p ∈ z+.

Hence our lemma is proved.

Lemma 3.8. If there exists a path Ps between the initial line segment and the first block B1 of

G, then RDN along this path is
∑

v∈Ps

f (v)=
⌈

2s
3

⌉
here s ≥ 1.

Proof. Consider the case that there exists a path Ps between the initial line segment and the
first block B1 of G.

Let i be a vertex adjacent to the block B1, so i makes a path of length 1 with B1, then obviously
RDN = ∑

v∈Ps=1

f (v)= 1= ⌈2
3

⌉
.

Let i, j be the two vertices make a path of length 2 with B1, then RDN = ∑
v∈Ps=2

f (v)= 2=
⌈

4
3

⌉
.

Again let the vertices i, j, k make a path of length 3 with B1, then RDN = ∑
v∈Ps=3

f (v)= 2=
⌈

6
3

⌉
.

For generalization we can say

(i) if s = 3p, then RDN = ∑
v∈Ps=3p

f (v)= 2p =
⌈

2.(3p)
3

⌉
, where p ∈ z+.

(ii) if s = 3p+1, then RDN = ∑
v∈Ps=3p+1

f (v)= 2p+1=
⌈

2.(3p+1)
3

⌉
, where p ∈ z+.

(iii) if s = 3p+2, then RDN = ∑
v∈Ps=3p+2

f (v)= 2p+2=
⌈

2(3p+2)
3

⌉
, where p ∈ z+.

Hence our lemma is proved.

Lemma 3.9. If there exists a path Pt between the terminal line segment and the last block of G,

say Bm, then RDN along this path is
∑

v∈Pt

f (v)=
⌈

2t
3

⌉
here t ≥ 1.

Proof. Proof of this lemma is same as the previous lemma.

4. Description of Algorithm

4.1 Tree on Acyclic Permutation Graph

At the beginning of our algorithm, we construct the table of T(i) and B(i). From the table, we
can easily find the span L(i, j), where i, j = 1,2,3, . . . ,n.

If |span L(i, j)| ≥ 5 then we construct a block Bm, where m ≥ 1.

In each block there may exist one or two core points. The core point of the two successive
blocks may adjacent to each other or there exists a vertex between two core points of the two
successive blocks or there exists a path between two successive blocks.
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Again if 3≤ |span L(i, j)| < 5, then the line segments of the span make a path.

There exist three type of paths:

(i) A path Ps of length s, where s ≥ 1 may exists between the initial line segment of G and
the first block B1.

(ii) A path Pb of length b, where b ≥ 2 may exists between any two blocks.

(iii) A path Pt of length t, where t ≥ 1 may exists between the end block and the terminal line
segment G.

Based on the above results and discussion a formal algorithm to construct a tree from the
given acyclic permutation graph is presented below.

Algorithm TAPG

Input: A permutation graph G = (V ,E) with its permutation representation i, Π(i);

i = 1,2,3, . . . ,n.

Output: A tree on acyclic permutation graph.

Step 1: Compute T(i) and B(i), i = 1,2,3, . . . ,n.

Step 2: If T(i)= j and B( j)= i, where i < j and i, j = 1,2,3, . . . ,n,

then compute span L(i, j).

Step 3: If |span L(i, j)| ≥ 5.

then go to Step 5.

Step 4: If 3≤ |span L(i, j)| < 5,

then go to Step 6.

Step 5: Construct block Bm, m ≥ 1.

If the first line segment i of Bm intersect with more than one line segment of Bm,

then i is the core point of Bm.

If the last line segment j of Bm intersect with more than one line segment of Bm.

then j is the core point of Bm.

If both the line segments i and j of Bm intersect with

more than one line segments of Bm,

then both the line segments i and j are the core points of Bm.

Step 6: The line segments from i to j of the span L(i, j) make a path.

6.1: If the path exists between the initial line segment of G and the first block B1,

then path is Ps of length s and s ≥ 1.
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If the path exists between the last block Bm and the end line segment of G,

then path is Pt of length t and t ≥ 1.

6.2: If the path exists between the two blocks,

then path is Pb of length b and b ≥ 2

else there exists a edge between two blocks.

Step 7: If j and i are the core point of the blocks Bm and Bm+1 respectively and

if Bm ∩Bm+1 = {i, j} where i < j

then i, j are adjacent to each other.

Step 8: If j and k are the core point of the blocks Bm and Bm+1 respectively and

if Bm ∩Bm+1 = {i, j} where i < j < k and T(i)= k

then the vertex i is adjacent to both the core points j and k.

Step 9: If Bm ∩Bm+1 =φ,

then go to Step 6.2.

Step 10: End TAPG.

4.2 Roman Domination Number on Acyclic Permutation Graphs

At first we compute the RDN along the paths. If there exists a path Ps of length s, then the

value of RDN along this path is
∑

v∈Ps

f (v)=
⌈

2s
3

⌉
, here s ≥ 1. Similarly if there exists a path Pt

of length t, then the value of RDN along this path is
∑

v∈Pt

f (v)=
⌈

2t
3

⌉
, here t ≥ 1. Again if there

exists a path Pb of length b between the two consecutive blocks, then the value of RDN along

this path is
∑

v∈Pb

f (v)=
⌈

2(b−1)
3

⌉
, here b ≥ 2.

Now We assign the value of each core point as 2 and adjacent vertices to the core point
assign as 0, i.e., the core point of each block Bm ∈V2 and adjacent vertices to the core point ∈V0.
In this case, the value of the RDN of all block is

∑
v∈Bm

f (v)= 2 |V2|, where m ≥ 1.

Now consider the case when the two successive blocks Bm and Bm+1 each containing two
core points and Bm ∩Bm+1 = {i, j} (i < j), then obviously i, the one of the core points of Bm+1

and j, one of the core point of Bm are adjacent to each other. In this case by the definition of
RDF , if there exist more than one pendent vertices at the vertex i and at the vertex j, then the
vertex i and the vertex j are assigned value 2 and their adjacent pendent vertices are assigned
value 0. But if i or j or both having only one pendent vertex, then assign value 0 to the core
point i or j or both and are assigned value 1 to the pendent vertex at the vertex i or j or both.

In this case, the value of the RDN of all block is
∑

v∈Bm

f (v)= 2 |V2|+ |V1|, where m ≥ 1.

Sum of all RDN of blocks is our required RDN of the given acyclic permutation graph.
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4.3 The Algorithm

A formal description of the algorithm is given below.

Algorithm RDNAPG

Step 1: RDN = 0

If there exists a path Ps, s ≥ 1

then
∑

v∈Ps

f (v)=
⌈

2s
3

⌉
RDN =RDN+

⌈
2s
3

⌉
.

Step 2: If there exists a path Pt, s ≥ 1

then
∑

v∈Pt

f (v)=
⌈

2t
3

⌉
RDN =RDN+

⌈
2t
3

⌉
.

Step 3: If there exists a path Pb, b ≥ 2

then
∑

v∈Pb

f (v)=
⌈

2(b−1)
3

⌉
.

RDN =RDN+
⌈

2(b−1)
3

⌉
.

Step 4: If Bk ∩Bk+1 =;
assign 2 to each of the core points of Bm and assign 0 to each neighbor of

the core point Bm.

then
∑

v∈Bm

f (v)= 2 |V2|

RDN =RDN+2 |V2|
Step 5: If both the blocks Bm and Bm+1 each containing two core points

{if Bm ∩Bm+1 = {i, j}, i is one of the core point of Bm+1

and j is one of the core point of Bm

{if only one pendent vertex is adjacent to i

then assigned 0 to the vertex i and assigned 1 to the pendent vertex of i}

{if only one pendent vertex is adjacent to j

then assigned 0 to the vertex j and assigned 1 to the pendent vertex of j}

then other core points of Bm and Bm+1 are assigned by 2}

then RDN =RDN+2 |V2|+ |V1|
Step 6: End RDNAPG.
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4.4 Illustrations of the Algorithm

Values of T(i) and B(i) of the Figure 1 are:

T(1)= 3, T(2)= 5, T(3)= 3, T(4)= 9, T(5)= 5, T(6)= 6, B(1)= 1, B(2)= 2, B(3)= 1, B(4)= 4,

B(5)= 2, B(6)= 4, T(7)= 9, T(8)= 14, T(9)= 9, T(10)= 10, T(11)= 14, T(12)= 14, B(7)= 7,

B(8)= 8, B(9)= 4, B(10)= 8, B(11)= 11, B(12)= 12, T(13)= 17, T(14)= 14, T(15)= 17,

T(16)= 19, T(17)= 17, T(18)= 22, B(13)= 13, B(14)= 8, B(15)= 15, B(16)= 16, B(17)= 13,

B(18)= 18, T(19)= 19, T(20)= 20, T(21)= 24, T(22)= 22, T(23)= 28, T(24)=24, B(19)=16,

B(20)= 18, B(21)= 21, B(22)= 18, B(23)= 23, B(24)= 21, T(25)= 25, T(26)= 26, T(27)=30,

T(28)= 28, T(29)= 30, T(30)= 30, B(25)= 23, B(26)= 23, B(27)= 27, B(28)= 23, B(29)=29,

B(30)= 27.

Now we compute span and block according to our algorithm as follows

span L(1,3)= {1,2,3} as T(1)= 3, B(3)= 1.

span L(2,5)= {2,3,4,5} as T(2)= 5, B(5)= 2.

span L(4,9)= {4,5,6,7,8,9} as T(4)= 9, B(9)= 4.

span L(8,14)= {8,9,10,11,12,13,14} as T(8)= 14, B(14)= 8.

span L(13,17)= {13,14,15,16,17} as T(13)= 17, B(17)= 13.

span L(16,19)= {16,17,18,19} as T(16)= 19, B(19)= 16.

span L(18,22)= {18,19,20,21,22} as T(18)= 22, B(22)= 18.

span L(21,24)= {21,22,23,24} as T(21)= 24, B(24)= 21.

span L(23,28)= {23,24,25,26,27,28} as T(23)= 28, B(28)= 23.

span L(27,30)= {27,28,29,30} as T(27)= 30, B(30)= 27.

block B1 = span L(4,9)= {4,5,6,7,8,9}.

Since span L(4,9) has more than 4 line segments, it’s make a block B1.

Again since the line segments 4 and 9 intersect more than one line segments. The line
segments 4 and 9 are the core points of block B1.

In the same way we get the other block.

block B2 = span L(8,14) = {8,9,10,11,12,13,14}, here the line segments 8 and 14 are the core
points of the block B2.

block B3=span L(13,17)={13,14,15,16,17}, the line segment 17 is the core point of the block
B3

block B4 = span L(18,22)= {18,19,20,21,22}, here the line segment 18 is the core point of the
block B3.
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block B5 = span L(23,28) = {23,24,25,26,27,28}, the line segment 23 is the core point of the
block B5.

B1 ∩B2 = 8,9, the core points 8 and 9 are adjacent to each other.

B2 ∩B3 = 13,14 and T(13)= 17, vertex 13 is adjacent to the core points 14 and 17.

B3∩B4 =φ, the vertex 16 of the block B3 and the vertex 19 of the block B4 are adjacent to each
other.

B4 ∩B5 =φ, the vertex 21 makes a path Pb of length b = 2 between the two blocks B4, B5.

The vertices 1, 3 and 2 make a path Ps of length s = 3 with the block B1.

The line segment 27, 30 and 29 make a path Pt of length t = 3.

Now we compute the RDF on the Figure 1

RDN = ∑
v∈Bm

f (v)= 2 |V2|+ |V1| = 2(5)+2= 12,

RDN = ∑
v∈Pt

f (v)=
⌈

2t
3

⌉
=

⌈
2×2

3

⌉
= 2,

RDN = ∑
v∈Ps

f (v)=
⌈

2t
3

⌉
=

⌈
2×3

3

⌉
= 2,

RDN = ∑
v∈Pb

f (v)=
⌈

(2b−1)
3

⌉
=

⌈
2(2−1)

3

⌉
= 1.

Hence the total RDN = γR(G)= 12+2+2+1= 17.

It is noted that by a theorem of Ore [16], γ(G)≤ n/2 for a connected graph G on n vertices. In
our example n = 30. So γ(G)≤ 15 and 2γ(G)≤ 30. Hence the inequality γ(G)≤ γR(G)= 17≤ 2γ(G)
is verified.

Lemma 4.1. The RDN on acyclic permutation graph is a minimum.

Proof. It is obvious that Roman domination number on paths Ps, Pb and Pt are minimum.

Again since the core point of each block Bm ∈V2 and consequently all the adjacent vertex
to the core point ∈ V0, therefore RDN on each block Bm is minimum. Now consider the two
successive blocks Bm and Bm+1 each containing two core points and Bm ∩Bm+1 = {i, j} (i < j),
where i, one of the core points of Bm+1 and j, one of the core point of Bm. In this case the
vertices i and j, and their adjacent vertices are assigned the value 0,1,2 by the definition of
RDF . Therefore RDN on this two successive blocks is minimum. Hence overall RDN on acyclic
permutation graph is minimum.

Theorem 4.2. Algorithm RDNAPG finds Roman domination number on acyclic permutation
graphs in O(n2) time.

Proof. The time complexity of algorithm RDNAPG is caused mainly by the computation of
T(i) and B(i). For each i ∈V , calculation of T(i), B(i) requires O(n2) time where n is the total
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number of line segments. Calculation of span L(i, j) and block Bm takes O(n) time each. Again
computation the path Ps, Pt and Pb takes each O(n) time. Hence the overall time complexity to
get the acyclic permutation tree is O(n2). Again computation RDN of acyclic permutation graph
takes O(n) time. Thus the overall time complexity is O(n2)+O(n)=O(n2).

5. Conclusion

In this paper, we developed an efficient algorithm that solves the Roman domination number on
acyclic permutation graph using O(n2) time. Future work can be done to investigate the Roman
domination number on more general permutation graphs.
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