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Some New Families of Fourth Order Methods

Nazir Ahmad Mir, Hassan Jawaid, and Saarang Soomro

Abstract. In this article, we derive four new familes of fourth order iterative
methods using the binomial approximation in certain existing three families of
methods. The convergence analysis of the methods is discussed. Per iteration, the
new families of methods require two evaluations of the given function and one of
its derivative. Thus each of the four families has computational efficiency 1.587
which is better than many of the existing iterative methods. Some numerical
examples are tested to check the efficiency and performance of the new families
of methods.

1. Introduction

Consider a nonlinear equation,

f (x) = 0 (1.1)

A non-linear equation (1.1) cannot be solved in general analytically. Consequently,
a number of numerical methods have been developed to compute the approximate
solution of non-linear equations. These methods have been derived using
Quadrature formulas, Adomian Decomposition methods, etc. see [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11] and references therein. Newton’s method is the most significant
and simple iterative method for solving non-linear equations.

In recent years, many fourth-order variations of the Newton’s method have
been developed and analyzed. In current study, we present and examine some
new fourth-order families of methods for solving nonlinear equations, which
are obtained as variants of King’s fourth-order family [3], Variants of fourth
order family due to Li Tac-fang [5] and new variants of fourth order family due
to C. Chun and Y. Hum [3]. We have also proved that the new methods are
fourth order convergent. The new families of methods require two evaluations
of the function and one value of its derivative. Thus each of theses four families
has computational efficiency 1.587 which is better than computational efficiency
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1.414 of Newton’s method and many of other iterative methods in the literature.
Numerous numerical results are given to demonstrate the performance of the
methods presented in this paper and are compared with similar existing methods.

2. Derivation of methods

Throughout this paper, we consider

yn = xn −
f (xn)
f ′(xn)

(2.1)

Let us consider the third order iterative methods, namely,

xn+1 = xn −
f (xn)

2

�
1

f ′(xn)
+

1

f ′(yn)

�
(2.2)

and

xn+1 = xn −
f 2(xn)

f ′(xn)[ f (xn)− f (yn)]
(2.3)

due to H.H.H. Homeier [6], and J.R. Sharma [10] respectively.
C. Chun [2], equated the correcting terms of the methods (2.2) and (2.3) and

got the approximation:

f ′(yn)≈
f ′(xn)[ f (xn)− f (yn)]

f (xn) + f (yn)
. (2.4)

Let us consider the fourth order convergent method namely,

xn+1 = yn −
f (yn)

f ′(yn)−α f (yn)
, (2.5)

due to Li Tai-fang, Li De-sheng, Xu Zhao-di and Fang Yi-ling [5].
From (2.4) putting in (2.5), we get:

xn+1 = yn −
f (yn)[ f (xn) + f (yn)]

f ′(xn)[ f (xn)− f (yn)]−α f (yn)[ f (xn) + f (yn)]
. (2.6)

Thus, we have proposed a new family of methods (2.6) for any α ∈ R and yn

defined by (2.1). Now, consider King’s fourth-order family of methods [7] given
by:

xn+1 = xn −
f (xn)
f ′(xn)

− f (xn) + β f (yn)
f (xn) + (β − 2) f (yn)

f (yn)
f ′(xn)

(2.7)

which can also be written as:

xn+1 = xn −
f (xn)
f ′(xn)

− f (xn) + β f (yn)

f (xn)
�

1+ (β − 2)
f (yn)
f (xn)

� f (yn)
f ′(xn)

. (2.8)

Using first-order binomial approximation, we get:

xn+1 = yn −
[ f (xn) + β f (yn)][ f (xn)− (β − 2) f (yn)]

f 2(xn)
f (yn)
f ′(xn)

. (2.9)
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Using the second-order binomial approximation, we obtain:

xn+1 = yn −
f (yn)
f ′(xn)

�
[ f (xn) + β f (yn)]
×[ f 2(xn)− (β − 2) f (xn) f (yn) + (β − 2)2 f 2(yn)]

�

f 3(xn)
.

(2.10)

Thus, we have two new families of methods (2.9) and (2.10) for any β ∈ R and
yn defined by (2.1).

Now, consider a new fourth-order method proposed by C. Chun and Y. Ham [3],
a variant of King’s fourth order methods, namely :

xn+1 = xn −
f (xn)
f ′(xn)

− 2 f (xn) + (2β − 1) f (yn)
2 f (xn) + (2β − 5) f (yn)

f (yn)
f ′(xn)

. (2.11)

This can also be written as:

xn+1 = xn −
f (xn)
f ′(xn)

− 2 f (xn) + (2β − 1) f (yn)

2 f (xn)
�

1+
(2β − 5)

2

f (yn)
f (xn)

� f (yn)
f ′(xn)

. (2.12)

Using first-order binomial approximation, we get:

xn+1 = yn −
[2 f (xn) + (2β − 1) f (yn)][2 f (xn)− (2β − 5) f (yn)]

4 f 2(xn)
f (yn)
f ′(xn)

.

(2.13)

Thus, we have other new family of methods for any β ∈ R and yn defined by (2.1).
Naturally for various values of α and β ∈ R, we can get many particular cases

of fourth order convergent families of methods (2.6), (2.9)-(2.10) and (2.13).

3. Convergence analysis

Here we prove that each of the families (2.6), (2.9)-(2.10) and (2.13) has
convergence order four.

Theorem 1. Assume that the sufficiently differentiable function f : D ⊂ R → R in
an open interval D has a simple root x∗ ∈ D. Then the method (2.6) is fourth-order
convergent and for any α ∈ R, its error equation is given by:

en+1 = (3c3
2 − c2c3 −αc2

2)e
4
n +O(e5

n). (3.1)

Proof. Let x∗ be a simple root of f . Since f is sufficiently differentiable, expanding
f (xn) and f ′(xn) about x∗, we get:

f (xn) = f ′(x∗)(en + c2e2
n + c3e3

n + c4e4
n + c5e5

n + . . .)

f ′(xn) = f ′(x∗)(1+ 2c2en + 3c3e2
n + 4c4e3

n + 5c5e4
n + . . .) (3.2)

where en = xn − x∗, ck =
1
k

f (k)(x∗)
f ′(x∗)

and k = 2, 3, . . . .
By (3.1) and (3.2), we have

f (xn)
f ′(xn)

= en − c2e2
n + 2(c2

2 − c3)e
3
n + (7c2c3 − 4c3

2 − 3c4)e
4
n + . . . . (3.3)
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From (2.1) and (3.3), we have

yn = x∗ + c2e2
n − 2(c2

2 − c3)e
3
n − (7c2c3 − 4c3

2 − 3c4)e
4
n − . . . . (3.4)

From (3.4), we get:

f (yn) = f ′(xn)[yn − x∗ + c2(yn − x∗)2 + c3(yn − x∗)3 + . . .]

= f ′(x∗)(c2e2
n + 2(c3 − c2

2)e
3
n + (5c3

2 − 7c2c3 + 3c4)e
4
n + . . . . (3.5)

Thus, we have

f (yn)[ f (xn) + f (yn)]
f ′(xn)[ f (xn)− f (yn)]−α f (yn)[ f (xn) + f (yn)]

= c2e2
n + 2(c3 − c2

2)e
3
n + (3c4 +αc2

2 − 6c2c3 + c3
2)e

4
n + . . . . (3.6)

From (2.6), (3.4) and (3.6), we have

en+1 = (3c3
2 − c2c3 −αc2

2)e
4
n +O(e5

n) . (3.7)

This shows that the Method defined by (2.6) has fourth order convergence. ¤

Theorem 2. Assume that the sufficiently differentiable function f : D ⊂ R → R in
an open iterval D has a simple root x∗ ∈ D. Then the method (2.9) is fourth-order
convergent and for any β ∈ R, its error equation is given by:

en+1 = (5c3
2 − c2c3 − 2β c3

2 + β
2c3

2)e
4
n +O(e5

n).

Proof. Proof is similar to the Theorem 1 and is omitted. ¤

Theorem 3. Assume that the sufficiently differentiable function f : D ⊂ R → R in
an open iterval D has a simple root x∗ ∈ D. Then the method (2.10) is fourth-order
convergent and for any β ∈ R, its error equation is given by:

en+1 = (c
3
2 − c2c3 − 2β c3

2)e
4
n +O(e5

n).

Proof. Proof is similar to the Theorem 1 and is omitted. ¤

Theorem 4. Assume that the sufficiently differentiable function f : D ⊂ R → R in
an open iterval D has a simple root x∗ ∈ D. Then the method (2.13) is fourth-order
convergent and for any β ∈ R, its error equation is given by:

en+1 =
�

25

2
c3

2 − c2c3 − 3β c3
2 + β

2c3
2

�
e4

n +O(e5
n).

Proof. Proof is similar to the Theorem 1 and is omitted. ¤

4. Numerical examples

MAPLE 7.0 is used to do all computations using 64 digits floating point
arithmetics. We take ε= 10−15 as tolerance. We use the following stopping criteria:

(1) |xn+1 − xn|< ε
(2) | f (xn+1)|< ε
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We present here some test examples for iterative schemes. We compare
Newton’s method (NM) (2.1), King’s fourth order method (2.7) with β = 3 (KM)
[3], fourth order Traub’s-Ostrowski’s method (TM) [11], defined by:

xn+1 = xn −
f (yn)− f (xn)

2 f (yn)− f ′(xn)
f (xn)
f ′(xn)

. (4.1)

Jaratt’s fourth order method (JM) [1] given by:

xn+1 = xn −
�

1− 3

2

f ′(zn)− f ′(xn)
3 f ′(zn)− 5 f ′(xn)

�
f (xn)
f ′(xn)

, (4.2)

where

zn = xn −
2 f (xn)
3 f ′(xn)

and the fourth order methods, namely:

xn+1 = xn −
f (xn)
f ′(xn)

− 4 f 2(xn) + 6 f (xn) f (yn) + 3 f 2(yn)
4 f 2(xn)− 2 f (xn) f (yn)− f 2(yn)

f (yn)
f ′(xn)

(4.3)

and

xn+1 = xn −
f (xn)
f ′(xn)

− 2 f (xn)− f (yn)
2 f (xn)− 5 f (yn)

f (yn)
f ′(xn)

(4.4)

by C. Chun, Y. Ham [3], abbrevated by CM1 and CM2 respectively with our four
families of methods defined by (2.6), (2.9)-(2.10) and (2.13) and denoted by
(MSH1), (MSH2), (MSH3) and (MSH4) respectively.

We use the following test examples [3]:

Examples Zeros

f1(x) = x3 + 4x2 − 10, α= 1.3652300134140968457608068290

f2(x) = x2 − ex − 3x + 2, α= 0.25753028543986076045536730494

f3(x) = xex2 − sin2 x + 3cos x + 5, α=−1.2076478271309189270094167584

f4(x) = sin xex + ln(x2 + 1), α= 0

f5(x) = (x − 1)3 − 2, α= 2.2599210498948731647672106073

f6(x) = (x + 2)ex − 1, α=−0.44285440100238858314132800000

f7(x) = sin2 x − x2 + 1, α= 1.4044916482153412260350868178

Displayed in Table 1 are the number of iterations (IT) to approximate the zero.
It is to be noted that for most of the functions, the new family of methods MSH1
to MSH4 have at least equal performance as compared to the other well-known
methods of the same order as given in the Table 1.
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Table 1. Numerical Comparison of Newton’s Method and various Fourth
Order Methods

f (x) NM JM TM KM CM1 CM2 MSH1 MSH2 MSH2 MSH3 MSH4 MSH4

α= 1
8
β = 2 β = −1

2
β = 5

2
β = 0 β = −1

8

f1, x0=−0.3 55 46 46 49 9 44 4 25 10 10 10 11

f1, x0= 1 6 4 4 4 4 4 4 4 4 4 4 4

f2, x0= 0 5 3 3 3 3 3 3 3 3 3 3 3

f2, x0= 1 5 3 3 3 3 3 3 3 3 4 3 3

f3, x0=−1 6 4 4 5 4 4 4 4 4 5 4 4

f3, x0=−2 9 5 5 6 6 6 5 5 6 6 6 6

f4, x0= 2 6 4 4 6 4 4 5 5 5 6 5 5

f4, x0=−5 8 5 5 5 5 5 5 7 5 5 5 6

f5, x0= 3 7 4 4 4 4 4 4 4 4 4 4 4

f5, x0= 4 8 5 5 5 5 4 5 5 5 5 5 5

f6, x0= 2 9 5 5 6 6 4 5 6 6 6 6 6

f6, x0= 3.5 11 6 6 7 7 5 6 7 7 7 7 7

f7, x0= 1 7 4 4 8 4 4 4 5 5 6 5 5

f7, x0= 2 6 4 4 4 4 4 4 4 4 5 4 4

5. Conclusion

In this work, we derived four new families of fourth order methods using
a very simple approach from the existing fourth order families, namely King’s
fourth order family, a family of fourth order methods due to C. Chun and Y. Hum
[3] and variants of fourth order family due to Li Ta-fang et al. [5]. The four
obtained families of methods require two function evaluations and one value of
its derivative. Thus each of these families for constants α and β belonging to R
has computational efficiency 1.587 which is better than computational efficiency
of many other iterative methods in the literature. We observe that our methods
are compareable with the existing methods and have at least equal performance.
In particular, we observe that the family MSH1 (for α = 1/8) gives over all
better numerical results as compared to other methods in the Table 1. However,
the families MSH3 (forβ =5/2) and MSH4 (for β = 0, β = −1/8) give at least
better performance as compared to other similar methods in the Table 1. Using this
simple approach, we can derive many other higher order iterative methods. Our
results can be considered as an extension to the existing iterative methods.
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