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1. Introduction

Fractional differential equations have been used to model many physical phenomenain acoustics,
electromagnetics, viscoelasticity and hydrology etc. [4,9]. Podlubny [9] have presented a survey
on the applications of fractional calculus in various fields of science.

The topics of fuzzy integral equations (FIE) have been rapidly growing in recent years in
particular to relation in fuzzy control. Allahviranloo et al. [1] have applied a novel method for
solving fuzzy integro-differential equation under generalized differentiability. Solution of Fuzzy
Integro-Differential Equations with compactness type conditions was discussed by Donchev et
al. [5].

Armand et al. [2] investigated the existence and uniqueness solutions for fuzzy fractional
integro-differential equations under generalized Caputo differentiability. Mittal et al. [8] have
used Adomian decomposition method for solving the fractional integro-differential equations.
Priyadharsini et al. [10] applied Fuzzy Laplace Transform method to solve fuzzy fractional
integro-differential equations. Jameel [6] applied Adomian decomposition method for nonlinear
two point fuzzy boundary value problem.

In this article, we have solved the fuzzy fractional integro-differential equation of the form

CDαy(t)= ay(t)+
∫ t

0
K(s− t)y(s)ds (1.1)

with fuzzy initial conditionsby Adomain decomposition method, where CDα is a Caputo
fractional derivative.

In this article, Section 2 provides basic definitions of fractional calculus. In Section 3,
Adomian decomposition procedure is provided to solve the fractional integro-differential
equations. In Section 4, solution obtained using Adomian decomposition method for fuzzy
fractional integro-differential equation is elucidated in detail through illustration.

2. Basic Definitions of Fractional Calculus

Several definitions of fractional calculus are available in literature [3,7]. Caputo and Riemann-
Liouville definitions are primarily used by several researchers in many areas. Definitions and
properties of these two types of fractional derivatives are provided in this section.

2.1 Abel-Riemann Fractional Integral and Derivatives

Abel-Riemann fractional integral of any order α> 0 of f (x) is given as

Jα f (x)=


1

Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, α> 0 ,

f (x), α= 0 .
(2.1)
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2.2 Caputo Fractional Derivatives

Dα f (x)=


1

Γ(m−α)

∫ x

0

f m(t)
(x− t)α+1−m dt, 0≤ m−1<α≤ m ,

dm f (x)
dxm , α= m .

(2.2)

Properties of the operators Jα and Dαare

(i) JαJβ f (x)= Jα+β f (x)= JβJα f (x),

(ii) Jαtγ = Γ(γ+1)
Γ(γ+1+α)

tγ+α,

(iii) Dαtγ = Γ(γ+1)
Γ(γ+1−α)

tγ−α,

(iv) Dα[Jα f (x)]= f (x),

(v) Jα[Dα f (x)]= f (x)−
m−1∑
k=0

f k(0+)
xk

k!
.

3. Adomian Decomposition Method

Adomian decomposition method have been applied to solve ordinary differential equations and
partial differential equations arise in science and engineering. We provide the procedure for
Adomian decomposition method to solve the fuzzy fractional integro-differential equation of
form

CDαy(t)= ay(t)+
∫ t

0
K(s− t)y(s)ds (3.1)

with the fuzzy initial condition y(0)= (y
0
, y0), where 0<α< 1.

Operating with Jα on both sides of the above fuzzy fractional integro-differential equation
(3.1) implies that

y(t; r)= y
0
+ Jα

(
ay(t; r)+

∫ t

0
K(s− t)y(s; r)ds

)
, (3.2)

y(t; r)= y0 + Jα

(
ay(t; r)+

∫ t

0
K(s− t)y(s; r)ds

)
, (3.3)

where 0≤ r ≤ 1.

Adomian decomposition method defines the solutions y(t; r) and y(t; r) are sums y(t; r) =
∞∑

n=0
y

n
(t; r) and y(t; r)=

∞∑
n=0

yn(t; r).

The components y
1
, y

2
, . . . and y1, y2, . . . are determined recursively as follows

y
k+1

(t, r)= Jα

(
ay

k
(t; r)+

∫ t

0
K(s− t)y

k
(s; r)ds

)
(3.4)
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and

yk+1(t, r)= Jα

(
ayk(t; r)+

∫ t

0
K(s− t)yk(s; r)ds

)
, (3.5)

where k = 0,1,2,3, . . . ,∞.

From (3.4) and (3.5), we can compute the components of y
n
(t; r) and yn(t; r) hence the series

solutions y(t; r) and y(t; r) can be immediately obtained.

4. Numerical Example

We consider the linear fuzzy fractional integro-differential equation of the form

CDαy(t)+
∫ t

0
y(s)ds = 0, (4.1)

where 0<α< 1 and with the initial condition y(0)= (r−1,1− r).

Exact solution of (4.1) is

y(t; r)= (r−1)Eα+1(−tα+1), y(t; r)= (1− r)Eα+1(−tα+1),

where Eα(t) is Mittag-Leffler function and 0≤ r ≤ 1.

According to Adomian decomposition procedure presented in Section 3, equation (4.1) can be
written as follows

y(t; r)= y
0
− Jα

∫ t

0
y(s; r)ds and y(t; r)= y0 − Jα

∫ t

0
y(s; r)ds .

Adomian’s method defines the solutions y(t; r) and y(t; r) by the series

y(t; r)=
∞∑

n=0
y

n
(t; r) and y(t; r)=

∞∑
n=0

yn(t; r) .

The terms y
n
(t; r) can be obtained by recursive relation

y
0
(t; r)= r−1 ,

y
k+1

(t; r)=−Jα

∫ t

0
y

k
(s; r)ds ,

for k = 0,1,2,3, . . . , we get

y
1
(t; r)=−Jα

∫ t

0
y

0
(s; r)ds =−(r−1)

tα+1

Γ(α+2)
,

y
2
(t; r)=−Jα

∫ t

0
y

1
(s; r)ds = (r−1)

t2α+2

Γ(2α+3)
,

y
3
(t; r)=−Jα

∫ t

0
y

2
(s; r)ds =−(r−1)

t3α+3

Γ(3α+4)
.

Similarly we can obtain the y
k
(t; r) as follows

y
k
(t; r)=−Jα

∫ t

0
y

k−1
(s; r)ds = (−1)k(r−1)

tkα+k

Γ(kα+k+1)
.
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Hence

y(t; r)=
∞∑

n=0
y

n
(t; r)= (r−1)Eα+1(−tα+1) .

Similarly, we can obtain y(t; r) as follows

y(t; r)=
∞∑

n=0
yn(t; r)= (1− r)Eα+1(−tα+1) .

Figure 1 and Figure 2 shows the graphs of the solutions for different values of α and r.
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Figure 1. α= 0.2,0.4,0.6,0.8,1, r = 0.5
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Figure 2. r = 0,0.2,0.4,0.6,0.8, α= 0.5
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Figure 3 shows comparison between integer order and a fractional order.
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Figure 3. Comparison between integer order and fractional order

The above results almost match with the results obtained using Laplace transform method
[10] for the equation (4.1).

5. Conclusion

In this paper, we applied the Adomian Decomposition Method (ADM) to obtain an analytical
approximate solution for fuzzy fractional integro-differential equation and the results are
compared with the exact solution obtained using Laplace transform. This method is so powerful
and efficient, also one can apply this method for nonlinear case.
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