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The Two-machine Flow-shop Scheduling Problem
with a Single Server and Unit Server Times

Shi Ling and Cheng Xue Guang

Abstract. We consider the problem of two-machine flow-shop scheduling with
a single server and unit server times, we show that this problem is NP-hard in
the strong sense and present a simple greedy algorithm for it with worst-case
bound %

1. Introduction

In the two-machine flow-shop scheduling problem we study, the input instance
consists of n jobs with a single server and unit server times. Each job J; requires
two operations O, ; and O,;, which are performed on machine M; and M,,
respectively. The processing times of job J; on machine M;, i.e., the duration
of operation O;;, is p; ;. For each job, the second operation cannot be started
before the first operation is completed. A unit setup times s; ; is needed before
the first job is processed on machine M;. Each setup operation must be performed
by the server, which can only perform one operation at a time. The objective is to
compute a non-preemptive schedule of those jobs on two machines that minimize
makespan. In the standard scheduling notation, the problem can be described as
the F2, Slls;; = 1|Cp, problem. It is well known, S.M. Johnson [1], the F2
||Cpax Problem has a maximal polynomial solvable. P Brucker [2] and C.A. Glass
[3] proved that the F2, S1|s; ; = s[Cpax problem and theF2, S1||Cy,, problem
are NP-hard in the strong sense. The F2, S1ls; ; = 1|Cysx problem is still open
problem [4]. In this paper, we will show that this problem is NP-hard in the strong
sense, and present a simple greedy algorithm for it.

2010 Mathematics Subject Classification. 90B35.
Key words and phrases. Two-machine; Flow-shop; Single server; Complexity; NP-hardness, Worst-case
analysis.



124 Shi Ling and Cheng Xue Guang

2. Complexity of the F2, S1|s; ; = 1|Cy,,x problem

Lemma 1 ([4]). Consider the F2, S1|s;; = 1|Cy,,x problem with processing times

pi; and server times s; ;, where i =1,2 and j=1,2,...,n. Then

l])

Clo,7)= max { Z ($1,0() + Pro) + Z (52,0() +P2,a(j))}, M

<k<n | . 1 . 1
j<o~ j=T"

where 0~ = 07 1(k) and v~! = 771(k) denote the position of job J, in sequence o
and T, respectively.

Theorem 1. The F2, S1|s; ; = 1|Cyx problem is NP-hard in the strong sense.

Proof. We prove that the F2, S1|s; ; = 1|Cy,x problem is NP-hard in the strong
sense through a reduction from the Numerical Matching with Target Sums (NMTS)
problem, which is known to be NP-hard in the strong sense [6], to the F2,
S1|s; j = 1|Cppax problem. The NMTS problem is then stated as:

Given three sets X = xl,xz,... xr, yl,yz,.. , ¥, and Z = 2q,29,...,2,
of positive integers, where Z x; = Z yi + Z 2;, does there exist permutation

i=1 i=1 i=1
Yj»Yj,s--->Y;, and z;,2;,...,%; suchthat x;,=y; +z; fori=1,2,...,r.Given

any instance of the NMTS problem, we define the following instance of the F2,
S1|s; j = 1|Cppax problem with five types of jobs:

(1) U-obs:syj=1,p;;=1;58,;=1,p;=3K+x;+3,j=12,...,r

(2) V-jobs:sy;=1,pyj=2K+y;_;8;=1,py;=1,j=12,...,r

(B) W-jobs:syj =1, p1;=K+2zj_.;8;=1,py;=1,j=12,...,r

(4) P-jobs:s;j=1,p;;=5;8,;=1,py;=1,j=1,2,...,r

(5) Q-jobs:sy4ri1 =1, Prars1=1; So4r41 =1, Poars1 =1.

The threshold y = 10r 4+ 3Kr 4+ K + 3 and the corresponding decision problem
are: Is there a schedule S with makespan C(S) not greater than y = 10r + 3Kr +
K + 3? Observe that all processing times are equal to b. To prove the theorem
we show that in this constructed instance of the F2, Sl|s;; = 1|Cy,x problem
a schedule S satisfying C,,,(S°) < y =10n+ 3Kn +K + 3exists if and only if
NMTS has a solution. Suppose that NMTS has a solution. The desired schedule S,
exists and can be described as follows. No machine has intermediate idle time.
Machine M; process the P-jobs in order of the sequenceo, i.e., in the sequence

o= {O-Ul,l’ v Owy 5 OPs 500,50y, 50w, 0P Ul,4r+1} :

While machine M, process the jobs in the sequence

T= {TU2,1’ TV TWo 0 TPy T T T, TRy T2;4r+1}
as indicated in Figure 1.
Then we define sequences o and v shown in Figure 1. Obviously, these
sequences o and 7 fulfills C(o,7) < y. Conversely, assume that this flow-shop
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Figure 1. Gantt chart for the F2, S1|s; ; = 1|C,,,x problem

scheduling problem has a solution ¢ and 7 with C(o,7) < y. By setting in (1),
we get for all sequences o and 7:

n
C0,7) =511+ ) (S35, +Par,) =10n+3Kn+K+3=y.
A=1

Thus, for sequences ¢ and T with C(o,7) = y. We may conclude that:
(1) There is no idle time on machine M; until the completion of the last job on
it. Machine M, process jobs in the interval [0,10n+3Kn+K + 2].
(2) There is no idle time on machine M, until the completion of the last job on
it. Machine M, process jobs in the interval [1,10n+3Kn+K + 3].
(3) Qi1, Qa are the last jobs on machine M;, M,, respectively.

Now, we will prove that x; = y; +2;, that is

Sl’Vl,l +p1’Vl,1 +51;W1,2 +p1:W1,2 +51,P1,1 = pZ,Uz,l *

If S1v,, T Pivi, TS1w, T Piw,, TS1p, > Pay,, then there is a idle time between
P2u,, and 52,9, > which contradicts (2), if S1v, TPy, TS1w, T Piw,, TS1p, <
P2u,, then there is a idle time between s, p . and p; p ., which contradicts (1).
Thus, we have S1vy, T Pivi, +Siwy, t Piwy, T S1p, = Pay,, - Since sy =
Siwy, = Sipy, = 1, Pry, = 2K+ 1, prvin = K+2;, pap, =3+3K+x
then 1+2K+y;+K+2; =3+3K+x;, thatis x; = y; +2; . This give a solution to
NMTS. Analogously, we show that x; = y; +2;(j = 1,2,...,n). Thus, x; = y; +32;,
j=2,3,...,n defines a solution of the NMTS. O

3. Algorithm for the F2, S1Js; ; = 1|C,,,x problem
For the F2, S1[s; ; = 1|Cy,x problem, we consider a simple greedy algorithm.

Algolrithm 1.

(1) Schedule all jobs in shortest processing times (SPT) first on machine M, , that
is increasing processing times order.

(2) schedule all jobs in shortest processing times (SPT) first on machine M,, that
is in increasing processing times order, too.
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Theorem 2. The F2, Sl|s;; = 1|Cy,y problem, let S, be a schedule created by
Algorithm 1, S* be the optimal solution for the F2, S1|s; ; = 1|Cyy problem, then
Cinax(5°)/Cinax(S*) < 3/2. The bound is tight.

Proof. Let T;;, I;; denote the start time and idle time of job J;on the machine
M;, i =1, 2respectively. According to Algorithm 1, Schedule the jobs in increasing
order of p;; on the machine M;, with total idle time I, ;.Schedule the jobs in
increasing order of p,; on the machine M, with the total idle timel,;. For
anyj(1 <j <n), we have
Cj = Tl,j +Sl,j +p1’j +52,j +p2,j
j-1

= Z(Sl,i +p1i)+tIj+sj+p1jtsy+pa;
im1

J
= Z(sl,i + Pyt 14525+ Dag)
i=1

Sj+ijp;t+L+1+pa;,
C] = szj +32’j +p2,j

j-1

= Z(Sz,j +Poj)+1yj+505+ P
i1

j
=D 2+ p2) o
i=1

< +Jipant1y)),
2C,. (S <n+ npi,t+hij+n+npy,+I;+1+py,
=m+np,+1 ;) +(M+npy,+1,)+(1+psy,)
< 3Cax(S™)
Cnax(S°)/ Cnan(8) < 3/2.

To prove the bound is tight, introduce the following example as shown in Figure 2
and Figure 3.

C_(5)=8

max

Figure 2. C,..(S")
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Dy P
P2 P2
C..(5)=12
Figure 3. C,,,(S%)
So we have C,,,(S%)/Cpax(S*) = 12/8 = 3/2, the bound is tight. O
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