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The Two-machine Flow-shop Scheduling Problem
with a Single Server and Unit Server Times

Shi Ling and Cheng Xue Guang

Abstract. We consider the problem of two-machine flow-shop scheduling with
a single server and unit server times, we show that this problem is NP-hard in
the strong sense and present a simple greedy algorithm for it with worst-case
bound 3

2
.

1. Introduction

In the two-machine flow-shop scheduling problem we study, the input instance
consists of n jobs with a single server and unit server times. Each job J j requires
two operations O1, j and O2, j , which are performed on machine M1 and M2 ,
respectively. The processing times of job J j on machine Mi , i.e., the duration
of operation Oi, j , is pi, j . For each job, the second operation cannot be started
before the first operation is completed. A unit setup times si, j is needed before
the first job is processed on machine Mi . Each setup operation must be performed
by the server, which can only perform one operation at a time. The objective is to
compute a non-preemptive schedule of those jobs on two machines that minimize
makespan. In the standard scheduling notation, the problem can be described as
the F2, S1|si, j = 1|Cmax problem. It is well known, S.M. Johnson [1], the F2
||Cmax problem has a maximal polynomial solvable. P. Brucker [2] and C.A. Glass
[3] proved that the F2, S1|si, j = s|Cmax problem and the F2, S1||Cmax problem
are NP-hard in the strong sense. The F2, S1|si, j = 1|Cmax problem is still open
problem [4]. In this paper, we will show that this problem is NP-hard in the strong
sense, and present a simple greedy algorithm for it.
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2. Complexity of the F2 , S1|si, j = 1|Cmax problem

Lemma 1 ([4]). Consider the F2 , S1|si, j = 1|Cmax problem with processing times
pi, j and server times si, j , where i = 1, 2 and j = 1, 2, . . . , n. Then

C(σ,τ) = max
1≤k≤n

� ∑

j≤σ−1

(s1,σ( j) + p1,σ( j)) +
∑

j≥τ−1

(s2,σ( j) + p2,σ( j))
�

, (1)

where σ−1 = σ−1(k) and τ−1 = τ−1(k) denote the position of job Jk in sequence σ
and τ , respectively.

Theorem 1. The F2 , S1|si, j = 1|Cmax problem is NP-hard in the strong sense.

Proof. We prove that the F2, S1|si, j = 1|Cmax problem is NP-hard in the strong
sense through a reduction from the Numerical Matching with Target Sums (NMTS)
problem, which is known to be NP-hard in the strong sense [6], to the F2,
S1|si, j = 1|Cmax problem. The NMTS problem is then stated as:

Given three sets X = x i , x2, . . . , x r , Y = y1, y2, . . . , yr and Z = z1, z2, . . . , zr

of positive integers, where
r∑

i=1
x i =

r∑
i=1

yi +
r∑

i=1
zi , does there exist permutation

y j1 , y j2 , . . . , y jr and z j1 , z j2 , . . . , z jr such that x i = y jr + z jr for i = 1, 2, . . . , r . Given
any instance of the NMTS problem, we define the following instance of the F2,
S1|si, j = 1|Cmax problem with five types of jobs:

(1) U -jobs: s1, j = 1, p1, j = 1; s2, j = 1, p2, j = 3K + x j + 3, j = 1, 2, . . . , r

(2) V -jobs: s1, j = 1, p1, j = 2K + y j−r ; s2, j = 1, p2, j = 1, j = 1, 2, . . . , r

(3) W -jobs: s1, j = 1, p1, j = K + z j−r ; s2, j = 1, p2, j = 1, j = 1, 2, . . . , r

(4) P -jobs: s1, j = 1, p1, j = 5; s2, j = 1, p2, j = 1, j = 1, 2, . . . , r

(5) Q -jobs: s1,4r+1 = 1, p1,4r+1 = 1; s2,4r+1 = 1, p2,4r+1 = 1.

The threshold y = 10r + 3Kr + K + 3 and the corresponding decision problem
are: Is there a schedule S with makespan C(S) not greater than y = 10r +3Kr +
K + 3? Observe that all processing times are equal to b . To prove the theorem
we show that in this constructed instance of the F2, S1|si, j = 1|Cmax problem
a schedule S0 satisfying Cmax(S0) ≤ y = 10n+ 3Kn+ K + 3exists if and only if
NMTS has a solution. Suppose that NMTS has a solution. The desired schedule S0

exists and can be described as follows. No machine has intermediate idle time.
Machine M1 process the P -jobs in order of the sequenceσ , i.e., in the sequence

σ = {σU1,1
,σV1,1

,σW1,1
,σP1,1

, . . . ,σU1,n
,σV1,n

,σW1,n
,σP1,n

,σ1,4r+1} .
While machine M2 process the jobs in the sequence

τ= {τU2,1
,τV2,1

,τW2,1
,τP2,1

, . . . ,τU2,n
,τV2,n

,τW2,n
,τP2,n

,τ2,4r+1}
as indicated in Figure 1.

Then we define sequences σ and τ shown in Figure 1. Obviously, these
sequences σ and τ fulfills C(σ,τ) ≤ y . Conversely, assume that this flow-shop
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Figure 1. Gantt chart for the F2, S1|si, j = 1|Cmax problem

scheduling problem has a solution σ and τ with C(σ,τ) ≤ y . By setting in (1),
we get for all sequences σ and τ :

C(σ,τ)≥ s1,1 +
n∑

λ=1

(s2,τλ + p2,τλ) = 10n+ 3Kn+ K + 3= y .

Thus, for sequences σ and τ with C(σ,τ) = y . We may conclude that:

(1) There is no idle time on machine M1 until the completion of the last job on
it. Machine M1 process jobs in the interval [0, 10n+ 3Kn+ K + 2] .

(2) There is no idle time on machine M2 until the completion of the last job on
it. Machine M2 process jobs in the interval [1, 10n+ 3Kn+ K + 3] .

(3) Q1,1 , Q2,1 are the last jobs on machine M1 , M2 , respectively.

Now, we will prove that x1 = y1 + z1 , that is

s1,V1,1
+ p1,V1,1

+ s1,W1,2
+ p1,W1,2

+ s1,P1,1
= p2,U2,1

.

If s1,V1,1
+ p1,V1,1

+ s1,W1,2
+ p1,W1,2

+ s1,P1,1
> p2,U2,1

, then there is a idle time between
p2,U2,1

and s2,P2,1
, which contradicts (2), if s1,V1,1

+ p1,V1,1
+ s1,W1,2

+ p1,W1,2
+ s1,P1,1

<

p2,U2,1
then there is a idle time between s1,P1,1

and p1,P1,1
, which contradicts (1).

Thus, we have s1,V1,1
+ p1,V1,1

+ s1,W1,2
+ p1,W1,2

+ s1,P1,1
= p2,U2,1

. Since s1,V1,1
=

s1,W1,1
= s1,P1,1

= 1, p1,U1,1
= 2K + y1 , p1,V1,1 = K + z1 , p2,P1,1

= 3 + 3K + x1

then 1+2K+ y1+K+z1 = 3+3K+ x1 , that is x1 = y1+z1 . This give a solution to
NMTS. Analogously, we show that x j = y j + z j( j = 1, 2, . . . , n) . Thus, x j = y j + z j ,
j = 2, 3, . . . , n defines a solution of the NMTS. ¤

3. Algorithm for the F2 , S1|si, j = 1|Cmax problem

For the F2, S1|si, j = 1|Cmax problem, we consider a simple greedy algorithm.

Algolrithm 1.

(1) Schedule all jobs in shortest processing times (SPT) first on machine M1 , that
is increasing processing times order.

(2) schedule all jobs in shortest processing times (SPT) first on machine M2 , that
is in increasing processing times order, too.



126 Shi Ling and Cheng Xue Guang

Theorem 2. The F2 , S1|si, j = 1|Cmax problem, let S0 be a schedule created by
Algorithm 1, S∗ be the optimal solution for the F2 , S1|si, j = 1|Cmax problem, then
Cmax(S0)/Cmax(S∗)≤ 3/2 . The bound is tight.

Proof. Let Ti, j , Ii, j denote the start time and idle time of job J j on the machine
Mi , i = 1, 2respectively. According to Algorithm 1, Schedule the jobs in increasing
order of p1, j on the machine M1 , with total idle time I1, j .Schedule the jobs in
increasing order of p2, j on the machine M2 with the total idle time I2, j . For
any j(1≤ j ≤ n) , we have

C j = T1, j + s1, j + p1, j + s2, j + p2, j

=
j−1∑

i=1

(s1,i + p1,i) + I1, j + s1, j + p1, j + s2, j + p2, j

=
j∑

i=1

(s1,i + p1,i + I1, j + s2, j + p2, j)

≤ j+ jp1, j + I1, j + 1+ p2, j ,

C j = T2, j + s2, j + p2, j

=
j−1∑

i=1

(s2, j + p2, j) + I2, j + s2, j + p2, j

=
j∑

i=1

(s2, j + p2, j) + I2, j

≤ ( j + jp2,n + I2, j) ,

2Cmax(S
0)≤ n+ np1,n + I1, j + n+ np2,n + I2, j + 1+ p2,n

= (n+ np1,n + I1, j) + (n+ np2,n + I2,n) + (1+ p2,n)

≤ 3Cmax(S
∗)

Cmax(S
0)/Cmax(S

∗)≤ 3/2 .

To prove the bound is tight, introduce the following example as shown in Figure 2
and Figure 3.

Figure 2. Cmax(S∗)
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Figure 3. Cmax(S0)

So we have Cmax(S0)/Cmax(S∗) = 12/8= 3/2, the bound is tight. ¤
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