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Auto-Bäcklund Transformation, Lax Pairs and Painlevé
Property of ut + p(t )uux + q(t )ux x x + r (t )u = 0

R. Asokan

Abstract. Using the Painlevé property (PP) of partial differential equations, the
auto-Bäcklund transformation (ABT) and Lax pairs for Korteweg-de Vries (KdV)
equation with time-dependent coefficients are obtained. The Lax pair criterion
also makes it possible for some new models of the variable coefficient KdV
equation to be found that can represent nonsoliton dynamical systems. This can
explain the wave breaking phenomenon in variable depth shallow water.

1. Introduction

Exciting and important discoveries have been made in nonlinear dynamics
of dissipative and conservative systems. Numerical, analytical, and experimental
works in the last two decades show that most of the nonlinear systems exhibit a
transformation from regular to chaotic behaviour [1]. Recently, [2] the connection
between movable singularities and algebraic integrability of dynamical systems
is widely studied in different contexts. For an algebraically completely integrable
system the independent, single-valued integrals of motions are part of a compact,
complex tori on which tha motion is linear.

Ward [3] has extended the study of the Painlevé property (PP), well known
in the context of ordinary differential equations (ODE’s) to partial differential
equations (PDE’s). A system of PDE’s in n independent variables is considered
in the complex domain, the coefficients being analytic on Cn. If S is an analytic
noncharacteristic complex hypersurface in Cn, then the PDE that is analytic on S
is meromorphic on Cn. A weaker form of the PP was suggested by Weiss et al. [4]
while studying the Lorentz series expansion of the solutions in the neighborhood
of a movable singularity.

It is a well-known conjecture that if a field equation has the PP then
it is completely integrable [5]. The limitations of the conjecture, known as
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the Ablowitz-Ramani-Segur (ARS) conjecture, have been pointed out by Bountis
[2]. The complete integrability is also defined in terms of the existence of the
inverse scattering transform (IST) or the auto-Bäcklund transformation (ABT) [6].
The existence of an IST solution is assured by that of Lax pairs.

A well-known [6] model for an IST solvable and completely integrable
dynamical system is the celebrated constant coefficient Korteweg-de Vries (KdV)
equation:

ut +αuux + βux x x = 0, (1)

the coefficients α and β being constants and the suffix indicating a partial
derivative with the respective variables. This equation yields a highly collisionally
stable particlelike solution, called a soliton.

Here we report the results of the PP analysis of a KdV equation with variable
coefficients. The PP is used to identify the values of the different parameters for
which the system loses its integrability. We have found these parameter value using
a property of Lax pairs obtained from the PP. The possible ABT is also developed,
when the system is integrable.

Such an equation is particularly significant the study of the development of
a steady solitary wave as it enters a region where the bottom is no longer level
[7, 8, 9, 10, 11, 12]. It has been found both theoretically and experimentally that
when the depth decreases to form a shelf, the solitary wave breaks into a number
of ‘solitons’ while if the depth is increasing solitary wave degenerates into a cnoidal
wave.

In the present paper, we give a detailed account of the Painlevé analysis of the
variable coefficient KdV equation

ut + p(t)uux + q(t)ux x x + r(t)u= 0, (2)

where p(t), q(t) and r(t) are the functions of t by the work of Nirmala et al. [13].

The rest of the paper is organised as follows:
Section 2 deals with the Painlevé property of (2). The conclusion of the present

study is set forth in section 3.

2. Painlevé Property

Equation (2) has the PP when its solutions u(x , t) are single valued about the
movable, singularity manifolds, determined from the singularity analysis of the
Lorentz series expansion

u(x , t) = φα(x , t)
n∑

j=0

u j(x , t)φ j(x , t), (3)

whereφ(x , t) and u j(x , t) are analytic functions in a neighborhood of the manifold

φ(x , t) = 0 (4)
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and α is an integer to be determined. Substituting (3) into equation (2), a leading-
order terms analysis uniquely determines the possible values of α. The PP requires
that α be a negative integer. The resultant series expansion of (2) gives the required
Auto-Bäcklund transformation (ABT) and Lax pair for the IST.

The leading-order terms analysis gives the value

α=−2. (5)

The recursion relations for u j(x , t) are found to be

u j−3,t + ( j − 4)u j−2φt + p(t)
j∑

m=0

[u j−m(um−1,x + (m− 2)φxum)]

+ q(t)[u j−3,x x x + ( j − 4)(3u j−2,x xφx + 3u j−2,xφx x + u j−2φx x x)

+ ( j − 3)( j − 4)(3u j−1,xφ
2
x + 3u j−1φxφx x)

+ ( j − 2)( j − 3)( j− 4)φ3
xu j] + r(t)u j−3 = 0, (6)

where

φx =
∂ φ

∂ x
, u j,x =

∂ u j(x , t)

∂ x
, etc. (7)

Collecting terms involving u j , it is readily found that

q(t)φ3
x( j + 1)( j − 4)( j − 6)u j = F(u j−1, · · · , u0,φt ,φx ,φx x , · · · )

for j = 0, 1, 2, · · · (8)

We note that the recursion relations (8) are not determined when j = −1, 4
and 6. These values of j are called the “resonances” of the recursion relation
and, corresponding to these values of j, we can insert arbitrary functions of
(x , t) instead of u j(x , t) into the series expansion (3). But for j = −1, the series
expansion (3) not is defined and so the admissible values of resonances are j = 4
and 6 only.

Putting j = 0, 1, 2, · · · in (6), we get

j = 0, u0 =−
12q(t)φ2

x

p(t)
, (9)

j = 1, u1 =
12q(t)φx x

p(t)
, (10)

j = 2,
1

p(t)
φxφt + u2φ

2
x −

3q(t)
p(t)

φ2
x x +

4q(t)
p(t)

φxφx x x = 0, (11)

j = 3,
qt

pq
φx −

pt

p2φx +
1

p(t)
φx t + u2φx x − u3φ

2
x +

q

p
φx x x x +

r

p
φx = 0, (12)

j = 4,
∂

∂ x

�
qt

pq
φx −

pt

p2φx +
1

p(t)
φx t + u2φx x − u3φ

2
x +

q

p
φx x x x +

r

p
φx

�
= 0,

(13)

which is a compatibility condition. The compatibility condition at j = 6 involves
extensive calculations.
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When we assign u4 = u6 = 0 and for u3 = 0, we can find

u j = 0, for all j ≥ 3, (14)

provided u2 is a solution of (3), which implies that

u2,t + p(t)u2u2,x + q(t)u2,x x x + r(t)u2 = 0. (15)

From equation (3) and (9)-(15), we get

u0 =−
12q(t)

p(t)
φ2

x , (16)

u1 =
12q(t)

p(t)
φx x , (17)

1

p(t)
φxφt + u2φ

2
x −

3q(t)
p(t)

φ2
x x +

4q(t)
p(t)

φxφx x x = 0, (18)

q′

pq
φx −

p′

p2φx +
1

p(t)
φx t + u2φx x +

q

p
φx x x x +

r

p
φx = 0, (19)

u2,t + p(t)u2u2,x + q(t)u2,x x x + r(t)u2 = 0, (20)

and

u j = 0, for j ≥ 3. (21)

Substituting equations (16)-(21) in equation (3), we have

u(x , t) =−12q(t)φ2
x

p(t)φ2 +
12q(t)φx x

p(t)φ
+ u2, (22)

or

u(x , t) =
12q(t)

p(t)
∂ 2

∂ x2 (logφ) + u2, (23)

where u(x , t) and u2 are exact solutions of (3) and (15), respectively.
Equations (16)-(23) define the auto-Bäcklund transformation for the equation

(3) provided (18) and (19) are consistent. If any one of the solutions u2(x , t) is
known then another solution u(x , t) of (3) can be determined using the auto-
Bäcklund transformation. The consistency of equations (18) and (19) can be
verified by using a property of the Lax pairs.

The Lax pairs are obtained from the equations (18) and (19) by using a
transformation

φx = V 2. (24)

Substituting (24) into equation (19) yields

q′

2pq
V − p′

p2

V

2
+

1

p
Vt + u2Vx +

q

p
Vx x x +

3q

p
Vx

Vx x

V
= 0. (25)

Equation (18) also transforms to

1

p
Vt + u2Vx +

1

2
Vu2,x +

4q

p
Vx x x = 0. (26)
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Eliminating Vt from equations (25) and (26), we get
�

q′

2pq
− p′

2p2

�
− 1

2
u2,x −

3q

p

�
Vx x

V

�

x
= 0. (27)

Integrating equation (27) with respect to x gives
q

p

Vx x

V
+

1

6
u2 −

1

3

�
q′

2pq
− p′

2p2

�
x = λ(t). (28)

or

f (t)
�

q

p
D2 +

1

6
u2 −

1

3

�
q′

2pq
− p′

2p2

�
x
�

V = f (t)λ(t)V. (29)

Thus we get the linear eigen value problem

LV = µV, (30)

where µ= λ(t) f (t) and L is a linear operator defined by

L = f (t)
�

q

p
D2 +

1

6
u2 −

1

3

�
q′

2pq
− p′

2p2

�
x
�

, (31)

From equation (26) we get

Vt =−p
�

4q

p
D3 + u2D+

1

2
u2,x

�
V, (32)

or

Vt =−BV, (33)

where the operator B is defined by

B = p
�

4q

p
D3 + u2D+

1

2
u2,x

�
. (34)

Equations (30) and (34) define the Lax pairs L and B. However, equation (33)
implies that the eigenfunction V is in time evolution so that

Lt = LB− BL. (35)

The Lt in equation (35) denotes the derivative with respect to both the explicit
time dependence of L and the implicit dependence through u2(x , t).

3. Results

The equation variable coefficient KdV equation (2) that have introduced is a
new member in the families of integral as well as nonintegrable PDE’s depending
on the acidents. The PP analysis leads to the auto-Bäcklund transformation and
Lax pairs it is integrable. The operator identity (35) of Lax reveals that the system
(3) can be integrable. The soliton solutions are the products of IST solvable class of
nonlinear PDE. The above study shows that the equation (3) does not always have
a soliton. Hence in general a solitary wave solution of (3) need not be a soliton
and so it need not be collisionly stable always.

The equation (2) that introduced is a model for explaining the observations of
soliton-type solution’s instability reported earlier in different contexts [8, 9, 10,
11, 12, 13].
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