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1. Introduction
In 2002, Csaszar [1] introduced the notions of generalized topology and generalized continuity. A
nonempty family H of subsets of X is said to be hereditary class [2], if A ∈H and B ⊂ A, then
B ∈H . Given a generalized topological space (X ,µ) with a hereditary class H , for each A ⊆ X ,
A∗(H ,µ) = {x ∈ X : A ∩V ∉ H for every V ∈ µ such that x ∈ V } [2]. If c∗µ(A) = A ∪ A∗(H ,µ)
for every subset A of X , then µ∗ = {A ⊂ X : X − A = c∗µ(X − A)} is a GT, µ∗ is finer than µ

([2, Theorem 3.6]). In [3], cθ(A)= {x ∈ X : cµ(U)∩ A 6= ; for every U ∈µ} and a set A is θ-closed
if and only if A = cθ(A) [3]. The generalized topological space (X ,µ) is µ-regular [7] if and only
if µ=µθ . In this paper, (X ,µ,H ) denotes a hereditary generalized topological space, we define
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a operator Γ(A)(H ,µ) called the local closure function of A with respect to H and µ as follows:
Γ(A)(H ,µ) = {x ∈ X : A ∩ cµ(U) ∉ H for every U ∈ µ(x)}. Moreover, by using Γ(A)(H ,µ), we
introduce a operator ΨΓ :℘(X )→µ satisfying ΨΓ(A)= X −Γ(X − A) for each A ∈℘(X ). We set
σ= {A ⊆ X : A ⊆ΨΓ(A)} and σ0 = {A ⊆ X : A ⊆ iµ(cµ(ΨΓ(A)))} and show that µθ ⊆σ⊆σ0.

In Section 2, we introduce and study the notion of local closure function in HGTS. In
Section 3, we introduce and study the properties of ΨΓ-operator in HGTS.

2. Local Closure Function in HGTS
Definition 2.1. Let (X ,µ,H ) be a hereditary generalized topological space. For a subset A of
X , we define the following operator: Γ(A)(H ,µ) = {x ∈ X : A∩ cµ(U) ∉H }, for every U ∈ µ(x),
where µ(x)= {U ∈µ : x ∈U}. In case, Γ(A)(H ,µ) is briefly denoted by Γ(A) and is called the local
closure function of A with respect to H and µ.

Lemma 2.2. Let (X ,µ,H ) be a hereditary generalized topological space. Then A∗(H ,µ) ⊆
Γ(A)(H ,µ) for every subset A of X .

Proof. Let x ∈ A∗(H ,µ). Then, A ∩U ∉ H for every µ-open set U containing x. Since,
A∩U ⊆ A∩ cµ(U), we have A∩ cµ(U) ∉H and hence x ∈Γ(A)(H ,µ).

Lemma 2.3. Let (X ,µ) be a generalized topological space and A be a subset of X . Then

(a) If A is µ-open, then cµ(A)= cθ(A).

(b) If A is µ-closed, then iµ(A)= iθ(A).

Theorem 2.4. Let (X ,µ) be a generalized topological space, H and J be two hereditarys on
X , and let A and B be subsets of X . Then the following properties hold:

(i) If A ⊆ B, then Γ(A)⊆Γ (B).

(ii) If H ⊆J , then Γ(A) (H )⊇Γ(A)
(
J

)
.

(iii) Γ(A)= cµ (Γ(A))⊆ cθ(A) and Γ(A) is µ-closed.

(iv) If A ⊆Γ(A) and Γ(A) is µ-open, then Γ(A)= cθ(A).

(v) If A ∈I , then Γ(A)=;

Proof. (i) Suppose that x ∉Γ (B). Then there exists U ∈µ(x) such that B∩ cµ(U) ∈H . Since
A∩ cµ(U)⊆ B∩ cµ(U), A∩ cµ(U) ∈H . Hence, x ∉Γ(A). Thus Γ(A)⊆Γ (B).

(ii) Suppose that x ∉ Γ(A) (H ). Then there exists U ∈ µ(x) such that A∩ cµ(U) ∈ H . Since
H ⊆J , A∩ cµ(U) ∈J and x ∉Γ(A)(J ). Therefore, Γ(A)(J )⊆Γ(A)(H ).

(iii) We have Γ(A)⊆ cµ (Γ(A)) in general. Let x ∈ cµ (Γ(A)). Then Γ(A)∩U 6= ; for every U ∈µ(x).
Therefore, there exists some y ∈ Γ(A)∩U and U ∈ µ (y). Since y ∈ Γ(A), A ∩ cµ(U) ∉ H

and hence x ∈Γ(A). Hence we have cµ (Γ(A))⊆Γ(A) and hence cµ (Γ(A))=Γ(A). Again, let
x ∈ cµ (Γ(A))=Γ(A), then A∩ cµ(U) ∉H for every U ∈µ(x). This implies A∩ cµ(U) 6= ; for
every U ∈µ(x). Therefore, x ∈ cθ(A). This shows that Γ(A) (H )= cµ (Γ(A))⊆ cθ(A).

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 173–179, 2018



Local Closure Functions in Hereditary Generalized Topological Spaces: R. Ramesh et al. 175

(iv) For any subset A of X , by (3) we have Γ(A)= cµ (Γ(A))⊆ cθ(A). Since A ⊆Γ(A) and Γ(A) is
µ-open, by Lemma 2.3, cθ(A)⊆ cθ (Γ(A))= cµ (Γ(A))=Γ(A)⊆ cθ(A) and hence Γ(A)= cθ(A).

(v) Suppose that x ∈Γ(A). Then for any U ∈µ(x), A∩ cµ(U) ∉H . Since A ∈H , A∩ cµ(U) ∈H

for every U ∈µ(x). This is a contradiction. Hence Γ(A)=;.

Theorem 2.5. Let (X ,µ,H ) be an hereditary generalized topological space. If U ∈ µθ , then
U ∩Γ(A)=U ∩Γ (U ∩ A)⊆Γ (U ∩ A) for any subset A of X .

Proof. Suppose that U ∈ µθ and x ∈ U ∩Γ(A). Then x ∈ U and x ∈ Γ(A). Since U ∈ µθ , then
there exists W ∈ µ such that x ∈ W ⊆ cµ (W) ⊆U . Let V be any µ-open set containing x. Then
V∩W ∈µ(x) and cµ (V ∩W)∩A ∉H and hence cµ(V )∩(U ∩ A) ∉H . This shows that x ∈Γ (U ∩ A)
and hence we obtain U∩Γ(A)⊆Γ (U ∩ A). Moreover, U∩Γ(A)⊇U∩Γ (U ∩ A) and by Theorem 2.4
Γ (U ∩ A)⊆Γ(A) and U ∩Γ(A)⊆U ∩Γ (U ∩ A). Therefore, U ∩Γ(A)=U ∩Γ (U ∩ A).

Theorem 2.6. Let (X ,µ,H ) be an hereditary generalized topological space and A, B be any
subsets of X . Then the following properties hold:

(i) Γ (;)=;.

(ii) Γ(A)∪Γ (B)=Γ (A∪B).

Theorem 2.7. Let (X ,µ,H ) be an hereditary generalized topological space and A, B be any
subsets of X . Then Γ(A)−Γ (B)=Γ (A−B)−Γ (B).

Proof. We have by Theorem 2.6 Γ(A) = Γ [(A−B)∪ (A∪B)] = Γ (A−B)∪Γ (A∩B) ⊆ Γ (A−B)∪
Γ (B) . Thus Γ(A) − Γ (B) ⊆ Γ (A−B) − Γ (B). By Theorem 2.4, Γ (A−B) ⊆ Γ(A) and hence
Γ(A)−Γ (B)⊇Γ (A−B)−Γ (B). Hence, Γ(A)−Γ (B)=Γ (A−B)−Γ (B).

Corollary 2.8. Let (X ,µ,H ) be an hereditary generalized topological space and A,B be any
subsets of X with B ∈H . Then Γ (A∪B)=Γ(A)=Γ (A−B).

Proof. Since B ∈ H , by Theorem 2.4 Γ (B) = ;. By Theorem 2.7, Γ(A) = Γ (A−B) and by
Theorem 2.6 Γ(A)∪Γ (B)=Γ (A∪B)=Γ(A).

3. ΨΓ-Operator in HGTS

Definition 3.1. Let (X ,µ,H ) be an hereditary generalized topological space. An operator
ΨΓ :℘(X )→µ is defined as follows: for every A ∈ X , ΨΓ(A)= {x ∈ X : there exists U ∈µ(x) such
that cµ(U)− A ∈H } and observe that ΨΓ(A)= X −Γ(X − A).

Theorem 3.2. In hereditary generalized topological space (X ,µ,H ), the following holds:

(i) If A ⊆ X , then ΨΓ(A) is µ-open.

(ii) If A ⊆ B, then ΨΓ(A)⊆ΨΓ(A).

(iii) If A,B ∈℘(X ), then ΨΓ (A∩B)=ΨΓ(A)∩ΨΓ (B).
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(iv) If A ⊆ X , then ΨΓ(A)=ΨΓ (ΨΓ(A)) if and only if Γ(X − A)=Γ (Γ(X − A)).

(v) If A ∈H , then ΨΓ(A)= X −Γ(X ).

(vi) If A ⊆ X ,H ∈H , then ΨΓ (A−H)=ΨΓ(A).

(vii) If A ⊆ X ,H ∈H , then ΨΓ (A∪H)=ΨΓ(A).

(viii) If (A−B)∪ (B− A) ∈H , then ΨΓ(A)=ΨΓ (B).

Proof. (i) This follows from Theorem 2.4(iii).

(ii) This follows from Theorem 2.4(i).

(iii) ΨΓ (A∩B)= X −Γ (X − (A∩B))

= X −Γ [(X − A)∪ (X −B)]

= X − [Γ(X − A)∪Γ (X −B)]

= [X −Γ(X − A)]∩ [X −Γ (X −B)]

=ΨΓ(A)∩ΨΓ(A).
(iv) This follows from the facts:

(a) ΨΓ(A)= X −Γ(X − A).
(b) ΨΓ (ΨΓ(A))= X −Γ [X − (X −Γ(X − A))]= X −Γ (Γ(X − A)).

(v) By Corollary 2.8 we obtain that Γ(X − A)=Γ(X ) if A ∈H .

(vi) This follows from Corollary 2.8 and ΨΓ (A− I)= X −Γ [X − (A− I)]= X −Γ [(X − A)∪ I]=
X −Γ(X − A)=ΨΓ(A).

(vii) This follows from Corollary 2.8 and ΨΓ (A∪ I)= X −Γ [X − (A∪ I)]= X −Γ [(X − A)− I]=
X −Γ(X − A)=ΨΓ(A).

(viii) Assume (A−B)∪ (B− A) ∈H . Let A−B = I and B− A = J. Observe that I, J ∈H . Also
observe that B = (A− I)∪ J. Thus ΨΓ(A) =ΨΓ (A− I) =ΨΓ [(A− I)∪ J] =ΨΓ (B) by (vi)
and (vii).

Corollary 3.3. Let (X ,µ,H ) be an hereditary generalized topological space. Then U ⊆ΨΓ(U)
for every θ-open set U ⊆ X .

Proof. We know that ΨΓ(U)= X −Γ (X −U). Now Γ (X −U)⊆ cθ (X −U)= X −U , since X −U is
θ-closed. Therefore, U = X − (X −U)⊆ X −Γ (X −U)=ΨΓ(U).

Now we give an example of a set A which is not θ-open but satisfies A ⊆ΨΓ(A).

Example 3.4. Let X = {a,b, c,d}, µ = {;, {a, c} , {d} , {a, c,d}} and H = {;, {b}, {c} , {b, c}}. Let
A = {a}. Then ΨΓ ({a})= X−Γ (X − {a})= X−Γ ({b, c,d})= X−{b,d}= {a, c}. Therefore. A ⊆ΨΓ(A),
but A is not θ-open.

Theorem 3.5. Let (X ,µ,H ) be an hereditary generalized topological space and A ⊆ X . Then
the following properties holds:
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(i) ΨΓ(A)=∪{U ∈µ : cµ(U)− A ∈H }.

(ii) ΨΓ(A)⊇∪{U ∈µ : (cµ(U)− A)∪ (A− cµ(U)) ∈H }

Proof. (i) This follows immediately from the definition of ΨΓ-operator.

(ii) Since H is hereditary, it is obvious that ∪{U ∈µ : (cµ(U)− A)∪ (A− cµ(U)) ∈H }⊆∪{U ∈
µ : cµ(U)− A ∈H }=ΨΓ(A) for every A ⊆ X .

Theorem 3.6. Let (X ,µ,H ) be an hereditary generalized topological space. If σ= {A ⊆ X : A ⊆
ΨΓ(A)}. Then σ is a generalized topology for X .

Proof. Let σ = {A ⊆ X : A ⊆ΨΓ(A)}. Since ; ∈ H , by Theorem 2.4(v) Γ (;) = ; and ΨΓ(X ) =
X −Γ (X − X )= X −Γ (;)= X . Moreover, ΨΓ (;)= X −Γ (X −;)= X −X =;. Therefore we obtain
that ;⊆ΨΓ (;) and X ⊆ΨΓ(X )= X and thus ; and X ∈σ. Now if A,B ∈σ, then by Theorem 3.2
A ∩B ⊆ ΨΓ(A)∩ΨΓ (B) = ΨΓ (A∩B) which implies that A ∩B ∈ σ. If {Aα :α ∈∆} ⊆ σ, then
Aα ⊆ ΨΓ (Aα) ⊆ ΨΓ (∪Aα) for every α and hence ∪Aα ⊆ ΨΓ (∪Aα). This shows that σ is a
generalized topology.

Lemma 3.7. If either A ∈µ or B ∈µ, then iµ(cµ(A∩B))= iµ
(
cµ(A)

)∩ iµ(cµ(B)).

Theorem 3.8. Let σ0 = {A ⊆ X : A ⊆ iµ(cµ(ΨΓ(A)))}, then σ0 is a generalized topology for X .

Proof. By Theorem 3.2, for any subset A of X ,ΨΓ(A) is µ-open and σ ⊂ σ0. Therefore,
;, X ∈σ0. Let A,B ∈σ0. Then by Lemma 3.7 and Theorem 3.2, we have A∩B ⊂ iµ(cµ(ΨΓ(A)))∩
iµ(cµ(ΨΓ(B))) = iµ(cµ(ΨΓ(A)∩ΨΓ(B))) = iµ(cµ(ΨΓ(A∩B))). Therefore, A∩B ∈ σ0. Let Aα ∈ σ0

for each α ∈ ∆. By Theorem 3.2, for each α ∈ ∆, Aα ⊆ iµ(cµ(ΨΓ(Aα))) ⊆ iµ(cµ(ΨΓ(∪Aα))) and
hence ∪Aα ⊂ iµ(cµ(ΨΓ(∪Aα))). Hence ∪Aα ∈σ0. This shows that σ0 is a generalized topology
for X .

Remark 3.9. (i) In Example 3.4, A is σ-open but it is not µ-open. Therefore every σ0-open
set is not µ-open.

(ii) Let X = {a,b, c} with µ = {;, {a}, {b}, {a,b} , {a, c}} and H = {;, {a}} be an hereditary on X .
We observe that {a} is µ-open but it is not σ0-open. SinceΨΓ ({a})= X−Γ ({b, c})= X−X =;.
Also, {c} is not µ-open but it is σ-open set, since ΨΓ ({c})= X −Γ ({a,b})= X − {b}= {a, c}.

Definition 3.10. Let (X ,µ,H ) be an hereditary generalized topological space. We say µ is
closure compatible with hereditary H , denoted µ∼ΓH , if the following holds for every A ⊆ X ,
if for every x ∈ A there exists U ∈µ(x) such that cµ(U)∩ A ∈H , then A ∈H .

Theorem 3.11. Let (X ,µ,H ) be an hereditary generalized topological space. Then µ∼Γ H if
and only if ΨΓ(A)− A ∈H for every A ⊆ X .

Proof. Necessity: Assume µ∼ΓH and let A ⊆ X . Observe that x ∈ΨΓ(A)−A if and only if x ∉ A
and x ∉Γ(X − A) if and only if x ∉ A and there exists Ux ∈µ(x) such that cµ(Ux)− A ∈H if and
only if there exists Ux ∈ µ(x) such that x ∈ cµ(Ux)− A ∈ H . Now, for each x ∈ΨΓ(A)− A and
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Ux ∈µ(x), cµ(Ux)∩(ΨΓ(A)− A) ∈H by hereditary and hence ΨΓ(A)−A ∈H by assumption that
µ∼ΓH .

Sufficiency: Let A ⊆ X and assume that for each x ∈ A there exists Ux ∈ µ(x) such that
cµ(Ux)∩ A ∈H . Observe that ΨΓ(X − A)− (X − A)= A−Γ(A)= {x : there exists Ux ∈ µ(x) such
that x ∈ cµ(Ux)∩ A ∈ H }. Thus we have A ⊆ΨΓ(X − A)− (X − A) ∈ H and hence A ∈ H by
hereditary of H .

Theorem 3.12. Let (X ,µ,H ) be an hereditary generalized topological space with µ ∼Γ H ,
A ⊆ X . If N is a nonempty µ-open subset of Γ(A)∩ΨΓ(A), then N − A ∈H and cµ(N)∩ A ∉H .

Proof. If N ⊆Γ(A)∩ΨΓ(A), then N−A ⊆ΨΓ(A)−A ∈H , by Theorem 3.11 and hence N−A ∈H

by hereditary. Since N ∈ µ− {;} and N ⊆ Γ(A), we have cµ(N)∩ A ∉ H by the definition
of Γ(A).

Theorem 3.13. Let (X ,µ,H ) be an hereditary generalized topological space with µ ∼Γ H ,
where cµ(µ)∩H =;. Then for A ⊆ X ,ΨΓ(A)⊆Γ(A).

Proof. Suppose x ∈ΨΓ(A) and x ∉Γ(A). Then there exists a nonempty neighborhood Ux ∈µ(x)
such that cµ(Ux)∩ A ∈ H . Since x ∈ΨΓ(A), by Theorem 3.5 ∈ ∪{

U ∈µ : cµ(U)− A ∈H
}

and
there exists V ∈ µ(x) and cµ(V )− A ∈ H . Now we have Ux ∩V ∈ µ(x), cµ (Ux ∩V )∩ A ∈ H

and cµ (Ux ∩V )− A ∈ H by hereditary. Hence by finite additivity we have cµ ((Ux ∩V )∩ A)∪(
cµ (Ux ∩V )− A

) = cµ (Ux ∩V ) ∈ H . Since (Ux ∩V ) ∈ µ(x), this is contrary to cµ(µ)∩H = ;.
Therefore, x ∈Γ(A). This implies that ΨΓ(A)⊆Γ(A).

4. Conclusion
Local closure function play vital role in topological spaces. Many authors contributed ([4], [5],
[6]) in the field to improve the results in topological spaces. We have defined and discussed the
properties of local closure function in hereditary generalized topological spaces.
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