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Modelling of the 3R Motion at Non-Parallel Planes

Senay Baydas and Bulent Karakas

Abstract. We construct two similar planar mechanisms which have different and
non-parallel planes. We build up a new connection between these mentioned
mechanisms in this paper. How the motion of a mechanism is carried to another
plane without making a difference in mechanism algorithm and some necessary
mathematical relationships are found out. Therefore, a mechanism structure can
be transported from one of the intersecting planes to another planes without
changing its mechanism algorithm. This mechanism structure is as finger motion
and the most important result is this.

1. Introduction

In mechanism theory, there are two main actions: Rotation and translation.
In the case of rotation, there are similar rotations at parallel planes, which are
perpendicular to rotation axis. In the case of translation, parallel translations exist
at all planes, which are passing the line carrying the translation vector. One of the
algorithms which are used in expressing a mechanism is the Denavit-Hartenberg
(D-H) representation [7, 8].

Figural form of rotation matrix is different when axis of rotation is an axis
different from coordinate axes. Let r be any axis described by vector −→r passing
through origin and different from coordinate axes. The rotation around r axis
described by vector −→r is defined in horizontal planes which are perpendicular
to r. When new coordinate system is (O : UVW ) and −→r = (rx , ry , rz), ‖−→r ‖ = 1,
rotation matrix is known [2]∗. Let α and β be intersecting planes and intersecting
angle (Ôα,β) = φ, 0 < φ < π

2
. Primarily, if the rotation at (O : X Y Z) is around

z-axis and α and β intersects along y-axis, the normal of α is −→z and the normal
of β is z′, here z′ = R y(φ)(z). Accepting z′ as r, rotation at β can be defined. The
analysis of 2R planar mechanism, not including our goal, is made in [1] and [3].
If the distance between the joints of an RR chain is allowed to vary, then we obtain
the structure of a three degree-of-freedom planar manipulator. This variation can
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be introduced by a revolute joint to form a 3R open chain. The formulas for the
RR chain can be used to analyze the 3R chains with minor modifications [5].

Firstly, the 3R mechanism will be constructed and analyzed at α-plane as Mα.
Then the analogous 3R will be defined at β as Mβ and subsequently relation
between Mα and Mβ will be built.

2. Kinematic equations for 3R at the α-plane (Mα)
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Figure 1. Location of mechanism at α-plane

The design of a 3R mechanism which consists of three joints is seen at Figure 1
as [6] and [4]. Suppose that its inertial point of base frame is O origin point,
rotation axis is z-axis, rotation plane is xo y-plane. In the parameters of the
mechanism whose links are l1, l2, l3 in length and rotation angles are θ1,θ2,θ3

we have shown the parameters according to D-H representation at Table 1.

Table 1. D-H parameters

θi di ai αi

θ1 − l1 −
θ2 − l2 −
θ3 − l3 −

According to Table 1, iAi+1 transformation matrices belonging to mechanism
can be written as thus:

i−1Ai =




Cθi −Sθi 0 liCθi
Sθi Cθi 0 liSθi
0 0 1 0
0 0 0 1



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1 ≤ i ≤ 3. 0A3 transformation matrix of position of the end-effector is calculated
from multiplying 0A1

1A2
2A3 so we have†

0A3 =




Cθ123 −Sθ123 0 l1Cθ1 + l2Cθ12 + l3Cθ123
Sθ123 Cθ123 0 l1Sθ1 + l2Sθ12 + l3Sθ123

0 0 1 0
0 0 0 1


 .

Also we know that

T =0 A3 (1)

Now, using the inverse kinematic equations, we will find θi (for i = 1, 2, 3) and
therefore θ2 is obtained as follows

θ2 = arccos
� (px − l3nx)2 + (py + l3ox)2 − l2

1 − l2
2

2l1l2

�
.

From equation (2)

0A−1
1 T = 1A2

2A3 (2)

can be written. θ1 is attained as the following:

θ1 = arccos
�

A(l1 + l2Cθ2) + Bl2Sθ2

(px − l3nx)2 + (py − l3ny)2

�

and θ3 is equated as

θ3 = arccos(nx Cθ1 + nySθ1)− θ2

Furthermore, for both θ1 = π/2, θ2 = π/3, θ3 = π/6, γ = π/4 and θ1 = π/2,
θ2 = π/2, θ3 = π/2, γ= π/4, these datum are analyzed.

3. Location of 3R mechanism at β (Mβ)

Let β : Ax+B y+Cz+D = 0 be a given plane. For arbitrary x0, y0, (x0, y0, z0) ∈
β , where z0 =

1
C
(−D − Ax0 − B y0). Let v = (v1, v2, v3) be any vector, passing

(x0, y0, z0) and perpendicular Nβ . The normal vector of β plane is

Nβ =
1p

A2 + B2 + C2
(A, B, C).

For a frame which presumes (x0, y0, z0) point as a start

v × Nβ = u

could be selected as

(v × Nβ , v, Nβ)

†We used θ123 instead of (θ1 + θ2 + θ3) for the sake of brevity.
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for β . The matrix form of a revolute on β plane, around an axis defined by−→w = Nβ
is

Rw,θ =




w2
1(1− Cθ) + Cθ w1w2(1− Cθ)−w3Sθ w1w3(1− Cθ) +w2Sθ

w1w2(1− Cθ) +w3Sθ w2
2(1− Cθ) + Cθ w2w3(1− Cθ)−w1Sθ

w1w3(1− Cθ)−w2Sθ w2w3(1− Cθ) +w1Sθ w2
3(1− Cθ) + Cθ


 .

Let us construct the simulation of the mechanism constructed in α as part of a
planar mechanism in β plane. By the simulation the equality of corresponding link
lengths and link angles is meant. Let us apply the tasks undertaken by x , y, z axes to
u, v, w axes respectively in the use of D-H representation based on the assumptions
and demonstrations in Figure 2.

b

v

u

Nb

Figure 2. u, v, Nβ

Hence, the D-H transformation matrices belonging to Mβ mechanism built in β
would be found as

0B1 =




w2
1(1− Cθ1) + Cθ1 w1w2(1− Cθ1)−w3Sθ1 w1w3(1− Cθ1) +w2Sθ1 l1u1Cθ1 + l1 v1Sθ1

w1w2(1− Cθ1) +w3Sθ1 w2
2(1− Cθ1) + Cθ1 w2w3(1− Cθ1)−w1Sθ1 l1u2Cθ1 + l1 v2Sθ1

w1w3(1− Cθ1)−w2Sθ1 w2w3(1− Cθ1) +w1Sθ1 w2
3(1− Cθ1) + Cθ1 l1u3Cθ1 + l1 v3Sθ1

0 0 0 1




1B2 =




w2
1(1− Cθ2) + Cθ2 w1w2(1− Cθ2)−w3Sθ2 w1w3(1− Cθ2) +w2Sθ2 l2u1Cθ2 + l2 v1Sθ2

w1w2(1− Cθ2) +w3Sθ2 w2
2(1− Cθ2) + Cθ2 w2w3(1− Cθ2)−w1Sθ2 l2u2Cθ2 + l2 v2Sθ2

w1w3(1− Cθ2)−w2Sθ2 w2w3(1− Cθ2) +w1Sθ2 w2
3(1− Cθ2) + Cθ2 l2u3Cθ2 + l2 v3Sθ2

0 0 0 1




2B3 =




w2
1(1− Cθ3) + Cθ3 w1w2(1− Cθ3)−w3Sθ3 w1w3(1− Cθ3) +w2Sθ3 l3u1Cθ3 + l3 v1Sθ3

w1w2(1− Cθ3) +w3Sθ3 w2
2(1− Cθ3) + Cθ3 w2w3(1− Cθ3)−w1Sθ3 l3u2Cθ3 + l3 v2Sθ3

w1w3(1− Cθ3)−w2Sθ3 w2w3(1− Cθ3) +w1Sθ3 w2
3(1− Cθ3) + Cθ3 l3u3Cθ3 + l3 v3Sθ3

0 0 0 1




and as a result, the motion matrix of the mechanism could be obtained by

0B3 =
0 B1

1B2
2B3 (3)

multiplicity.
An analysis of the mechanism defined by (9) equality could be made in β .

However, constructing the mechanism in β and making its analysis is not relevant
with the design of a mechanism moving synchronically in α and β ,which was the
chief focus of concern in this study. A second method, which is much more relevant
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with our objective, is the construction of the mechanism in β together with its co-
motion structure, obtained through the transportation of the mechanism in α to
the one constructed in β . The aim of the following section is this: The mechanism
will be built in α and transported to β , and the motion matrix of the synchronized
mechanism transported to β will be shown as it is indicated in 0B3.
α and β are two planes which intersect, through one axis (y-axis) (non-

coincident) and let the angle between α and β be γ. β-plane can be taken as
the rotating of α-plane about y-axis an angle of γ at Figure 3.
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z
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y=y=y

z
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l

Figure 3. Location of mechanism at β-plane

So we can assume that the plane β is an image of α, that is

β = R y(γ)(α).

Since it will not eclipse the generality we can select α plane as z = 0 plane. Let
plane of α : z = 0 be given. In this case rotation matrix is Nα = (0, 0, 1) and thus
Nβ is found as follows:

R y(γ).Nα =




Cγ 0 Sγ
0 1 0
−Sγ 0 Cγ







0
0
1


=




Sγ
0

Cγ


= Nβ ,

where N2 is rotation axis of β-plane.
Thus, rotation matrix shown with Rr(φ) given in (1) is used instead of the

rotation matrix about z-axis at α. Rotation matrices at the mechanism are RNβ (θi),
(for i = 1, 2, 3).

0B3, transformation matrix belonging to the 3R mechanism at β , is
0B3 =

0B1
1B2

2B3

=

�
RNβ (θ1) l ′′1

0 1

��
RNβ (θ2) l ′′2

0 1

��
RNβ (θ3) l ′′3

0 1

�
(4)
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we obtained 0B3 as follows:

0B3 =




C2γCθ123 + S2γ −CγSθ123 SγCγ(1− Cθ123) Cγ
�
l1Cθ1 + l2Cθ12 + l3Cθ123

�

CγSθ123 Cθ123 −SγSθ123 l1Sθ1 + l2Sθ12 + l3Sθ123

SγCγ(1− Cθ123) SγSθ123 S2γCθ123 + C2γ −Sγ
�
l1Cθ1 + l2Cθ12 + l3Cθ123

�

0 0 0 1


 . (5)

4. Transition from Mα to Mβ

Suppose that α-plane is xoz-plane. β-plane is occurred, rotating α-plane about
y-axis an angle of γ. Transformation matrix from α to β is

R y(γ) =




Cγ 0 Sγ 0
0 1 0 0
−Sγ 0 Cγ 0

0 0 0 1


 .

The mechanism at xoz-plane is at rotating plane which is rotated about y-axis
an angle of γ and transformation matrix of the mechanism is

R y(γ)
0A3 =




CγCθ123 −CγSθ123 Sγ Cγ
�
l1Cθ1 + l2Cθ12 + l3Cθ123

�

Sθ123 Cθ123 0 l1Sθ1 + l2Sθ12 + l3Sθ123

−SγCθ123 SγSθ123 Cγ −Sγ
�
l1Cθ1 + l2Cθ12 + l3Cθ123

�

0 0 0 1


 . (6)

It is clear that the position of the end-effector belonging to 0B3 is the same as the
position of the end-effector belonging to R y(γ) 0A3. The theorem which underpins
our study and the preparation proof of which was made throughout Section 3 is as
follows.

5. Transition from Mβ to Mξ

R y(ξ) =




Cξ 0 Sξ 0
0 1 0 0
−Sξ 0 Cξ 0

0 0 0 1


 ,

R y(ξ)(R y(γ)
0A3) =




Cξ 0 Sξ 0
0 1 0 0
−Sξ 0 Cξ 0

0 0 0 1




×




CγCθ123 −CγSθ123 Sγ Cγ
�
l1Cθ1 + l2Cθ12 + l3Cθ123

�

Sθ123 Cθ123 0 l1Sθ1 + l2Sθ12 + l3Sθ123

−SγCθ123 SγSθ123 Cγ −Sγ
�
l1Cθ1 + l2Cθ12 + l3Cθ123

�

0 0 0 1


.

Theorem 1. Let α and β be intersecting planes. If L is intersecting line and γ is
the angle between two planes, RotL(γ) transports the mechanism at α to β with
scynhronized motion.
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Proof. Since it will not eclipse the generalization xo y-plane can be taken as α
plane. In this case the motion matrix of the mechanism built in β is 0B3 and the
motion matrices of the mechanism carried from α to β are respectively as follows:

0B3 =




C2γCθ123 + S2γ −CγSθ123 SγCγ(1− Cθ123) Cγ(l1Cθ1 + l2Cθ12 + l3Cθ123)

CγSθ123 Cθ123 −SγSθ123 l1Sθ1 + l2Sθ12 + l3Sθ123

SγCγ(1− Cθ123) SγSθ123 S2γCθ123 + C2γ −Sγ(l1Cθ1 + l2Cθ12 + l3Cθ123)

0 0 0 1




and

R y(γ)
0A3 =




CγCθ123 −CγSθ123 Sγ Cγ(l1Cθ1 + l2Cθ12 + l3Cθ123)

Sθ123 Cθ123 0 l1Sθ1 + l2Sθ12 + l3Sθ123

−SγCθ123 SγSθ123 Cγ −Sγ(l1Cθ1 + l2Cθ12 + l3Cθ123)

0 0 0 1


 .

The components belonging to the end effector in both matrix can be seen as equal
and the equality complements the proof. ¤

6. Conclusions

The planar mechanisms can be constructed based on the normal of planes, the
rotations around a rotating axis and the translations in the determined direction.
The simulation of a planar mechanism can be obtained and transported to another
plane intersecting the plane of an other mechanism, and thus, 2 × 3R space
mechanism constituted of two synchronically moving 3R mechanism can be built.
In our study, the construction of 2× 3R has been examined. The algorithm of this
study is as thus:

Let α and β be two planes intersected with the intersection angle of γ, 0 < γ <
π

2
. Let the mechanism Mα be set up in α. Let write the translation matrix from α to
β with γ angle of rotation throughout the intersection line of the planes be written.
Then we obtain the following result as thus: The end matrix of the mechanism at
α is 0A3 and the end matrix of mechanism at β is R y(γ) 0A3.

This matrix will yield to the similar last effector components resembling 0B3

obtained through being designed at β plane by Mβ . Thus, a planar mechanism can
be transmitted in the way moving synchronically towards all planes intersecting
with the mechanism’s plane. In this study, it has been shown that the mechanism
of Mα designed at α plane can be converted into Mβ mechanism through the
rotation of R y(γ) without being redesigned at β . The mechanic systems obtained
on a synchronic basis constitute the foundation of the mechanism called as finger
motion.

Consequently, when α and β planes are intersecting and non-coincident, the
mechanism at α can be translated to β with R y(γ) and to λ with R y(ξ) as
synchronized. Thus, 3 × 3R space mechanism moving synchronically can be
obtained. The result has been proved in Theorem 1.
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