
Journal of Informatics and Mathematical Sciences
Vol. 10, Nos. 1 & 2, pp. 23–32, 2018
ISSN 0975-5748 (online); 0974-875X (print)
Published by RGN Publications http://www.rgnpublications.com

http://dx.doi.org/10.26713/jims.v10i1-2.685

Research Article

MATLAB Programming to Implement Quantum
Walk Algorithm for Presenting Probability
Distributions of Quantum Walks
Lila Yuwana*, Agus Purwanto and Endarko

Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
*Corresponding author: lila@physics.its.ac.id

Abstract. There are numerous ideas that have been provided by quantum walks for new quantum
algorithms. In this article, we surveyed the discrete quantum walk algorithm to present probability
distributions. Moreover, we transformed the algorithm into MATLAB programming. Finally, the
programming can be utilised to compare coin flip transformations that generate probability
distributions as proposed in several previous articles and also to identify a unitarity of a coin flip
transformation.

Keywords. Quantum Walks; Probability distributions; Coin flip transformation

MSC. 81P16; 81P45; 81P68

Received: September 19, 2017 Accepted: November 23, 2017

Copyright © 2018 Lila Yuwana, Agus Purwanto and Endarko. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

1. Introduction
An efficiency is the key to sustain quantum information research. The consequence of that is
from a few decades, researchers have been pursuing cutting-edge methods in order to solve
hard problems.

One of interesting quantum algorithms is quantum walks algorithm. Quantum walks were
coined by Aharonov in 1993 as quantum random walk that was utilized in a quantum-optics
application [1]. In 2003, Kempe [6] revealed that quantum walks have essential role in quantum

http://dx.doi.org/10.26713/jims.v10i1-2.685

24 MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al.

computation, hence will be deployed to provision breakthrough and fast algorithms. Therefore,
those algorithms could be run on a quantum computer. This article also showed valuable
information of quantum walks introduction, the contrast differences to classical walks, and
developments of quantum walks in quantum information science. Inspired by tremendous
achievements of random walks and Markov chain methods (quantum walk’s counterpart in
classical walks) in the development of classical algorithms [8], Ambainis et al. presented
quantum walks on interesting graphs by plotting approximately probability distributions after
deployed Fourier analysis of Hadamard walk numerically [2]. Excitingly, a main role of quantum
computation, that are able to carry out problems faster than classical computer, was proved
by Childs et al. [5]. They have successfully solved a hard problem exponentially faster on a
quantum computer than on a classical computer. Furthermore, research in quantum walksare
still continue, e.g. the article delivered by Dheeraj et al. that presented alternative approach by
defining two different ways: discrete-time and continuous-time quantum walks (DTQWs and
CTQWs) [9]. The other important work was delivered by Ambainis [3] who explained about
algorithmic application to plot probability distributions of quantum walk. More detail about the
algorithmic application will be shown in the next section. Recently, Montero offered versatile
utility to construct both quantum and random walks in 2017 using mechanical quantum
approximation [7]. However, methods of Ambainis to obtain probability distributions [3] is fully
expected to be converted into progammable algorithm to achieve probability distributions as
well as analytical results. This article aimed to generate MATLAB programming based on the
quantum walks algorithmic application. Furthermore, the coin flip operator is changeable, as a
result, one can compare probability distributions of previous articles that using various coin flip
operators. In addition, the programming comprises both numerical and visual results.

The following sections of this article are arranged as follows. In Section 2, we deliver
rudimentary calculations on quantum walks that embrace iterations in each step. Section 3
exhibits the algorithm of calculations of quantum walks, then the algorithm is converted into
MATLAB programming to solve quantum walks problems rapidly. Finally, the conclusion of
capability of MATLAB programming proposed in this article and the comparison with the
previous method is explained obviously in Section 4.

2. Discrete Quantum Walks Calculation
Suppose a quantum process which has initial basis state |n〉, n ∈ Z. A unitary transformation
leads to [3]

|n〉→ a |n−1〉+b |n〉+ c|n+1〉 . (1)

Equation (1) indicates the position moves left, moves right, or holds from the current state with
probability |a|2, |c|2 or |b|2, respectively.

By utilizing a “coin” state, the position can be evaluated the position after m steps. There
are two operations applied at each step:

(1) A coin flip transformation or C

C |n,0〉 = a |n,0〉+b |n,1〉 , C |n,1〉 = c |n,0〉+d |n,1〉 . (2)

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al. 25

(2) Shift or S

S |n,0〉 = |n−1,0〉 , S |n,1〉 = |n+1,1〉 . (3)

Operator C is a unitary matrix. Consider if C is Hadamard operator(
a b
c d

)
=

(1p
2

1p
2

1p
2

− 1p
2

)
. (4)

Substituting eq. (4) to (2) yields

C |n,0〉 = 1p
2
|n,0〉+ 1p

2
|n,1〉 , C |n,1〉 = 1p

2
|n,0〉− 1p

2
|n,1〉 . (5)

Eq. (5) shows probabilities of each state after Hadamard transformation is 1
2 . It is easy to

understand classically that a state after applying C operation has the same probability to move
left or right. Surprisingly, the results are not similar as our prediction. The derivations below
are first four steps of quantum walks after performing two operation, S and C, at initial state
|0,0〉 (eq. (3) and (5) are involved in this calculation).

1st step: SC|0,0〉 = S
[

1p
2
|0,0〉+ 1p

2
|0,1〉

]
= 1p

2
|−1,0〉+ 1p

2
|1,1〉 .

2nd step: SC
[

1p
2
|−1,0〉+ 1p

2
|1,1〉

]
= 1

2
|−2,0〉+ 1

2
|0,1〉+ 1

2
|0,0〉− 1

2
|2,1〉 .

3rd step: SC
[

1
2
|−2,0〉+ 1

2
|0,1〉+ 1

2
|0,0〉− 1

2
|2,1〉

]

=


1

2
p

2
|−3,0〉+ 1

2
p

2
|−1,1〉+ 1

2
p

2
|−1,0〉− 1

2
p

2
|1,1〉

+ 1

2
p

2
|−1,0〉+ 1

2
p

2
|1,1〉− 1

2
p

2
|1,0〉+ 1

2
p

2
|3,1〉


︸ ︷︷ ︸

23=8

4th step: SC
[1

2
p

2
|−3,0〉+ 1

2
p

2
|−1,1〉+ 1

2
p

2
|−1,0〉− 1

2
p

2
|1,1〉

+ 1

2
p

2
|−1,0〉+ 1

2
p

2
|1,1〉− 1

2
p

2
|1,0〉+ 1

2
p

2
|3,1〉

]
= 1

4
|−4,0〉+ · · ·+−1

4
|4,1〉︸ ︷︷ ︸

24=16

= 1
4
|−4,0〉+3

4
|−2,0〉+1

4
|−2,1〉−1

4
|0,0〉+1

4
|0,1〉+1

4
|2,0〉−1

4
|2,1〉−1

4
|4,1〉︸ ︷︷ ︸

8

. (6)

By performing similar calculation, we can obtain next steps. The first two steps show that the
amplitudes of states are the same. Meanwhile, at third step and after, the amplitudes are not
uniform. This is because there is quantum interference among the same states. In other words,
the amplitudes of the same states can be doubled or vanish. That is why, e.g. at fourth step, the
number of terms can be reduced from 16 terms to 8 terms. The probabilities of each state can be

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

26 MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al.

easily examined by calculating |ai|2, where ai is the amplitude of each state. Finally, the terms
can be attenuated again by grouping the states for the same position (see part (c) in the next
section).

3. Developing MATLAB Programming
Considering involving immense states when we examine quantum walk after next steps, it will
be helpful to employ numerical programming to support calculations. Firstly, we show the main
stages of the entire programming (Figure 1).

Writting reduced (arranged) states

Calculating new amplitude for each group

c become k(n,2n)

Number of steps

Presenting the outcomes

Writting reduced (arranged) states Showing the total probability Plotting probabilities of each positions

Grouping same states

Calculating new amplitude for each group Rearrange the states

Converting state c|n,x> into matrix

n become z(n,2n) x become y(n,22)

Collecting input data

Initial state and position Selecting unitary matrix

Figure 1. Diagram block of the entire programming

Secondly, we reveal the MATLAB programming based on each stage in Figure 1 and also
screen shots of compiled programming.

(a) Collecting input data

disp('==');

disp(' SC - Transformation ');

disp('==');

n=input('Number of Steps: ');

s1=input('Initial State (0 or 1) :');

p1=input('Initial Position (x) :');

a=1/sqrt(2); b=1/sqrt(2);

c=1/sqrt(2); d=-1/sqrt(2);

fprintf('\nInitial State and Position: |%1.0f,%1.0f>\n',p1,s1);

fprintf('\n');

Output on the screen:

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al. 27

(b) Converting state c|n, x〉 into matrix and grouping for the same states

for r=1:n

 for s=1:2^r

 if(mod(s,2)==0)

 y(r,s)=1;

 elsey(r,s)=0;

 end

 if((r==1))

 if(s1==0)

 if(s==1)

 k(r,s)=a;

 elsek(r,s)=b;end

 elseif(s==1)

 k(r,s)=c;

elsek(r,s)=d;endend

 elset=t+1;

if(t==1)

 k(r,s)=a*k(r-1,round(s/2));

 else if(t==2)

 k(r,s)=b*k(r-1,round(s/2));

 else if(t==3)

 k(r,s)=c*k(r-1,round(s/2));

 else if(t==4)

 k(r,s)=d*k(r-1,round(s/2));

 endendendend

 if(t==4)

 t=0;endend

 if(r==1)

 if(y(r,s)==0)

 z(r,s)=p1-1;

 elsez(r,s)=p1+1;end

 elseif(y(r,s)==0)

 z(r,s)=z(r-1,round(s/2))-1;

 elsez(r,s)=z(r-1,round(s/2))+1;

 endendendend

[m, bin] = histc(z(n,:), unique(z(n,:)));

multiplez=find(m>1);

indexz=find(ismember(bin,multiplez));

[bz,nz]=size(indexz);

[bz,mz]=size(multiplez);

rz=2;nz;zz(n,1)=z(n,1);zz(n,2)=z(n,2^n);

yy(n,1)=y(n,1);yy(n,2)=y(n,2^n);

kk(n,1)=k(n,1);kk(n,2)=k(n,2^n);rz1=rz; kz=0;

for r=2:2^n-1

 rz1=rz1+1;zz(n,rz1)=z(n,r);

yy(n,rz1)=y(n,r);kk(n,rz1)=k(n,r);

end

rzz=rz; pk=0; qk=0;

for i=1:mz

 indexz1=find(ismember(bin,multiplez(i)));

 kkz(i)=z(n,indexz1(i));

end

for i=1:mz

 rzz=rzz+1;

 for j=(rz+1):2^n

 if(yy(n,j))==0

 if(zz(n,j))==kkz(i)

 pk=pk+kk(n,j);end

 else if(yy(n,j))==1

 if(zz(n,j))==kkz(i)

 qk=qk+kk(n,j);

 endendendend

 zz(n,rzz)=kkz(i);yy(n,rzz)=0;

 kk(n,rzz)=pk;zz(n,rzz+1)=kkz(i);

 yy(n,rzz+1)=1;kk(n,rzz+1)=qk;

 pk=0; qk=0;rzz=rzz+1;

end

fprintf('Output State: \n');

for s=1:rzz

 fprintf('%s |%1.0f,%1.0f> \n',num2str(kk(n,s)),zz(n,s),yy(n,s));

 k2(n,s)=(abs(kk(n,s)))^2;

 p=p+k2(n,s);

end

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

28 MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al.

Output on the screen:

These parts have a main role in the programming, because in this stage enormous number
of states can be reduced in much simple form. In this case, the desired number of step is 4,
hence the total states involved in calculations are 24 terms or 16 terms. After attempting
to group for the same states and recalculating each amplitude, 16 terms become 8 terms.

(c) Presenting the outcomes

fprintf('\nTotal Probability = %1.4f\n',p);

kkz=rz;nrzz=(rzz-2)/2+2;pzz(n,1)=zz(n,1);

pzz(n,nrzz)=zz(n,2);pk2(n,1)=abs(kk(n,1))^2;

pk2(n,nrzz)=abs(kk(n,2))^2;

for s=2:nrzz-1

 kkz=kkz+1;pzz(n,s)=zz(n,kkz);

 pk2(n,s)=abs(kk(n,kkz))^2+abs(kk(n,kkz+1))^2;

 kkz=kkz+1;end

fprintf('\nThe Probability at any position: \n');

fprintf('===================== \n');

fprintf('Position Probability\n');

fprintf('--------------------- \n');

for s=1:nrzz

 fprintf(' %1.0f %1.8f\n',pzz(n,s),pk2(n,s));end

plot(pzz(n,1:nrzz),pk2(n,1:nrzz))

Output on the screen:

Finally, the states can be reduced again to five (m steps +1) terms, because each position
involve both state 0 and 1. The next figure is obtained from the five even positions and
the probabilities is zero for odd position.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al. 29

 Figure 2. The probabilities of each states in any positions after 4 steps

In addition, if the total probability is not 1, it indicates that the selected matrix C is not
unitary, then choose other matrix which is really unitary. The probability of each states for four
steps generated by the programming has the same result as the previous manual calculation
(eq. (6)). Figure 2 represents the probabilities in each states and positions. The outcomes for 24
steps (n = 24) is depicted in Figure 3.

 Figure 3. The probabilities of each states in any positions after 24 steps

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

30 MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al.

This result is very exciting because the number of state reduction is very effective, from
220 terms or 16,777,216 terms become 25 terms. The result is also similar as Ambainis’s article
in 2008 [3] that has showed analytical calculation to result probability distributions using
Hadamard operator as a coin flip transformation. Moreover, there are several articles using
numerical approximation to produce similar graphics of probability distributions [6, 2, 4].
However, we prefer to utilise a programming based on analytical calculation for constructing
probability distributions of quantum walks. This is because the results both manual calculation
and the programming are the same.

On the other side, there are different results when other unitary operator used for coin flip
transformation. Nayak and Vishwanath [4], Kempe [6], and Ambainis [3] proposed unitary
operator

C′ =
 1p

2
ip
2

ip
2

1p
2

 (7)

to produce symmetrical probability distributions. Surprisingly, after we had modified our
programme to apply that operator, the probability distribution is still asymmetric as depicted in
Figure 4. Next, we calculated manually to reveal behaviour of implementation of operator C′ on
probability distribution in four steps.

Figure 4. The probabilities of each states in any positions after 24 steps using C′ as a coin flip operator

According to Figure (4), we can verify the result by calculating analytically by applying
method in eq. (4), and the result after four steps is

1
4
|−4,0〉− 3

4
|−2,0〉+ 1

4
i |−2,1〉− 1

4
|0,0〉− 1

4
i |0,1〉− 1

4
|2,0〉− 1

4
i |2,1〉+ 1

4
i |4,1〉 .

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al. 31

By calculating all of amplitude and combining state 0 and 1 for the same position, we have
probabilities for each positions (Table 1).

Table 1. Probabilities for each positions based on manual calculation for 4 steps

Position Probability

−4 1
16

−2 10
16

0 2
16

2 2
16

4 1
16

It is obvious that probabilities in Table 1 presents asymmetric distribution that is different
as previous articles that have been proposed [6, 3, 4]. Finally, we firmly believe that the
programming proposed in this article is reliable to be utilised because of the equivalence of
manual calculations and programming results.

4. Conclusion
In this article we have examine quantum walks obtained by applying Hadamard transformation
and shift of position and convert the algorithmic application into MATLAB programming.
The results provide numerical values and a graph represents probabilities in each states and
positions. In addition, the programming also can identify whether a selected matrix is unitary or
not. However, there are different results of probability distributions from previous articles when
we use eq. (7) as a coin flip operator instead of Hadamard operator. The strong good point is
that the programming is able to simplify significantly enormous number of terms of calculation.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] Y. Aharonov, L. Davidovich and N. Zagury, Quantum random walks, Physical Review A 48 (1993),

1687 – 1690.

[2] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath and J. Watrous, One-dimensional quantum walks,
in The Thirty-Third Annual ACM Symposium on Theory of Computing (STOC’01), New York (2001).

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

32 MATLAB Programming to Implement Quantum Walk Algorithm. . . : L. Yuwana et al.

[3] A. Ambainis, Quantum walks and their algorithmic applications, International Journal of Quantum
Information 10 (4) (2003), 507.

[4] N. Ashwin and V. Ashvin, Quantum Walk on the Line, Center for Discrete Mathematics & Theoretical
Computer Science, New York (2000).

[5] A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Guttman and D.A. Spielman, Exponential algorithmic
speedup by quantum walk, in Proceedings 35th ACM Symposium on Theory of Computing (STOC
2003), San Diego (2003).

[6] J. Kempe, Quantum random walks: An introductory overview, Contemporary Physics 44 (2003), 307
– 327.

[7] M. Montero, Quantum and random walks as universal generators of probability distributions,
Physical Review A 95 (2017), 062326; 062326-1.

[8] R. Motwani and P. Raghavan, Randomized Algorithms, 1st edition, Cambridge University Press
(1995), New York.

[9] M.N. Dheeraj and A.T. Brun, Continuous limit of discrete quantum walks, Physical Review A 91 (6)
(2015), 062304-1.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 23–32, 2018

	Introduction
	Discrete Quantum Walks Calculation
	Developing MATLAB Programming
	Conclusion
	References

