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Burak Şahiner1,*, Mustafa Kazaz1 and Hasan Hüseyin Uğurlu2
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1. Introduction
Recently, since robot end-effectors have a wide range of usage from surgical operations to
bomb disposal, accurate robot trajectory planning becomes an important research area of
robotics. Describing path of a robot end-effector, representing orientation and position, and
determining linear and angular differential properties are some important problems in this
area. Traditional methods such as (4×4) homogeneous transformation, Quaternions and Euler
angle representation in [3, 10, 11] are based on matrix representation that is required intense
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computation. Moreover, these methods have not been adequate for a smooth and differentiable
trajectory which robot end-effector follows. Ryuh and Pennock introduced a method based on
the curvature theory of a ruled surface generated by a line fixed in the end-effector [12, 13, 14].
They represented motion of a robot end-effector by using the ruled surface and an additional
parameter called spin angle. Thus, they found an efficient relationship between the kinematics
of a robot end-effector and the differential geometry of a ruled surface. Their papers were first
attempts to use the curvature theory which investigates the intrinsic geometric properties of
trajectories for robot trajectory planning.

The research area of motion of a robot end-effector is also interesting for the authors who
study in Lorentzian space. For example, Ekici et al. [5] study motion of a robot end-effector in
Lorentzian space by using the curvature theory of timelike ruled surface with timelike ruling.

On the other hand, by the aid of the E. Study mapping or transference principle which
can be stated as: “there exists one-to-one correspondence between the directed lines in line
space and dual unit vectors in dual space” [9, 16], a relationship can also be found between a
ruled surface in real space and a dual spherical curve in dual space. Using this correspondence,
several authors have applied dual quantities to their research concerning kinematics, analysis
and synthesis of spatial mechanisms and many other areas.

In this paper, we use the relationship between dual space and kinematics. In this way, we
study differential properties of motion of a robot end-effector by using the curvature theory of
dual spherical curves. First, we discuss three reference frames related to a robot end-effector
and a ruled surface generated by a line fixed in the end-effector in real space. From E. Study
mapping, a dual curve corresponds to the ruled surface. Then, the dual Darboux frame of the
dual curve is given briefly. Afterwards, we define a dual frame called dual tool frame on the
robot end-effector. By relating between dual Darboux frame and dual tool frame and by using
the dual instantaneous rotation vector of the dual tool frame, the translational and angular
differential properties of motion of a robot end-effector such as velocity and acceleration which
are important information in robot trajectory planning are determined.

The paper is organized as follows: In Section 2, we give some basic concepts about dual space.
In Section 3, we mention mathematical background of the motion of a robot end-effector in real
space. In Section 4, we propose a dual method to examine the motion of robot end-effector. In
Section 5, an example is given. Finally, the conclusions of this paper are presented in Section 6.

2. Preliminaries
In this section, dual space and its basic concepts will be given briefly.

A dual number, as introduced by W. Clifford, can be defined as an ordered pair ā = (a,a∗) of
real numbers, where a and a∗ are called real part and dual part of the dual number, respectively.
Dual numbers can also be expressed as ā = a+εa∗, where ε2 = 0 and ε= (0,1) is called dual unit
[17]. The set of all dual numbers is denoted by ID. Two inner operations and equality in ID are
defined as follows [1, 7]:

Addition: (a,a∗)+ (b,b∗)= (a+b,a∗+b∗),

Multiplication: (a,a∗)(b,b∗)= (ab,ab∗+a∗b),
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Equality: (a,a∗)= (b,b∗)⇔ a = b,a∗ = b∗.

The set ID with the above operations is a commutative ring, not a field. The function of a
dual number f (ā) can be expanded in a Maclaurin series as

f (ā)= f (a+εa∗)= f (a)+εa∗ f ′(a),

where f ′(a) is derivative of f (a) with respect to a [2].
A dual vector can also be defined as an ordered pair (a,a∗) of two real vectors and can be

expressed as ã = a+εa∗, where a,a∗ ∈ IR3 and ε2 = 0. The set of all dual vectors is a module
over the ring ID and is called dual space or ID-module, denoted by ID3 [15]. Let ã = a+εa∗ and
b̃ = b+εb∗ be two dual vectors in ID3. Then the dual inner product and the dual vector product
can be defined as

〈ã, b̃〉 = 〈a,b〉+ε(〈a,b∗〉+〈a∗,b〉)
and

ã× b̃ = a×b+ε(a×b∗+a∗×b),

respectively [17]. The norm of a dual vector ã can be given by [7, 17]

‖ã‖ = ‖a‖+ε〈a,a∗〉
‖a‖ , (a 6= 0).

A dual vector ã is called dual unit vector if and only if ‖ã‖ = 1. An oriented straight line in
three dimensional Euclidean space IR3 can be represented by a dual unit vector in the dual
space ID3 as

ã = a+εa∗ (〈a,a〉 = 1,〈a,a∗〉 = 0)

where a is a unit vector along the straight line, a∗ is the moment of a about the origin and
ε is the dual unit with the property ε2 = 0. The set of all directed straight lines in IR3 are in
one-to-one correspondence with the set of all points of dual unit sphere 〈ã, ã〉 = 1 in ID3 [9, 16].
This correspondence is known as E. Study mapping or transference principle.

A dual angle between two oriented lines in real space can be defined as θ̄ = θ+εθ∗, where θ
and θ∗ are the real angle and the shortest distance between these lines, respectively [1].

3. Mathematical Background of Motion of A Robot End-Effector
in Real Space

In this section, we mention three reference frames described by Ryuh and Pennock [13] in detail.
These frames are used in the study of motion of a robot end-effector in three dimensional real
space IR3. These frames are: a tool frame, a surface frame and a generator trihedron. We need
to emphasize that the generator trihedron has been defined as the Frenet frame of the directing
cone of a ruled surface by Karger and Novak [8] before the papers [11, 12, 13]. The goal of this
section is to better understand the geometrical meaning of the dual procedure to be used in
Section 4.

The tool frame consists of three orthonormal vectors which are the orientation vector O, the
approach vector A, and the normal vector N (see Figure 1). The origin of the tool frame is called
tool center point and denoted by TCP [12].
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Figure 1. A robot end-effector and its tool frame.

As a robot end-effector moves on a specified trajectory, a line fixed in the end-effector called
tool line which passes through TCP and whose direction vector is parallel to the orientation
vector O generates a ruled surface [12]. This ruled surface can be expressed as

X (t,v)=α(t)+vR(t),

where α(t) is the directrix of the ruled surface and is also the specified trajectory of the robot
end-effector, R(t) is a vector of constant magnitude called ruling parallel to the orientation vector
O, and t is the parameter of time. In order to simplify the formulations, we use a normalized
parameter s which is the arc-length parameter of the spherical image curve of R instead of the
time parameter t and it can be found as [8]

s(t)=
∫ t

0

∥∥∥∥dR
dt

∥∥∥∥dt.

During motion of the robot end-effector, the approach vector A may not be always
perpendicular to the ruled surface. There may be an angle between the approach vector A and
the surface normal vector which may be denoted by Sn (see Figure 2). This angle is called spin
angle and denoted by η [13].

The surface frame consists of three orthonormal vectors: the orientation vector O, the surface
normal vector Sn, and the surface binormal vector Sb [12]. The surface frame can be used to
describe the orientation of the tool frame relative to the ruled surface. The surface normal vector
Sn can be given as

Sn = Xv × Xs

‖Xv × Xs‖
∣∣∣∣
v=0

,

where Xv and Xs are derivatives of X with respect to v and s, respectively. The surface binormal
vector which is perpendicular to both the orientation vector and the surface normal vector, can
also be given as

Sb =O×Sn.
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Figure 2. The spin angle which is the angle between approach vector and the surface normal vector.

The line of striction of the ruled surface can be denoted by c such that 〈c′,R′〉 = 0 and it can
be given as c(s)=α(s)−µ(s)R(s), where µ= 〈α′,R′〉 [4]. The distance from the line of striction to
the directrix along the ruling is µR, where R denotes the magnitude of the ruling, i.e., R = ‖R‖.

 

Figure 3. Relations between three
reference frames as a robot end-effector
moves on a specified trajectory.

The generator trihedron (can also be known as
Frenet frame of directing cone of the ruled surface)
defined on the line of striction of the ruled surface
consists of three orthonormal vectors: the generator
vector e which is the same as the orientation vector O,
the central normal vector t, and the central tangent
vector g. These vectors can be given as, respectively,

e = R
R

, t = R′, g = e× t,

where the prime indicates differentiation with respect
to s [8].

The relation between the tool frame and the
generator trihedron can be obtained as [12]O

A
N

=
1 0 0

0 cosϕ sinϕ
0 −sinϕ cosϕ

e
t
g

 ,

where ϕ = η+σ, such that σ is the angle between
Sn and t. Figure 3 shows the relationships between
the tool frame, the surface frame and the generator
trihedron.
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4. Dual Method
From E. Study mapping (or transference principle), a dual curve lying fully on the dual unit
sphere corresponds to a ruled surface in real space. In this section, we examine the study of
motion of a robot end-effector by using the curvature theory of a dual curve corresponds to the
ruled surface generated by a line fixed in the robot end-effector. For this purpose, we first give
the dual Darboux frame of the corresponding dual curve which is well-known and used in the
dual curvature theory of dual curves. Then, we define a dual frame called dual tool frame on the
robot end-effector. Finally, we find the dual instantaneous rotation vector of the dual tool frame
in terms of the elements of dual Darboux frame. This dual vector can be considered as the dual
velocity vector of robot end-effector and it plays leading role to determine both translational
and angular differential properties of motion of a robot end-effector.

Let the ruled surface generated by a line fixed in the robot end-effector be given by the
equation

X (s,v)=α(s)+vR(s),

where α(s) is trajectory of the robot end-effector, R(s) is the ruling of the ruled surface which is
a vector of constant magnitude and s is the normalized parameter discussed in Section 3. Let a
dual curve which corresponds to the ruled surface be represented by ẽ(s)= e(s)+εe∗(s), where
e(s) is the generator vector of the ruled surface as defined in Section 3 and e∗ is the moment
vector of e about the origin which can be obtained as e∗(s)= c(s)× e(s), where c(s) is the line of
striction of the ruled surface [17]. From now on, we consider the case without e(s)= constant
which means the ruled surface is a cylinder and e∗(s) = 0 which means the ruled surface is
a cone.

The dual Darboux frame (or dual geodesic frame) of a dual curve which was described by
Veldkamp [17] in detail consists of three orthonormal dual unit vectors. The first dual unit
vector is the dual curve itself, i.e., ẽ(s). The dual arc-length of the dual curve ẽ can be given
by [17]

s̄ =
∫ s

0
‖ẽ′(u)‖du =

∫ s

0
(1+ε∆)du = s+ε

∫ s

0
∆du,

where ∆= 〈c′×e, t〉. The second dual unit vector is the dual tangent vector of the dual curve ẽ(s),
and it can be given by [17]

t̃ = dẽ
ds̄

= ẽ′

s̄′
= ẽ′

1+ε∆ = t+ε(c× t),

where t is the central normal vector of the ruled surface. The third dual unit vector can also be
given by [17]

g̃ = ẽ× t̃ = g+εc× g,

where g= e× t is the central tangent vector of the ruled surface. The derivation formulae of the
dual Darboux frame can be expressed in matrix form as

d
ds̄

 ẽ
t̃
g̃

=
 0 1 0
−1 0 γ̄

0 −γ̄ 0

 ẽ
t̃
g̃

 , (4.1)
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where γ̄ is called dual geodesic curvature [17].
Now, we define a dual frame called dual tool frame which will be used to determine

differential properties of motion of a robot end-effector by using relationships with dual Darboux
frame. The dual tool frame can be defined by three orthonormal dual unit vectors which
correspond to three oriented straight lines, the orientation line, the approach line and the
normal line, all pass through the tool center point of the robot end-effector, and their direction
vectors are the orientation vector O, the approach vector A and the normal vector N , respectively
(see Figure 4). These dual unit vectors can be denoted by Õ, Ã and Ñ , and may be called dual
orientation vector, dual approach vector and dual normal vector, respectively.

The dual tool frame and the dual Darboux frame have a common dual vector Õ (or ẽ) which
corresponds to the ruling of the ruled surface. Let ϕ̄=ϕ+εϕ∗ be a dual angle between the dual
unit vectors Ã and t̃, where ϕ is the real angle and ϕ∗ is the shortest distance between the
lines which correspond to the dual unit vectors Ã and t̃ (see Figure 5). Also from Section 3, we
know that ϕ is the real angle between the approach vector A and the central normal vector t,
and ϕ∗ is the shortest distance from the line of striction to the directrix, i.e., µR.

 

 

Figure 4. Dual tool frame of a robot end-effector.

 

 

 
Figure 5. The dual angle between the dual unit
vectors Ã and t̃.

Thus, the relations between the dual Darboux frame and dual tool frame can be given in
matrix form asÕ

Ã
Ñ

=
1 0 0

0 cos ϕ̄ sin ϕ̄
0 −sin ϕ̄ cos ϕ̄

 ẽ
t̃
g̃

 . (4.2)
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By differentiating equation (4.2) and substituting equation (4.1) into the result, we haveÕ′

Ã′

Ñ ′

=
 0 1 0
−cos ϕ̄ −δ̄sin ϕ̄ δ̄cos ϕ̄
sin ϕ̄ −δ̄cos ϕ̄ −δ̄sin ϕ̄

 ẽ
t̃
g̃

 ,

where δ̄= ϕ̄′+ γ̄ and the prime denotes derivation with respect to the dual arc-length parameter
s̄. By using equation (4.2), the derivation formulas of the dual tool frame can be obtained by
itself in matrix form asÕ′

Ã′

Ñ ′

=
 0 cos ϕ̄ −sin ϕ̄
−cos ϕ̄ 0 δ̄

sin ϕ̄ −δ̄ 0


Õ

Ã
Ñ

 .

The dual instantaneous rotation vector of the dual tool frame which plays an important role to
determine the differential properties of motion of a robot end-effector can be obtained as

w̃O = δ̄Õ+sin ϕ̄Ã+cos ϕ̄Ñ.

Note that, the following equalities hold for the dual vector w̃O ,

Õ′ = w̃O × Õ, Ã′ = w̃O × Ã, Ñ ′ = w̃O × Ñ,

where the prime indicates the differentiation with respect to the dual arc-length parameter s̄.
By using equation (4.2), the dual instantaneous rotation vector of the dual tool frame can be
expressed in terms of the dual Darboux frame as

w̃O = δ̄ẽ+ g̃. (4.3)

The dual vector w̃O = wO +εw∗
O plays the same role with dual Pfaff vector which we encounter

in dual spherical motion [6], so this dual vector can be considered as dual velocity vector of
the robot end-effector. The dual tool frame attached to the robot end-effector moves along
the unit direction w̃O

‖w̃O‖ with the dual angle ‖w̃O‖. This dual motion contains both rotational
and translational motion in real space. The real and dual parts of the dual instantaneous
rotation vector, wO and w∗

O , correspond to the instantaneous angular velocity vector and the
instantaneous translational velocity vector, respectively. By separating equation (4.3) into the
real and dual parts, these vectors can be obtained as

wO = δe+ g (4.4)

and

w∗
O = δe∗+δ∗e+ g∗ (4.5)

respectively. By differentiating equation (4.3) and using equation (4.1), the derivative of the
dual instantaneous rotation vector of the dual tool frame which may be called dual acceleration
vector can be obtained as

w̃′
O = δ̄′ ẽ+ ϕ̄′ t̃. (4.6)

By separating equation (4.6) into the real and dual parts, the instantaneous angular acceleration
vector and the instantaneous translational acceleration vector can be found as

w′
O = δ′e+ϕ′t (4.7)
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and

w∗′
O = δ′e∗+δ∗′e+ϕ′t∗+ϕ∗′t. (4.8)

The vectors given in (4.4), (4.5), (4.7) and (4.8) are obtained in terms of s which is the arc-length
parameter of spherical image curve of R. These vectors should be associated with t which is the
parameter of time to determine the time dependent differential properties of motion of a robot
end-effector. We can give the following corollaries concerning the translational and angular time
dependent differential properties of motion of a robot end-effector.

Corollary 4.1. Let a motion of a robot end-effector be represented by a ruled surface X (t,v)=
α(t)+vR(t) and a spin angle η, where α is the specified trajectory of the robot end-effector and
R is the ruling of the ruled surface parallel to the orientation vector O. Then the angular and
translational velocities of the robot end-effector can be given, respectively, as

vA = wO ṡ (4.9)

and

vT = w∗
O ṡ (4.10)

where wO and w∗
O are given by equations (4.4) and (4.5), respectively, and the dot indicates

differentiation with respect to time, i.e., ṡ = ds
dt .

Corollary 4.2. Let a motion of a robot end-effector be represented by a ruled surface X (t,v)=
α(t)+vR(t) and a spin angle η, where α is the specified trajectory of the robot end-effector and
R is the ruling of the ruled surface parallel to the orientation vector O. Then the angular and
translational accelerations of the robot end-effector can be given, respectively, as

aA = wO s̈+w′
O ṡ2 (4.11)

and

aT = w∗
O s̈+w∗′

O ṡ2 (4.12)

where w′
O and w∗′

O are given by equations (4.7) and (4.8), respectively.

If a robot end-effector moves on a specified trajectory such that it is always perpendicular to
the ruled surface, then the spin angle η is equal to zero. More general, the spin angle η may be
constant during the motion. For this case, we can give the following corollaries.

Corollary 4.3. Let a motion of a robot end-effector be represented by a ruled surface X (t,v)=
α(t)+vR(t) and a spin angle η, where α is the specified trajectory of the robot end-effector and
R is the ruling of the ruled surface parallel to the orientation vector O. If the spin angle η is
constant, then the angular and translational velocities of the robot end-effector can be expressed
as

vA = ((σ′+γ)e+ g)ṡ

and

vT = ((σ′+γ)e∗+δ∗e+ g∗)ṡ

respectively.
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Corollary 4.4. Let a motion of a robot end-effector be represented by a ruled surface X (t,v)=
α(t)+vR(t) and a spin angle η, where α is the specified trajectory of the robot end-effector and
R is the ruling of the ruled surface parallel to the orientation vector O. If the spin angle η

is constant, then the angular and translational accelerations of the robot end-effector can be
expressed as

aA = ((σ′+γ)e+ g)s̈+((σ′′+γ′)e+ϕ′t)ṡ2

and

aT = ((σ′+γ)e∗+δ∗e+ g∗)s̈+((σ′′+γ′)e∗+δ∗′e+σ′t∗+ϕ∗′t)ṡ2

respectively.

A specified trajectory which robot end-effector follows can be the line of striction of the ruled
surface, in other words, the directrix of the ruled surface can also be the line of the striction of
the ruled surface. Now, we can give the following corollaries for this case.

Corollary 4.5. Let a motion of a robot end-effector be represented by a ruled surface X (t,v)=
α(t)+vR(t) and a spin angle η, where α is the specified trajectory of the robot end-effector and R
is the ruling of the ruled surface parallel to the orientation vector O. If the specified trajectory is
also the line of striction of the ruled surface on which robot end-effector moves, then the angular
and translational velocities of the robot end-effector can be expressed as

vA = ((η′+γ)e+ g)ṡ

and

vT = ((η′+γ)e∗+γ∗e+ g∗)ṡ

respectively.

Corollary 4.6. Let a motion of a robot end-effector be represented by a ruled surface X (t,v)=
α(t)+vR(t) and a spin angle η, where α is the specified trajectory of the robot end-effector and R
is the ruling of the ruled surface parallel to the orientation vector O. If the specified trajectory is
also the line of striction of the ruled surface on which robot end-effector moves, then the angular
and translational accelerations of the robot end-effector can be expressed as

aA = ((η′+γ)e+ g)s̈+((η′′+γ′)e+η′t)ṡ2

and

aT = ((η′+γ)e∗+γ∗e+ g∗)s̈+((η′′+γ′)e∗+γ∗′e+η′t∗)ṡ2

respectively.

5. Example
Let a motion of a robot end-effector be represented by a hyperbolic paraboloid given by the
equation X (t,v)= (t,v, tv) and a spin angle η (see Figure 6), where t is the parameter of time
and v is an arbitrary parameter. The directrix and the ruling of the hyperbolic paraboloid are
α(t)= (t,0,0) and R(t)= (0,1, t), respectively. Since µ= 〈α′,R′〉 = 0, it is seen that the directrix
and the line of striction are the same curve, i.e., c =α.
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Figure 6. A robot end-effector which moves on the surface of a hyperbolic paraboloid.

The hyperbolic paraboloid corresponds to a dual curve which can be expressed as

ẽ(s)= 1√
1+ tan2 s

[(0,1,tan s)+ε(0,−tan2 s,tan s)],

where s is the arc-length parameter of the spherical image curve of R. The first element of the
dual Darboux frame is the dual curve ẽ(s) itself. The second and third elements of the dual
Darboux frame can be found as

t̃(s)= 1√
1+ tan2 s

[(0,−tan s,1)+ε(0,−tan s,−tan2 s)]

and

g̃(s)= (1,0,0),

respectively. By using equation (4.1), the dual geodesic curvature of the hyperbolic paraboloid
can be found as γ̄= 0. Let ϕ̄=ϕ+εϕ∗ be a dual angle between the dual unit vectors Ã and t̃,
where ϕ and ϕ∗ are the real angle and the shortest distance between the lines correspond to the
dual vectors Ã and t̃, respectively. Since the directrix is also the line of striction, the distance
between these curves equals to zero, i.e., ϕ∗ = 0, and the normal vector Sn and central normal
vector t are the same vectors, i.e., σ= 0. Thus, we have ϕ̄= η. The dual instantaneous rotation
vector of the dual tool frame can be found as

w̃O = wO +εw∗
O =

[
η′√

1+ tan2 s
(0,1,tan s)+ (1,0,0)

]
+ε η′√

1+ tan2 s
(0,−tan2 s,tan s).
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The angular and translational velocities of the robot end-effector can be obtained by
substituting wO and w∗

O into equations (4.9) and (4.10), respectively. By differentiating the dual
instantaneous rotation vector, we get

w̃′
O =w′

O +εw∗′
O

= 1√
1+ tan2 s

[
η′′(0,1,tan s)+η′(0,−tan s,1)

]
+ε 1√

1+ tan2 s

[
η′′(0,−tan2 s,tan s)+η′(0,−tan s,−tan2 s)

]
.

The angular and translational accelerations of the robot end-effector can be obtained by
substituting w′

O and w∗′
O into equations (4.11) and (4.12), respectively.

6. Conclusions
In this paper, a dual method based on the curvature theory of a dual unit spherical curve
which corresponds to a ruled surface generated by a line fixed in the robot end-effector is
proposed. By using this dual method, translational and angular differential properties, such
as velocity and acceleration, of motion of a robot end-effector which are important information
in robot trajectory planning are determined. The dual curvature theory used in this paper is
much simpler in expression than the curvature theory in real space and it reduces parameters
in formulations. It is believed that this method may reduce computation time in computer
programming and contribute to the research area of robotics.
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