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1. Introduction
Equivalence of error-correcting codes under Hamming distance preserving transformations,
called isometries, is an important problem studied in combinatorics. For some of the earlier
results about code isometries, see, for example, [5] and [11]; for more recent references see, for
example, [1] and [8]. The usual definitions of isometric error-correcting codes require existence
of appropriately defined isometries that transform a code to another; however they do not
provide a method for finding such isometries. In this paper, some new necessary and sufficient
conditions for equivalence are presented which give a way to identify a proper isometry that

http://dx.doi.org/10.26713/jims.v10i1-2.677


2 On Isometric Error-Correcting Codes over Finite Fields of Prime Order: T.I. Katsaounis

transforms a code to another, if it exists. Error-correcting codes are used in communication
systems when the objective is to transmit and recover signals (codewords) as accurately as
possible (see, for example, [14]). This paper focuses on error-correcting codes over a finite field
of prime order. The number of transmitted bits (coordinates in codewords) that are corrupted
(errors) which can be corrected (or detected) by a code is determined by its minimum Hamming
distance d (the Hamming distance between two codewords is the number of coordinates where
two codewords differ). If d ≥ 2e+1, then up to e errors can be corrected (and up to d−1 errors
can be detected). Error-correcting codes obtained from each other via a Hamming distance
preserving transformation have the same error-correction (detection) capability and, as such,
they are considered equivalent.

This paper deals with permutational and monomial equivalence of linear error correcting
codes, and equivalence of general error correcting codes (over a field of prime order). There
are several known results about permutational and monomial equivalence of linear error-
correcting codes. A comprehensive review of such results is beyond the scope of this paper.
The primary goal of this paper is investigation of necessary and sufficient conditions for
equivalence of general error correcting codes. First, some related results about permutational
and monomial equivalence of linear codes are presented in order to demonstrate the succession
of key concepts that lead to the results about general codes. Permutational equivalence is
applicable when the order in which coordinates (bits) are transmitted is irrelevant; for example,
when a channel is “memoryless” (i.e. the probability of an error is conditionally independent of
previous transmissions and errors). Obviously, in such cases, a permutation of coordinates does
not affect the quality of a code. As can be shown, a permutation of coordinates is an isometry
that preserves linearity. Specifically, linear codes obtained from each other via a permutation of
coordinates are called permutationally isometric or permutationally equivalent (see, for example,
[1] and [8] for details). Monomial equivalence becomes applicable when reordering of the symbols
in coordinates is irrelevant also; for example, when a channel is “symmetric” (i.e. the probability
that a transmitted symbol is corrupted is the same for any of the symbols in a coordinate). In
such cases, a reordering of the symbols in any of the coordinates does not affect the quality
of a code. In general, any codes obtained from each other via a permutation of coordinates in
codewords combined with a permutation of symbols in one or more coordinates (an isometry)
are called equivalent. In the case of linear codes though, we need to consider permutations of
the non-zero symbols in Fq in order to preserve linearity. In particular, linear codes obtained
from each other via a permutation of coordinates in codewords combined with a permutation
of non-zero symbols in one or more coordinates are called monomially equivalent (or linearly
equivalent); see, for example, [1], [3], [8] and [10].

Section 2 states some basic definitions and preliminary results used throughout this paper
(for more details see, for example, [7] and [12]). Section 3 gives necessary and sufficient
conditions for permutational equivalence of linear error-correcting codes, using the invariance
property of weight vector of a code (Lemma 3.1 and Theorem 3.1). Section 4 presents necessary
and sufficient conditions for monomial equivalence of linear error-correcting codes, based on the
concept of distance matrix of a code (Theorems 4.1 and 4.2). Section 5 provides necessary and
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sufficient conditions for equivalence of nonlinear error-correcting codes by extending the results
of Section 4 (Theorems 5.1 and 5.2). Finally, Section 6 gives a discussion of the results and the
conclusions.

2. Preliminaries
Let Fq = {0,1, · · · , q−1} be the finite field of order q, where q is a prime and consider the finite
vector space of all n-tuples u = (u1,u2, · · ·un) over Fq denoted by V n. A (n,m,d) code (with
length n, size m codewords, and minimum distance d) is a nonempty subset C of V n. An n-tuple
u in V n is called codeword and the values ui , i = 1, · · · ,n ∈ Fq are called coordinates. A code is
called binary if q = 2, ternary if q = 3, quarternary if q = 4, and q-ary if q > 4. The finite vector
space V n equipped with the Hamming distance metric is called the Hamming metric space.
Two codes over the Hamming metric space are isometric if there exists a bijective mapping
f : C ∈ (V n,d) → C′ ∈ (V n,d) which preserves the Hamming distances between codewords, i.e.
d(u,v) = d( f (u), f (v)), for all u,v ∈ (V n) (see, for example, [8, p. 36]). If u,v,w are codewords
in the Hamming metric space, d(u,v) is the Hamming distance between codewords u,v, and
α ∈ Fq − {0}, then d(u,v) = d(u + w,v+ w) and d(u,v) = d(αu,αv) hold. As seen from these
fundamental properties, Hamming distance is a natural distance metric when dealing with
isometric codes. Note that, the Hamming distance of a codeword from the zero codeword is
the Hamming weight of the codeword. We use the term distance (weight) to refer to Hamming
distance (weight).

A linear code is a set of vectors in V n over Fq that forms a k-dimensional subspace of
V n-closed under addition and scalar multiplication modulo q (in Fq). A nonlinear code is
a set of vectors in V n over Fq that is not a subspace of V n. In this paper, (without loss of
generality) an (n,m,d) code C is represented by an m×n matrix C = (ci j), with elements in
Fq such that its m rows are the codewords. Note that, a reordering of codewords in C is not
important (it does not affect the quality of the code); nevertheless, it corresponds to a row
permutation in C, and can be expressed via a row permutation matrix. In general, a code is
characterized by its distance distribution, consisting of the frequencies of distances between the
codewords. A linear code though is usually characterized by its weight distribution, consisting
of the frequencies of weights of the codewords (which coincides with its distance distribution).
However, equality of distance distributions is not sufficient for equivalence of two general codes.
Similarly, equality of weight distributions is not sufficient for (permutational or monomial)
equivalence of linear codes (see, for example, [8, p. 36]). In our setting, the concepts of the
Hamming distance matrix of a (linear or nonlinear) code and the weight vector of a (linear)
code are useful in establishing sufficiency. The weight vector w(C) of a (n,m,d) linear code C is
defined as the (m×1) vector with elements the weights of the codewords (where, without loss
of generality, the order of the weights is the same as the order of the codewords in matrix C).
Also, the Hamming distance matrix H(C) of a (n,m,d) code C is defined as the (m×m) matrix
with elements H[i, j]= d(ui,u j), where d(ui,u j) is the distance between codewords ui and u j ,
i, j ∈ {1, · · · ,m} (where, without loss of generality, the order of the distances between pairs of
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codewords follows the order of the codewords in matrix C; e.g. d(u1,u2) is the distance between
the first and second codewords (rows) in C etc).

A linear C(n,m,d) code can be represented via a (k×n) generator matrix G (where k ≤ m),
whose rows form a set of k linearly independent codewords. A generator matrix (essentially
a basis of the corresponding subspace) is not unique, but as is known, the set of all (k× n)
generator matrices can be obtained via left multiplication from an arbitrary generator matrix
by all invertible k× k-matrices A ∈ GLk(q), where GLk(q) is the group of all regular k× k
matrices (square matrices with inverse) over Fq. A related code is the dual code C⊥, defined
as the n− k-dimensional linear code C⊥ = {h ∈ Fn

q | h ·u = 0, for all u ∈ C}, where h ·u denotes
the usual dot product of two vectors. Note that the dual of C is a linear code even when C is
a nonlinear code, and, in general, C ⊆ (C⊥)⊥. If C is a linear code then C = (C⊥)⊥. As a result,
another useful representation of a linear code is via a (n−k×n) generator matrix of the dual
(called parity check matrix). Finally, the projection of the m×n matrix C (which corresponds to
code C(n,m,d)) is defined to be the m× t submatrix of C consisting of columns p1, · · · , pt of C,
denoted here by C[p1, · · · , pt].

3. Permutational Equivalence of Linear Codes
Recall that, permutationally equivalent linear codes are obtained from each other via a
permutation of coordinates. Permutational equivalence is a natural notion of equivalence
for linear codes, since a permutation of coordinates does not affect linearity. Note that, generator
matrices that yield permutationally equivalent linear codes are not necessarily permutationally
equivalent. As an example, the (3×6) generator matrices G = [110000,001100,000011] and
G′ = [111111,011011,001001] (over F2) generate permutationally equivalent linear codes, but
they are not permutationally equivalent. In the following, consider two (n,m,d) linear codes
represented by (m×n) matrices C and C′, respectively. We have the following definition.

Definition 3.1. Two linear codes C and C′ with m codewords of length n are permutationally
equivalent if there exists a (m×m) permutation matrix R and a (n×n) permutation matrix P
such that C′ =R C P.

A permutation of p (≤ n) coordinates (represented by p×p permutation matrix P) is a weight
preserving isometry, since it fixes the element 0 in Fq (an isometry is weight preserving if and
only if it fixes 0 (∈ Fq); see, for example, [8, p. 69]). As a result, permutationally equivalent linear
codes have the same weight distribution (a necessary condition for permutational equivalence).
However, this is not a sufficient condition for permutational equivalence, as seen from the fact
that linear codes with the same weight distribution might not be permutationally equivalent
(see, for example, [8, p. 36]). In addition, permutationally equivalent linear codes have the same
weight vector (also a necessary condition). Obtaining a sufficient condition for permutational
equivalence using the invariance property of weights is not trivial. In Lemma 3.1, a necessary
and sufficient condition for permutational equivalence is derived by considering weight vectors
of projections.
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Lemma 3.1. Two linear codes C and C′ with m codewords of length n are permutationally
equivalent if and only if there exists a (m×m) permutation matrix R such that for t = 1, · · · ,n
the following holds:

vw(C′[s(t)])=R w(C[t]), (3.1)

for any (m×1) projection C[t] of C and for a permutation (s(1), · · · , s(n)) of (1, · · · ,n); w(C[p]) is
the weight vector of the projection consisting of coordinate p of C.

Proof. Necessity: If codes C and C′ are permutationally equivalent, then (by Definition 3.1)
there exists a permutation matrix R which maps C to C′. The same permutation matrix also
maps the weight vector of C to the weight vector of C′. Therefore,

w(C′)=R w(C) (3.2)

must hold. The weight vector of a code C can obtained as the sum of the weight vectors of
projections C[t], t = 1, · · · ,n) of C, that is,

w(C)=
n∑

t=1
w(C[t]). (3.3)

By equations (3.2) and (3.3) the following holds:

w(C′)=R

(
n∑

t=1
w(C[t])

)
=

n∑
t=1

(R w(C[t]))=
n∑

t=1
w(C′[s(t)]), (3.4)

for some permutation of coordinates (s(1), · · · , s(n)) of (1, · · · ,n). Thus, Condition (3.1) holds.

Sufficiency: Suppose that Condition (3.1) holds. By taking the sum over all t = 1, · · · ,n, we have:
n∑

t=1
w(C′[s(t)])=

n∑
t=1

(R w(C[t]))=R

(
n∑

i=1
w(C[t])

)
. (3.5)

By equation (3.3) and the left and right hand parts of equation (3.5) we obtain:

w(C′)=R w(C).

Thus, permutation matrix R maps C to C′, up to a permutation of coordinates ((s(1), · · · , s(n))
of (1, · · · ,n)), which can be found by inspection. Thus, the two codes are permutationally
equivalent.

Theorem 3.1 below is a generalization of Lemma 3.1, and provides an alternative necessary
and sufficient condition for permutational equivalence based on projections with (fixed) length t,
where 1< t < n−1.

Theorem 3.1. Two linear codes C and C′ are permutationally equivalent if and only if there
exists a permutation matrix R such that, for a given t (1≤ t ≤ n−1) the following holds:

w(C′[s( j1), · · · , s( jt)])=R w(C[ j1, · · · , jt]), (3.6)

for any m× t projection C[ j1, · · · , jt] of C, and for a permutation (s(1), · · · s(n)) of coordinates
(1 · · ·n), where w(C[p1, · · · , pt]) is the weight vector of m× t projection C[p1, · · · , pt] of C (based
on coordinates {p1, · · · , pt} from {1, · · · ,n}).
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Proof. Necessity: Follows from equation (3.3) and the necessary part of Lemma 3.1.

Sufficiency (by contradiction): Assume that Condition (3.6) holds but the codes are not
permutationally equivalent. Since the codes are not permutationally equivalent by the necessary
part of Lemma 3.1 there must exist (at least one) m×1 projection of C′ for which Condition
(3.1) does not hold. Consider an m× t projection of C′ which includes such m×1 projection(s).
By applying equation (3.3) it can be shown that Condition (3.6) cannot hold for such m× t
projection. But this contradicts our assumption. Therefore, Condition (3.1) must hold for all
m×1 projections, and the result follows from the sufficiency part of Lemma 3.1.

4. Monomial Equivalence of Linear Codes
Another natural notion of equivalence for linear codes is monomial equivalence. The term
“monomial” comes from the fact that a permutation of coordinates combined with permutations
of the non-zero symbols in one or more coordinates (see Section 1) is a monomial transformation.
A useful aspect of a monomial transformation is that it can be expressed via a monomial
matrix, that is, a matrix which has exactly one non-zero element of Fq in each row and column.
Note that, a monomial transformation is invertible, and composites and inverses of monomial
transformations are also monomial transformations (see, for example, [15]). In this case, two
linear codes (say C and C′), are monomially equivalent if and only if their generator matrices
(say G and G′, respectively) are also monomially equivalent (see, for example, [2] and [11]). In
fact, the definition and theorems below apply in the same way to generator matrices (G and G′)
without any modifications. We have the following definition.

Definition 4.1. Two linear codes C and C′ are monomially equivalent if there exists a
permutation R, a diagonal matrix L with diagonal elements non-zero elements of Fq and
a permutation P, such that C′ =R C A, where A=L P is a monomial matrix.

Since a monomial transformation is a distance preserving transformation (see, for example,
[8]), monomially equivalent linear codes have the same weight (distance) distribution (a
necessary condition for monomial equivalence). For the same reason, monomially equivalent
linear codes have the same weight vector (also a necessary condition). In this case though, we
cannot establish sufficiency by considering weight vectors of projections as before. Nevertheless,
we can obtain a necessary and sufficient condition for monomial equivalence by considering
distance matrices of projections, as shown in Theorem 4.1.

Theorem 4.1. Two linear codes C and C′ are monomially equivalent if and only if there exists a
permutation R and a permutation (s(1), · · · , s(n)) of (1, · · · ,n) such that, for each t = 1, · · · ,n, the
following holds:

H(C′[st])=R (H(C[t]) RT , (4.1)

for any projection C[t] of C, where H(C[p]) is the distance matrix of the projection consisting of
coordinate p of C, and RT denotes the transpose of R.
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Proof. Necessity: Assume that C and C′ are monomially equivalent. By definition, there exists
a permutation R that transforms C to C′, which also satisfies:

H(C′)=R H(C) RT . (4.2)

Also, the distance matrix of a code C can obtained as the sum of the distance matrices of its
projections C[t], t = 1, · · · ,n, as follows:

H(C)=
n∑

t=1
H(C[t]). (4.3)

By equations (4.2) and (4.3), we have:

H(C′)=R

(
n∑

t=1
H(C[t])

)
RT =

n∑
t=1

(
R H(C[t]) RT

)
=

n∑
t=1

H(C′[s(t)]). (4.4)

From the last two terms in equation (4.4), Condition (4.1) holds for a permutation (s(1), · · · , s(n))
of (1, · · · ,n).

Sufficiency: Suppose that Condition (4.1) holds. By taking the sum over all t = 1, · · · ,n, we obtain
the following:

n∑
t=1

H(C′[s(t)])=
n∑

t=1

(
R H(C[t]) RT

)
=R

(
n∑

i=1
H(C[t])

)
RT . (4.5)

By equation (4.3) and the left-hand and right-hand parts of equation (4.5), we can write:

H(C′)=R H(C) RT .

Therefore, R along with permutation (s(1), · · · , s(n)) of (1, · · · ,n) transforms C to C′, up to a
permutation of non-zero symbols in one or more coordinates. The last permutation exist since the
weights of codewords remain the same under Condition (4.1) and can be found by inspection.

Theorem 4.2 below is a generalization of Theorem 4.1, and provides an alternative necessary
and sufficient condition for monomial equivalence of two linear codes based on distance matrices
of projections with (fixed) length t (1< t < n−1).

Theorem 4.2. Two linear codes C and C′ are monomially equivalent if and only if there exists
a permutation R and a permutation (s(1), · · · , s(n)) of (1 · · · ,n) such that, for a given (fixed) t,
1≤ t ≤ n−1, the following condition holds:

H(C′[s( j1), · · · , s( jt)])=R H(C[ j1, · · · , jt]) RT , (4.6)

for any projection C[ j1, · · · , jt] of C, where H(C[p1, · · · , pt]) is the distance matrix of projection
C[p1, · · · , pt] of C based on coordinates {p1, · · · , pt} from {1, · · · ,n}.

Proof. Necessity: Follows from equation (4.3) and the necessary part of Theorem 4.1.

Sufficiency (by contradiction): Assume that Condition (4.6) holds but the codes are not
monomially equivalent. Since the codes are not monomially equivalent by the necessary part of
Theorem 4.1, there exists (at least one) projection with length one of C′, for which Condition (4.1)
does not hold. Consider a projection of C′ with length t which includes such projection(s). Using
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equation (4.3), it can be shown that Condition (4.6) does not hold for such projection with length
t. But this contradicts our assumption. Therefore, Condition (4.1) must hold for any projection
with length one. Thus, result follows from the sufficiency part of Theorem 4.1.

5. Equivalence of Nonlinear Codes
As mentioned in Section 1, a permutation of coordinates combined with arbitrary permutations
of symbols in one or more coordinates can affect linearity. Also, there is no general “monomial
theorem” for nonlinear codes (see, for example, [4], [5] and [9]). However, a way to deal with
permutations of symbols (in one or more coordinates) is by viewing such permutations as
translations. In general, a translation is a geometric transformation that moves every element
in a vector space by the same amount in a given direction (given by a translation vector). In our
setting, a permutation of the m symbols x j1 , · · · , x jm in the x jth coordinate (of C) can be written
as multiplication of a translation matrix T(a) by (x j1 , · · · , x jm ,1), where

T(a)=


1 0 · · · 0 a1
0 1 · · · 0 a2
...

... . . . ...
...

0 0 · · · 1 am
0 0 · · · 0 1

 ,

and (x1, · · · , xm,1) are the homogeneous coordinates of vector x = (x1, · · · , xm); a = (a1, · · · ,am,1)
is a translation vector with a1, · · · ,am ∈ Fq. Note that, the inverse of a translation matrix is
obtained by reversing the direction of a translation vector, and the product of two translation
matrices is given by adding the corresponding translation vectors. Note also that, T(0)= I gives
the identity permutation (where 0 denotes the (m+1)×1 zero vector and I the (m+1)× (m+1)
identity matrix). We have the following definition.

Definition 5.1. Two nonlinear codes C and C′ are equivalent, if there exists a permutation
R, a permutation P and matrices T(a j), j = 1, · · · ,n, such that T(a j) is a translation matrix,
which yield the (homogeneous coordinates of) jth coordinate (say x j , j = 1, · · · ,n) of C′ when
multiplied by the (homogeneous coordinates of) jth coordinate of R C P.

Since a permutation of coordinates combined with permutations of symbols in one or more
coordinates preserves the distances between codewords (see also, for example, [8]), equivalent
nonlinear codes have the same distance distribution — a necessary but not a sufficient condition
for equivalence of nonlinear codes. For example, the ternary codes C = {000,011,022} and
C′= {000,022,220} have the same distance distribution, however they are not equivalent. For
the same reason, equivalent nonlinear codes have the same distance matrix (also a necessary but
not a sufficient condition for equivalence). In this case, by extending the results of Theorem 4.1,
a necessary and sufficient condition for equivalence of nonlinear codes can be obtained, as in
Theorem 5.1 below.

Theorem 5.1. Two nonlinear codes C and C′ are equivalent if and only if there exists
a permutation R and a permutation (s(1), · · · , s(n)) of (1, · · · ,n) such that, for t = 1, · · · ,n
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the following holds

H(C′[st])=R H(C[t]) RT , (5.1)

for any projection C[t] of C, where H(C[p]) is the distance matrix of projection consisting of
coordinate p of C.

Proof. Necessity: Equivalent codes have the same distances between all pairs of codewords, and
thus, the same distance matrix up to permutation of rows. Result follows from the necessary
part of Theorem 4.1.

Sufficiency: By the sufficiency part of Theorem 4.1, there exists a permutation R and a
permutation P that transform C to C′. Thus, the two codes are equivalent up to a permutation
of symbols (equivalently elements c1, · · · , cm in a translation matrix T) in one or more columns,
which can be found by inspecting the columns of codes C′ and R C P.

Next, in Theorem 5.2, Condition 4.6 in Theorem 4.2 is extended to obtain a more general
necessary and sufficient condition for equivalence of two nonlinear codes.

Theorem 5.2. Two codes C and C′ are equivalent if and only if there exists a permutation R
and a permutation (s(1), · · · , s(n)) of (1, · · · ,n) such that, for a given t, 1≤ t ≤ n−1, the following
condition holds:

H(C′[s( j1), · · · , s( jt)])=R H(C[ j1, · · · , jt]) RT , (5.2)

for any projection C[ j1, · · · , jt] of C, where H(C[p1, · · · , pt]) is the distance matrix of the projection
based on coordinates {p1, · · · , pt} from {1, · · · ,n}.

Proof. Necessity: Follows from the necessary part of Theorem 4.2.

Sufficiency: By the sufficiency part of Theorem 4.2, there exists a row and a column permutation
that transform C to C′. Thus the two codes are equivalent up to a permutation of symbols
(equivalently elements c1, · · · , cm in a transformation matrix T) in one or more columns, which
can be found by inspecting the columns of codes C′ and R C P.

6. Discussion and Conclusions
The necessary and sufficient conditions for (linear or nonlinear) error-correcting codes presented
in this paper provide some new methods for detecting isometric error-correcting codes. In
particular, Theorem 3.1 provides a fast method for detecting permutational equivalence of
two linear codes, by considering projections with a small length. Similarly, Theorem 4.2 and
Theorem 5.2 provide a fast method for detecting momomial equivalence of linear codes or
equivalence of nonlinear codes, respectively. As an example, non permutational equivalence
of Hadamard (linear) codes can be detected from projections with length equal to three. This
can be readily seen from the fact that Hadamard codes (which are obtained from Hadamard
matrices ([6]) are orthogonal arrays of strength two (see [14]). Therefore, by the definition of
an orthogonal array, there are projections onto dimension three which are not identical. Thus,
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an efficient way to detect non permutationally equivalent Hadamard codes is using t = 3 in
Theorem 3.1. An algorithm that implements the various conditions discussed in this paper is
available from the author by request.

In view of practical considerations, when the dual of a linear (n,m,d) code is a smaller
code (n−k < k), permutational equivalence of linear codes can be detected faster by applying
Lemma 3.1 or Theorem 3.1 (with no modifications) to their dual codes. Note that, if a linear
code C is permutationally equivalent to C′, then its dual code is permutationally equivalent to
the dual of C′, C

′⊥ (this can be verified using C′ =R C P, uniqueness of an orthogonal subspace,
and the fact that a permutation matrix is an orthogonal matrix). Note also that, if a linear code
C is self-dual so is C′, if the two codes are permutationally equivalent. Also, when the rank of a
linear code (k) is much smaller than the number of its codewords (m), monomial equivalence
can be detected faster using generator matrices (recall that Theorems 4.1 and 4.2 apply in the
same way to the generator matrices G, G′ of C and C′, respectively). Furthermore, if two linear
codes C and C′ are monomially equivalent, then their dual codes are also monomial equivalent
(this can be shown using equation C′ =R C P, uniqueness of an orthogonal subspace, and the
fact that a permutation matrix is an orthogonal matrix). Thus, when the duals of two linear
codes are smaller, monomial equivalence can be detected faster by applying Theorem 4.1 or 4.2
(with no modifications) to their duals or their parity check matrices.

In the case of linear codes over a finite field F r
q, with qr a power of a prime number, the

more general notion of semilinear equivalence arises from isometries that map a subspace to
a subspace, and include automorphisms of a code (see, for example, [8], [9] and [13]). In our
case, where q is a prime, semilinear equivalence coincides with monomial equivalence (notice
that Fq has only the trivial automorphism). Note that, for binary linear codes permutational,
monomial and semilinear equivalence coincide (see also, for example [7, p. 20] and [1, p. 30]). All
our results about linear error-correcting codes over Fq can be extended to linear error-correcting
codes over F r

q (future research).
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Combinatorics, D. Crnković and V. Tonchev (eds.), IOS Press, Amsterdam, 202 – 230 (2011).

[14] W.W. Peterson, Error-Correcting Codes, MIT Press, Cambridge, Mass. (1961).

[15] H.N. Ward aand J.A. Wood, Characters and the equivalence of codes, Journal of Combinatorial
Theory, Series A 73 (2) (1996), 348 – 352.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 1–11, 2018


	Introduction
	Preliminaries
	Permutational Equivalence of Linear Codes
	Monomial Equivalence of Linear Codes
	Equivalence of Nonlinear Codes
	Discussion and Conclusions
	References

