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Abstract. The aim of the paper is to study the characterization of delta operator associated with
some Sheffer polynomials. In this paper, we consider Poisson-Charlier polynomials and investigate
the characterization of delta operator via sequential representation of delta operator. From our
investigation, we are able to prove an interesting propositions for the above mentioned.
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1. Introduction

The Poisson-Charlier polynomials Cn(x;a) (also called Charlier polynomials) are introduced by
Carl Charlier in 1906. They form a Sheffer sequences [1] with

g(t)= ea(et−1) and f (t)= a (et −1) .

The Sheffer identity is

Cn(x+ y;a)=
n∑

k=0

(
n
k

)
ak−n Ck(y;a) (x)n−k ,

where (x)n = x(x−1)(x−2) · · · (x−n+1) is a falling factorial.
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As is well known, they can be expressed in terms of the generalized hypergeometric
function by

Cn(x;a)= 2F0

(
−n,−x,−1

a

)
.

An alternative expression for Cn(x;a) is given by

Cn(x;a)= (−1)n n! Ln
(−1−x)

(
−1

a

)
where L are Laguerre polynomials.

Special polynomials play an important role in Mathematical Physics. Many of the models in
Applied Mathematics particularly Physics are expressed in terms of classical special polynomials.
Recently, Kim et al. [1] studied the linear differential equations for the generating function of
the Poisson-Charlier polynomials and its applications. Kim et al. [2] derived various identities
involving Poisson-Charlier polynomials from Umbral Calculus. Some recurrence relations for
Poisson-Charlier polynomials are derived in [3]. The properties of several Sheffer polynomials
are discussed by Rainville [4], and Boas and Buck [5].

Operational Methods are used to reduce the differential problems into algebraic problems.
In 1975, Rota [6] introduced Finite Operator Calculus which is a systematic approach to delta
operators on the algebra of polynomials. It contains a detailed study of delta operators associated
with basic polynomial sequences and Sheffer sequences. The main objective of this paper is to
investigate the characterization of delta operator for the Poisson-Charlier polynomials.

This paper is organized as follows. We begin with the fundamentals of Finite Operator
Calculus in the Section 2. Section 3 is focusing on sequential representation of delta operator.
The characterization of delta operator for the Poisson-Charlier polynomials is investigated in
the Section 4. Section 5 is devoted to the construction of Delta triangle for Poisson-Charlier and
their related polynomials.

2. Finite Operator Calculus

In this section, we list the main definitions and results of Finite Operator Calculus which we
shall use in next section. These results were derived by Rota [6]. The proofs of known results
are skipped, but they are easily read from the reference Rota [6].

Let F be a Field of characteristic zero, preferably the real number field. By a polynomial
sequence we shall denote a sequence of polynomials pn(x), n = 0,1,2, . . ., where pn(x) is exactly
of degree n for all n ∈Z+∪ {0}.

The objective of Rota [6] was a unified theory of special polynomials associated with some
operators. We start with such operators and their properties.

An operator Ea is said to be a shift operator if

Ea : p(x)→ p(x+a),

for all polynomials p(x) in one variable and for all real a in the field F .
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A linear operator T which commutes with all shift operators Ea is called a shift invariant
operator. In symbol,

TEa = EaT, for all a ∈ F.

A delta operator Q is a shift invariant operator such that

Qx = const 6= 0 .

For example, the forward difference operator

(∆ f )(x)= f (x+1)− f (x)

is a delta operator.

The following result establishes the fundamental properties of the delta operator Q.

Theorem 2.1. (i) If Q is a delta operator, then Qa = 0 for every constant ‘a’.

(ii) If p(x) is a polynomial of degree n, then Q p(x) is a polynomial of degree n−1.

The delta operators possess many of the properties of the usual derivative D. The above
theorem is a good example.

Definition 2.2. A polynomial sequence pn(x)n≥0; deg pn = n; such that

(i) p0(x)= 1,

(ii) pn(0)= 0, whenever n > 0,

(iii) Q pn(x)= npn−1(x)

is called the basic polynomial sequence of the delta operator Q.

A trivial example for basic polynomials sequence is {xn}.

Theorem 2.3. Every delta operator has a unique sequence of basic polynomials.

Definition 2.4. A polynomial sequence pn(x) (n ≥ 0), where pn(x) is exactly of degree n for all
n, is said to be binomial type if it satisfies the infinite sequence of following identities

pn(x+ y)=
n∑

k=0

(
n
k

)
pk(x)pn−k(y), n = 0,1,2, . . . .

The simplest sequence of binomial type is {xn}.

Definition 2.5. A polynomial sequence sn(x) is called a Sheffer set or a set of Sheffer
polynomials for the delta operator Q if

(i) s0(x)= c 6= 0, and

(ii) Qsn(x)= nsn−1(x).

Sheffer polynomials are a large class of polynomial sequences that include Monomials,
Upper Factorials, Lower Factorials, Striling polynomials, Poisson-Charlier polynomials,
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Bell polynomials, First and second kind of Abel polynomials, Laguerre polynomials, Boole
polynomials and many others.

In the next section, we study more about the sequential structure of delta operator.

3. Sequential Representation of Delta Operator

As is well known, the Monomials {xn} is a trivial example for basic set as well as Sheffer
set. Using the expressions for Q(x2),Q(x3), . . . ,Q(xn), we formulated Q(xn) as a sequential
representation of delta operator by considering {xn} is a basic set in [7]. In the same context, we
formulate Q(xn) as a sequential structure by considering the monomials {xn} as a Sheffer set in
the following theorem.

Theorem 3.1. For the monomial {xn : n ∈Z+∪ {0}}, and for each αr an arbitrary real constant,

Q(xn)=
n∑

r=1

(
n
r

)
αrxn−r. (1)

Proof. If n = 1, then from the definition of delta operator, Q(x) is a non zero constant.

Let it be α1. Therefore, Q(x)=α1 6= 0 and hence the result is true for n = 1

Let n = 2. By Theorem 2.1(ii), construct Q(x2)= c0x+ c1.

Since Q is shift invariant, EaQ(x2)=QEa(x2).

EaQ(x2)= Ea(c0x+ c1)= c0Ea(x)+ c1 = c0(x+a)+ c1 = c0x+ c0a+ c1.

Since Q(a)= 0, Q(x)=α1 and by Table 1, we have

QEa(x2)=Q(x+a)2 =Q(x2 +a2 +2ax)=Q(x2)+2aQ(x)= c0x+ c1 +2aα1.

Equating the corresponding terms in EaQ(x2) and QEa(x2), we get c0 = 2α1.

c1 is a new independent constant which may be taken as α2.

Hence Q(x2)= 2α1x+α2.

Therefore, the result is true for n = 2.

Let us assume that the result is true for all n = k.

Therefore,

Q(xk)=
k∑

r=1

(
k
r

)
αrxk−r =

(
k
1

)
α1xk−1 +

(
k
2

)
α2xk−2 +·· ·+

(
k
r

)
αrxk−r +·· ·+αk . (2)

Since {xn} is a Sheffer sequence, it satisfies Q pn(x)= npn−1(x) and hence, we have

Q(xk)= k xk−1 . (3)

From (3), we see that the delta operator Q is a usual derivative D.

From (2) and (3),(
k
1

)
α1xk−1 +

(
k
2

)
α2xk−2 +·· ·+

(
k
r

)
αrxk−r +·· ·+αk = kxk−1 . (4)
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By comparing the corresponding terms, we have α1 = 1 and α j = 0, j = 2,3, . . . ,k.

Therefore, the result is true for n = k means that

α1 = 1 and α j = 0 ( j = 2,3, . . .k). (5)

Now, we have to show that this result is true for n = k+1

Q(xk+1)=Q(xkx)

=Q(xk)x+Q(x) xk (from the Definition 2.5, Q = D for {xn})

=
{(

k
1

)
α1xk−1 +

(
k
2

)
α2xk−2 +·· ·+

(
k
r

)
αrxk−r +·· ·+αk

}
x+α1xk

=α1(k xk + xk)+α2

(
k
2

)
xk−1 +α3

(
k
3

)
xk−2 +·· ·+αk x

= (k+1) xk (by (5)) .

Thus we have

Q(xk+1)= (k+1) xk. (6)

On other hand, using the property that Q pn(x)= n pn−1(x) , we have

Q(xk+1)= (k+1) pk(x)= (k+1) xk. (7)

From (6) and (7), we conclude that the result is true for all n = k+1.

Thus, we proved the Theorem 3.1.

The following table contains the expressions for Q(x),Q(x2),Q(x3), . . ..

Table 1. First few polynomials Q(xn), n = 1,2,3, . . ..

Q(x)= 1α1

Q(x2)= 2α1x+α2

Q(x3)= 3α1x2 +3α2x+α3

Q(x4)= 4α1x3 +6α2x2 +4α3x+α4

Q(x5)= 5α1x4 +10α2x3 +10α3x2 +5α4x+α5

Q(x6)= 6α1x5 +15α2x4 +20α3x3 +15α4x2 +6α5x+α6

Q(x7)= 7α1x6 +21α2x5 +35α3x4 +35α4x3 +21α5x2 +7α6x5 +α7

Q(x8)= 8α1x7 +28α2x6 +56α3x5 +70α4x4 +56α5x3 +28α6x2 +8α7x+α8

Here, Q(xn) has n independent parameters αi (i = 1,2,3, . . .). These parameters are unique.
Allowing n being large, we get an infinite sequence of real numbers. We note that the values
of αi ’s determines the characterization of delta operator Q. Theorem 3.1 play vital role to
investigate the characterization of delta operator for basic set and Sheffer set.
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4. Delta Operator for Poisson-Charlier Polynomials

In [8], the characterization of delta operator for some Sheffer polynomials such as the Euler,
Bernoulli of second kind, and Mott polynomials are investigated. In the same context, we
investigate the characterization of delta operator for the Poisson-Charlier polynomials is
investigated in this section.

As is well known, the generating function for the Poisson-Charlier polynomials Cn(x;a) is
given by

e−t
(
1+ t

a

)x
=

∞∑
n=0

Cn(x;a)
tn

n!
, (a 6= 0). (see [1], [9], [10])

The Poisson-Charlier polynomials Cn(x;a) are defined by

Cn(x;a)=
n∑

k=0
(−1)k

(
n
k

)(
x
k

)
k!a−k ,

where a > 0 and x ∈ N0 .

The Poisson-Charlier polynomials satisfy the following recurrence relation

Cn+1(x;a)= a−1xCn(x−1;a)−Cn(x;a) .

The first few Poisson-Charlier polynomials Cn(x;a) are given by [11]

C0(x;a)= 1 ,

C1(x;a)=−a− x
a

,

C2(x;a)= a2 − x−2ax+ x2

a2 ,

C3(x;a)=−a3 −2x−3ax−3a2x+3x2 +3ax2 − x3

a3 .

If we take a = 1, we have

C0(x;1)= 1 ,

C1(x;1)= x−1 ,

C2(x;1)= x2 −3x+1 ,

C3(x;1)= x3 −6x2 +8x−1 and so on.

For n = 1, QCn = nCn−1 becomes QC1 = 1C0.

From Table 1,

QC1 =α1 and 1C0 = 1 ⇒α1 = 1.

For n = 2, QCn = nCn−1 becomes QC2 = 2C1.

By Table 1,

QC2 = 2α1x+α2 −3α1 and 2C1 = 2x−2 ⇒α1 = 1 and α2 = 1.

For n = 3, QCn = nCn−1 becomes QC3 = 3C2.
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From Table 1,

QC3 = 3α1x2 + (3α2 −12α1)x+α3 −6α2 +8α1 and 3C2 = 3x2 −9x+3 .

Equating the corresponding terms, we get

α1 = 1, α2 = 1 and α3 = 1 .

Applying the same procedure for n = 4, n = 5 and n = 6 and so on, we get

αr = 1, r ≥ 1 .

Thus we have the following proposition:

Proposition 4.1. For the Poisson-Charlier polynomials Cn(x;a), the characterization of delta
operator Q being:

αr = 1, for all r ≥ 1.

Remark 1. In this case, we have

Q(xn)=
n∑

r=1

(
n
r

)
xn−r

=
(
n
1

)
xn−1 +

(
n
2

)
xn−2 +·· ·+

(
n
r

)
xn−r +·· ·+1

= (x+1)n − xn .

As is well known, the following relation

(−1) L(a−n)
n (x) = xn

n!
cn(a; x) (see [3])

indicates a relationship between the Poisson-Charlier polynomials and the Laguerre
polynomials.

The Laguerre polynomials of degree n is

Ln(x)= a0

n∑
r=0

(−1)r (n!)
(n− r)! (r!)2 xr .

Some authors define the Laguerre polynomial Ln(x) by taking a0 = n!, i.e.,

Ln(x)=
n∑

r=0
(−1)r (n!)2

(n− r)! (r!)2 xr.

The recurrence relations are

(n+1)Ln+1(x)= (2n+1− x)Ln(x)− xLn−1(x) .

The first few Laguerre polynomials are:

L0(x)= 1 ,

L1(x)= 1− x ,

L2(x)= 2−4x+ x2 ,

L3(x)= 6−18x+9x2 − x3 ,
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L4(x)= 24−96x+72x2 −16x3 + x4 .

By applying the same procedure as above in the Proposition 4.1, we get

α1 =−1, α2 =−2, α3 =−6 and α4 =−24 and so on.

We conclude that the characterization of delta operator Q for Ln(x) is

αn = (−1)(n!) .

Thus, we have the following proposition:

Proposition 4.2. For the Leguerre polynomials Ln(x)=
n∑

r=0
(−1)r (n!)2

(n−r)!(r!)2 xr , the characterization

of delta operator Q being:

αr = (−1)(r!) , for all r ≥ 1 .

Remark 2. Here, Q(xn)=
n∑

r=1

(n
r
)

(−1)(r!)xn−r .

It is also known that the Hermite polynomials Hn(x) are obtained by setting a → (2a)
n
2 x+a

and letting a →∞ in Poisson-Charlier polynomials Cn(x;a). That is

lim
x→∞(2a)

n
2 cn

(
(2a)

1
2 x+a;a

)= (−1)n Hn(x) .

The Hermite polynomials Hn(x) can be defined by the relation

Hn(x)=
n/2∑

m=0
(−1)m n!

m!(n−2m)!
(2x)n−2m .

The pure recurrence relation for Hn(x) is:

2xHn(x)= 2nHn−1(x)+Hn+1(x) .

Since H0(x)= 1 6= 0, it is a Sheffer set.

The first few Hermite polynomials are:

H1(x)= 2x ,

H2(x)= 4x2 −2 ,

H3(x)= 8x3 −12x ,

H4(x)= 16x4 −48x2 +12 ,

H5(x)= 32x5 −160x3 +120x and so on.

By applying the same procedure as above in the Proposition 4.1, we get

α1 = 1
2

, α2 = 0 and α3 = 0 and so on.

Hence the characterization of the delta operator for Hermite polynomials being α1 = 1
2 , and

αr = 0 for all r ≥ 2.

Thus, we obtain the following proposition.
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Proposition 4.3. For the Hermit’s polynomial Hn(x) =
n/2∑

m=0
(−1)m n!

m!(n−2m)! (2x)n−2m, the

characterization of delta operator Q being:

α1 = 1
2

and αr = 0 , for all r ≥ 2.

Remark 3. Here, Q(xn)= 1
2 n xn−1 and hence the delta operator Q is the constant multiple of

the usual derivative D.

5. Delta Triangle for the Poisson-Charlier Polynomials

The coefficients of Q(xn) in Remarks 1, 2 and 3 are arranged by a triangular array, say Delta
triangle. In this section, the Delta triangles for Poisson-Charlier and their related polynomials
are discussed.

For the Poisson-Charlier polynomials, αr = 1, r ≥ 1.

From Table 1, we have

Q(x)= 1, Q(x2)= 2x+1, Q(x3)= 3x2 +3x+1, Q(x4)= 4x3 +6x2 +4x+1,

Q(x5)= 5x4 +10x3 +10x2 +5x+1, Q(x6)= 6x5 +15x2 +20x3 +15x2 +6x+1 .

The Delta triangle for Poisson-Charlier polynomials is
1

2 1
3 3 1

4 6 4 1
5 10 10 5 1

6 15 20 15 6 1
. . .

Similar to Pascal triangle, it is also a triangular arrangements of rows. The tip of the
triangle is number “1” which makes up the first row. In Pascal triangle, each row, begins and
ends with “1”. But in delta triangle, the ith rows begins with i, for i = 1,2, · · · but ending with
“1”. The “Pascal Triangle sum” result holds good.

For the Leguerre polynomials, αr = (−1)(r!), for all r ≥ 1.

From Table 1, we have

Q(x)=−1, Q(x2)=−2x−2, Q(x3)=−3x2 −−6x−6, Q(x4)=−4x3 −12x2 −24x−24,

Q(x5)=−5x4 −20x3 −60x2 −120x−120, Q(x6)=−6x5 −30x4 −120x3 −360x2 −720x−720.

The Delta triangle for Leguerre polynomials is
−1

−2 −2
−3 −6 −6

−4 −12 −24 −24
−5 −20 −60 −120 −120

−6 −30 −120 −360 −720 −720
. . .
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Here, the tip of the Delta triangle is number “−1” which makes up the first row. All the
entries in this triangle are negative numbers. First element in each rows is decreased by 1
compare with previous one. Last two entries in each rows are same, except first row.

For the Hermite polynomial Hn(x), the characterization of delta operator Q being:

α1 = 1
2

and αr = 0 for all r ≥ 2.

From Table 1, we have

Q(x)= 1
2

, Q(x2)= x, Q(x3)= 3
2

x2, Q(x4)= 2x3, Q(x5)= 5
2

x4, Q(x6)= 3x5.

The Delta triangle for the Hermite polynomials Hn(x) is
0.5

1 0
1.5 0 0

2 0 0 0
2.5 0 0 0 0

3 0 0 0 0 0
. . .

Here, the tip of the Delta triangle is number “0.5” which makes up the first row. First element
in each row is increased by 0.5 compare with previous one. Except first element in each row, all
entries are zero.

6. Concluding Remarks

The present attempt is made to introduce a new approach to the Poisson-Charlier polynomials
via sequential representation of delta operator. From above discussion, we get a way opened
to study the special polynomials by a new method of investigating definite delta operator
numerically. Moreover, Kwasniewski [12] proposed Finite Operator q-Calculus by using q-
delta operator and q-basic polynomial sequence. This is the good starting point for further
investigation of the characterization of q-delta operator for q-Sheffer polynomials.
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