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1. Introduction

A certain type of transformation of a set of numbers can be represented as the multiplication
of a vector by a square matrix. Repetition of this operation is equivalent to multiplying the
original vector by a power of the matrix. In solving some difference equations, differential and
delay differential equations, and boundary value problems, we need to compute the arbitrary
integer powers of a square matrix. Properties of powers of the matrices are thus of considerable
importance ([3,9,10]).
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An n×n pentadiagonal matrix is one having the form

Sn =



a1 b1 c1 0 · · · · · · 0

d1 a2 b2 c2
. . . ...

e1 d2
. . . . . . . . . . . . ...

0 e2
. . . . . . . . . cn−3 0

... . . . . . . . . . . . . bn−2 cn−2

... . . . en−3 dn−2 an−1 bn−1
0 · · · · · · 0 en−2 dn−1 an


.

In other words, Sn = [si, j]1≤i, j≤n is pentadiagonal if si, j = 0 for |i− j| > 2. These types of matrices
often occur in several areas, such as in numerical solutions of ordinary and partial differential
equations (ODE and PDE), interpolation problems, high order harmonic spectral filtering theory,
boundary value problems (BVP), etc. In many of these areas, the integer powers of pentadiagonal
matrices are encountered as a problem ([1,4,6,10]).

An n×n persymmetric matrix A is a square matrix which is symmetric in the northeast to
southwest diagonal, i.e., [A]i, j = [A]n− j+1,n−i+1 with 1≤ i, j ≤ n. For example, 5×5 persymmetric
matrices are the form

A =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a14
a31 a32 a33 a23 a13
a41 a42 a32 a22 a12
a51 a41 a31 a21 a11

 .

There is a vast literature concerned with powers of tridiagonal and pentadiagonal matrices.
Rimas derived a general expression for powers of one type of (0−1)-symmetric pentadiagonal
matrices depending on the Chebyshev polynomials (see [12] for the odd case and [11] for the
even case). In [2], the authors derived a general expression for powers and inverse of one type of
symmetric pentadiagonal matrices depending on the Chebyshev polynomials. In these papers,
the powers and the inverses are given by using Chebyshev polynomials.

Recently, computing integer powers of square matrices using binomial coefficients instead
of the Chebyshev polynomials have been a very popular problem since the expressions with
binomial coefficients is simpler than Chebyshev polynomials, [5,7] are the two of these papers.

In [8], Gutiérrez-Gutiérrez studied powers of an n×n complex tridiagonal matrices with
constant diagonals given by

Bn = tridiagn(b,a, c)=



a c 0 · · · · · · 0

b a c . . . ...

0 b . . . . . . . . . ...
... . . . . . . . . . c 0
... . . . b a c
0 · · · · · · 0 b a


, (1.1)
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where bc 6= 0. He gave the powers of such matrices depending on the Chebyshev polynomials.
After that, in [7], Gutiérrez interestingly obtained the following result for the powers of the
matrix given by (1.1), in terms of binomial coefficients.

Theorem 1 ([7], Theorem 3). Let a ∈ C and b, c ∈ C\{0}. Suppose r,n, i, j ∈N, n ≥ 2(r−1) and
1≤ i, j ≤ n. If An = tridiagn(b,a, c) then

[Br
n]i, j =


∑

h∈H

(r
h
)
ar−hc

h+ j−i
2 b

h+i− j
2

[( h
h+i− j

2

)− ( h
h−i− j+2n+2

2

)]
if i, j > n− r+1,∑

h∈H

(r
h
)
ar−hc

h+ j−i
2 b

h+i− j
2

[( h
h+i− j

2

)− ( h
h+i+ j

2

)]
otherwise,

with H = {h : 0≤ h ≤ r : h ≡ i+ j (mod 2)}.

Here, note that the binomial coefficient
(a
b
)

is defined by(
a
b

)
=

{
a!

b!(a−b)! 0≤ b ≤ a and b ∈Z,
0 otherwise,

when a ∈Z, a ≥ 0 and b ∈R (see [7]).

In this paper, we present a general expression for the entries of the rth power (r ∈N) of the
n×n symmetric pentadiagonal matrix given by

An =



a− c b c 0 · · · · · · 0

b a b c . . . ...

c b . . . . . . . . . . . . ...

0 c . . . . . . . . . c 0
... . . . . . . . . . . . . b c
... . . . c b a b
0 · · · · · · 0 c b a− c


, (1.2)

where a,b, c ∈ C, n is large enough, that is, n ≥ 4(r − 1), in terms of binomial coefficients
differently from Chebyshev polynomials.

2. Main Result

We start with the following result in the proof of our main theorem.

Theorem 2 ([2, Theorem 2]). Let a,b, c∈C and n∈N. Then PnΛnP−1
n is eigenvalue decomposition

of symmetric pentadiagonal matrix An given by (1.2), where the entries of eigenvector matrix
Pn are

[Pn]i, j = sin
i jπ

n+1
, 1≤ i, j ≤ n, (2.1)

and Λn = diag(λ1,λ2, . . . ,λn) with

λ j = a+2bcos
jπ

n+1
+2ccos

2 jπ
n+1

, 1≤ j ≤ n.
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Next, we continue with the following lemma which gives the inverse of the matrix Pn in
terms of itself, and allows us to use the previous theorem in the proof of our main theorem.

Lemma 3 ([13, Lemma 2.2]). Let Pn be the matrix given by (2.1). Then

P−1
n = 2

n+1
Pn .

We can finally give the last result that we use in our proof. This lemma is the one that allows
us to use the binomial coefficients in our main result.

Lemma 4 ([7, Lemma 2]). If r ∈N∪ {0}, then

2
π

∫ π

0
(2cos x)r sin(ix)sin( jx)dx =

(
r

r+i− j
2

)
−

(
r

r+i+ j
2

)
for all i, j ∈N.

We can now give the main result of our paper. The following theorem will give a general
expression for the powers of An in terms of the binomial coefficients.

Theorem 5. Let An be the symmetric pentadiagonal matrix having form in (1.2). Suppose
r,n, i, j ∈N, n ≥ 4(r−1) and 1≤ i, j ≤ n. Then

[Ar
n]i, j =


∑

h∈H

∑
k∈Kh

(r
h
)(r−h

k
)
(a−2c)r−h−kbkch

[( k+2h
k+2h+i− j

2

)− ( k+2h
k+2h−i− j+2n+2

2

)]
if i, j > n− r+1,∑

h∈H

∑
k∈Kh

(r
h
)(r−h

k
)
(a−2c)r−h−kbkch

[( k+2h
k+2h+i− j

2

)( k+2h
k+2h+i+ j

2

)]
otherwise,

with H = {h : 0≤ h ≤ r} and Kh = {k : 0≤ k ≤ r−h; k ≡ i+ j (mod 2)}.

Proof. First of all, assume that i ≤ n− r+1 or j ≤ n− r+1. Hence we have [Ar
n]i, j = [Ar

m]i, j for
all m ≥ n ≥ 4(r−1) (see [4, Theorem 3], that is a result on the structure of the natural powers of
large banded Toeplitz matrices). Thus we get [Ar

n]i, j = lim
m→∞[Ar

m]i, j . By Theorem 2, we have

[Ar
n]i, j = lim

m→∞[Ar
m]i, j

= lim
m→∞[(VmDmV−1

m )r]i, j

= lim
m→∞[VmDr

mV−1
m ]i, j

= lim
m→∞

m∑
h=1

[Vm]i,h[Dr
mV−1

m ]h, j

= lim
m→∞

m∑
h=1

[Vm]i,hλ
r
h
[
V−1

m
]

h, j

= lim
m→∞

2
m+1

m∑
h=1

(
a+2bcos

hπ
m+1

+2ccos
2hπ

m+1

)r
sin

ihπ
m+1

sin
jhπ

m+1
.

Now, by using the definition of the definite integral, we get

[Ar
n]i, j = 2

π

∫ π

0
(a+2bcos x+2ccos2x)r sin ixsin jxdx
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= 2
π

∫ π

0
(a−2c+2bcos x+4ccos2 x)r sin ixsin jxdx

= 2
π

∫ π

0

r∑
h=0

(
r
h

)
(a−2c+2bcos x)r−h(4ccos2 x)h sin ixsin jxdx

= 2
π

∫ π

0

r∑
h=0

(
r
h

)(
r−h∑
k=0

(
r−h

k

)
(a−2c)r−h−k(2bcos x)k

)
(4ccos2 x)h sin ixsin jxdx

= 2
π

∫ π

0

r∑
h=0

r−h∑
k=0

(
r
h

)(
r−h

k

)
(a−2c)r−h−kbkch(2cos x)k+2h sin ixsin jxdx

=
r∑

h=0

r−h∑
k=0

(
r
h

)(
r−h

k

)
(a−2c)r−h−kbkch 2

π

∫ π

0
(2cos x)k+2h sin ixsin jxdx .

Now, we can use Lemma 4 to write the last integral in terms of the binomial coefficients. So, we
have

[Ar
n]i, j =

r∑
h=0

r−h∑
k=0

(
r
h

)(
r−h

k

)
(a−2c)r−h−kbkch

[(
k+2h

k+2h+i− j
2

)
−

(
k+2h

k+2h+i+ j
2

)]
.

Since
( k+2h

k+2h+i− j
2

)= ( k+2h
k+2h+i+ j

2

)= 0, when k ≡ i+ j (mod 2), we conclude that

[Ar
n]i, j =

∑
h∈H

∑
k∈Kh

(
r
h

)(
r−h

k

)
(a−2c)r−h−kbkch

[(
k+2h

k+2h+i− j
2

)
−

(
k+2h

k+2h+i+ j
2

)]
.

Finally, assume that i, j > n− r+1. Since An is persymmetric, Ar
n is also persymmetric. Hence

[Ar
n]i, j = [Ar

n]n− j+1,n−i+1. Then, we get the result that

[Ar
n]i, j =

∑
h∈H

∑
k∈Kh

(
r
h

)(
r−h

k

)
(a−2c)r−h−kbkch

[(
k+2h

k+2h+i− j
2

)
−

(
k+2h

k+2h−i− j+2n+2
2

)]
,

which is desirable.

As a final result, we can give the following corollary to our main theorem. This result is a
specific version of the corollary given in [7, Corollary 4].

Corollary 6. Let b ∈ C \ {0}. Assume that r,n, i, j ∈ N, n ≥ 4(r − 1) and1 ≤ i, j ≤ n. If
An = tridiagn(b,0,b), then

[Ar
n]i, j =


0 if r 6≡ i+ j (mod 2),

br
[( r

r+i− j
2

)− ( r
r−i− j+2n+2

2

)]
if r ≡ i+ j (mod 2) and i, j > n− r+1,

br
[( r

r+i− j
2

)− ( r
r+i+ j

2

)]
otherwise.

3. Conclusion

In [2], Arslan et al. obtained a general expression for the entries of the natural powers of an
n× n symmetric complex pentadiagonal matrix in terms of Chebyshev polynomials. In this
paper, we give a much simpler formula to compute arbitrary positive integer powers of the
matrix considered by Arslan et al. [2] in terms of binomial coefficients.
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