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1. Introduction
The generalized Horadam sequence {Wn(a,b; p, q)}∞n=0, or briefly {Wn}, is a recurrence sequence
of order two, recursively defined by

Wn+2 = pWn+1 − qWn, W0 = a, W1 = b, n ≥ 0, (1)

where a,b, p, q (p 6= 0 and q 6= 0) are arbitrary complex coefficients (see [10] and [14]).
Let α= (p+

√
p2 −4q)/2 and β= (p−

√
p2 −4q)/2 be roots of equation

z2 − pz+ q = 0,
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where
√

p2 −4q denotes the principal square root of the complex number ∆= p2 −4q, which is
assumed to be nonzero. The numbers Wn(a,b; p, q) given by the recurrence relation (1) can be
explicitly expressed by the Binet’s formula:

Wn = Cαn +Dβn,

where C = b−aβ
α−β , D = aα−b

α−β (with p2 6= 4q). In particular, in [12], Lucas shows that

Un =Wn(0,1; p, q)= αn −βn

α−β , p2 6= 4q, (2)

Vn =Wn(2, p; p, q)=αn +βn. (3)

The numbers defined in (2) and (3) are referred to as the generalized Fibonacci and Lucas
numbers, respectively. Further and detailed information may be found in [9], [10], [12], [14],
[15] and [16]. Note that the generalized Fibonacci and Lucas numbers with negative subscripts
are described as

U−n =−q−nUn and V−n = q−nVn, n ∈Z+.

Generalization of the formulas (2) and (3), from an integer exponent n to a real exponent θ, has
been considered by Horadam [11]. Indeed, the generalized sequences {Uθ} and {Vθ}, with real
subscripts, are defined by generalized Binet’s formulas,

Uθ = αθ−βθ
α−β , Vθ =αθ+βθ, α,β= (p±

p
∆)/2, p2 6= 4q. (4)

In this paper, we are particularly interested in providing identities for generalized Fibonacci
and Lucas sequences with rational subscripts, by aid of fundamental tools from the theory
of matrix functions (see [5], [8]) and [13]). Some results obtained constitute an extension of
existing identities in the literature, that characterize Horadam-type sequences with integer
subscripts.

To emphasize, we make use of properties of the matrix functions A 7→ An/2 (resp. A 7→ Ar/s)
and B 7→ Bn/2 (resp. B 7→ Br/s) (see [1], [2], [3], [5], [8] and [13]), where n, r, s ∈Z (with s ≥ 1) and

A =
[

p −q
1 0

]
and B = 1

2

[
p 1
∆ p

]
,

taking into account whether the n
2 and r

s are integers or irreducible fractions, which is mainly
involved in this work. Matrices such as A and B have been extensively exploited by several
authors, in the objective to carry out identities for Horadam-type sequences, especially in the
case when the subscripts are integers. See for instance [1], [2], [3], [4], [6], [7], [14], [16] and
references therein.

The outline of this paper is as follows: In Section 2, some identities related to the generalized
Fibonacci and Lucas sequences with rational subscripts of the form n

2 are given for every integer
n. Section 3 is devoted to the investigation of some generalizations of the identities given in the
second section, in the case of rational subscripts of the form r

s .
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2. The Generalized Fibonacci and Lucas Sequences with Rational
Subscript of the Form n

2

The results presented in this section are mainly based on properties of matrix functions
X 7→ X n/2and X 7→ X n, combined with the generalized Binet’s formulas (4). Throughout this
study, unless otherwise stated, we will denote by Z∗ =Z\{0}, and N∗ =N\{0}.

Let consider the scalar complex function f (`) (z)= z`, where ` is a nonzero integer number.
Since A and B are nonsingular matrices, admitting two distinct eigenvalues (α and β), the
function f (`) (z) is defined on the spectrum of these matrices [5]. Consequently, the matrix
functions f (`)(A) and f (`) (B) are univalued and may be expressed, using the Lagrange-Sylvester
interpolation polynomial [5], under the polynomial expressions

f (`)(A)= α`

α−β (A−βI2)+ β`

β−α (A−αI2)

f (`) (B)= α`

α−β (B−βI2)+ β`

β−α (B−αI2),
(5)

where I2 designates the 2×2 matrix identity.

Theorem 1. For every number ` ∈Z∗
f (`)(A)=

[
U`+1 −qU`

U` −qU`−1

]

f (`) (B)= 1
2

[
V` U`

∆U` V`

]
.

Proof. According to formula (5), it ensues that for every ` ∈Z∗

f (`)(A)= 1
α−β

[
α`+1 −β`+1 −q(α`−β`)
α`−β` −αβ(α`−1 −β`−1)

]
=

[
U`+1 −qU`

U` −qU`−1

]
.

The matrix function f (`) (B) is similarly obtained using the equation (5).

Consider now the scalar complex function f (n,2) (z)≡ zn/2, where n ∈Z∗. When n is an even
number, the function f (n,2)(z) is nothing else but the scalar power function f (`)(z) = z` (with
n = 2`) mentioned above. By contrast, when n is an odd number, f (n,2)(z) is a multivalued
function giving rise to 2 branches. Indeed, for every nonzero complex number z = |z|exp[iarg(z)]
(−π< arg(z)≤π), these branches may be characterized as follows

f (n,2)
k (z)= exp

[n
2

(log(z)+2ikπ)
]
= |z|n/2 exp

[n
2

(iarg(z)+2ikπ)
]

,

where log denotes the principal branch of the complex logarithm and k ∈ {0,1}. By abuse of
notation, the principal branch of f (n,2)(z) will be denoted by zn/2, i.e. f (n,2)

0 (z)= exp
[n

2 log(z)
]=

zn/2.

Hence, for every nonzero z in C,

f (n,2)
k (z)= exp(ikπ)zn/2, (6)

where k ∈ {0,1}.
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Since A admits two distinct nonzero eigenvalues (α and β), it is clear that f (n,2)(z) ≡ zn/2

is defined on the spectrum of A [5]. Therefore, there exist 4 matrix functions A 7→ An/2 which
can be derived from the two branches of the scalar function f (n,2)(z)≡ zn/2, defined by (6) [8]. To
emphasize, all these matrix functions are primary matrix functions [8] and can be specified by
the Lagrange-Sylvester interpolation polynomial [5], through the polynomial expression

f (n,2)
(k1,k2)(A)=

f (n,2)
k1

(α)

α−β (A−βI2)+
f (n,2)
k2

(β)

β−α (A−αI2),

where (k1,k2)∈ {0,1}× {0,1}. Furthermore, since the matrix B has exactly the same spectrum as
the matrix A, the previous formulas remain valid when A is substituted by B.

Theorem 2. For every odd number n ∈Z,
f (n,2)
(0,0) (A)=− f (n,2)

(1,1) (A)=
[
U n

2 +1 −qU n
2

U n
2

−qU n
2 −1

]

f (n,2)
(0,1) (A)=− f (n,2)

(1,0) (A)= 1p
∆

[
Vn

2 +1 −qVn
2

Vn
2

−qVn
2 −1

]
,

and 
f (n,2)
(0,0) (B)=− f (n,2)

(1,1) (B)= 1
2

[
Vn

2
U n

2

∆U n
2

Vn
2

]

f (n,2)
(0,1) (B)=− f (n,2)

(1,0) (B)=
p
∆

2

[
U n

2
1
∆Vn

2

Vn
2

U n
2

]
.

(7)

Proof. Since α+β= p, for every (k1,k2) ∈ {0,1}2, we have

f (n,2)
(k1,k2)(A)= exp[nk1πi]

α−β αn/2
[
α −q
1 −β

]
− exp[nk2πi]

α−β βn/2
[
β −q
1 −α

]
.

In the case k1 = k2 = 0, using the generalized Binet’s formula (4), we obtain

f (n,2)
(0,0) (A)= 1

α−β
[
ααn/2 −ββn/2 −qαn/2 + qβn/2

αn/2 −βn/2 −βαn/2 +αβn/2

]
=

[
U n

2 +1 −qU n
2

U n
2

−qU n
2 −1

]
.

In the case k1 = k2 = 1, we have f (n,2)
(1,1) (A)=− f (n,2)

(0,0) (A). In the case k1 = 0,k2 = 1, it follows from
(4) that,

f (n,2)
(0,1) (A)= 1

α−β
[
ααn/2 +ββn/2 −qαn/2 − qβn/2

αn/2 +βn/2 −βαn/2 −αβn/2

]
= 1p

∆

[
Vn

2 +1 −qVn
2

Vn
2

−qVn
2 −1

]
.

In the case k1 = 1,k2 = 0, we have f (n,2)
(1,0) (A) = − f (n,2)

(0,1) (A). Since the matrix B has exactly the
same eigenvalues as the matrix A, the matrix functions in the (7) are obtained by doing similar
calculation for the matrix B. For simplicity, we omit the details.

Theorem 3. For every odd number n in Z,

(i) U n
2 +1U n

2 −1 −U2
n
2
=±q

n
2 −1,

(ii) Vn
2 +1Vn

2 −1 −V 2
n
2
=±∆q

n
2 −1,
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(iii) V 2
n
2
−∆U2

n
2
=±4q

n
2 ,

(iv) Un+1 =U2
n
2 +1 − qU2

n
2
= 1
∆ (V 2

n
2 +1 − qV 2

n
2
),

(v) Un =U n
2
U n

2 +1 − qU n
2 −1U n

2
= 1
∆ (Vn

2
Vn

2 +1 − qVn
2 −1Vn

2
)= U n

2
Vn

2
,

(vi) Vn = 1
2 (V 2

n
2
+∆U2

n
2
).

Proof. • Assertions (i), (ii), and (iii): Obviously, from the Theorem 1 and Theorem 2 for every
(k1,k2) ∈ {0,1}2 we have

f (n,2)
(k1,k2)(A)× f (n,2)

(k1,k2)(A)= An (8)

and

f (n,2)
(k1,k2)(B)× f (n,2)

(k1,k2)(B)= Bn, (9)

for any odd integer n. Hence,
[
det( f (n,2)

(k1,k2)(A))
]2 = (det A)n. Therefore,[

det( f (n,2)
(k1,k2)(A))

]2 = qn and det( f (n,2)
(k1,k2)(A))= exp(i`π)qn/2 =±qn/2, ` ∈ {0,1}.

• Assertions (iv), (v), (vi): Follows directly from the identities (8) and (9).

Let consider the matrix functions defined as

F (n,2)
I (A)=

 f (`)(A), with n = 2`, if n is even

f (n,2)
(0,0) (A) , if n is odd.

(10)

Therefore, without lost of generality, for any integer number n ∈Z we may write

F (n,2)
I (A)=

[
U n

2 +1 −qU n
2

U n
2

−qU n
2 −1

]
. (11)

Lemma 4. For every integer numbers n and m,

F (n,2)
I (A)×F (m,2)

I (A)=F (n+m,2)
I (A).

The proof of this Lemma is based on a fundamental property of matrix functions. Indeed,
since A admits two distinct eigenvalues α and β, there exists an invertible matrix Z such that

A = Z× JA ×Z−1 = Z
[
α 0
0 β

]
Z−1,

where JA designates the Jordan normal form associated to A. In fact, the matrix f (n,2)
(k1,k2)(A) may

be defined as

f (n,2)
(k1,k2)(A)= Z

(
f (n,2)
(k1,k2) (JA)

)
Z−1 = Z

[
f (n,2)
k1

(α) 0
0 f (n,2)

k2

(
β
)]Z−1,

where (k1,k2) ∈ {0,1}2 [5], [8]. Consequently, by performing F (n,2)
I (A)×F (m,2)

I (A)=F (n+m,2)
I (A),

the desired result is obtained. For simplicity’s sake, we omit the details which will appear in a
similar argument below.

Theorem 5. For any integers n and m

U n+m
2 +1 =U n

2 +1U m
2 +1 − qU n

2
U m

2
, U n+m

2
=U n

2
U m

2 +1 − qU n
2 −1U m

2
.
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Consider now

F (n,2)
I I (A)=

{
f (`)(A), with n = 2`, if n is even
f (n,2)
(0,1) (A), if n is odd.

(12)

Let n and m be two integers, in the purpose of carrying out similar results as in the Theorem 5,
two pertinent cases have to be considered:

(i) If n and m are both odd integer, then n+m is even, thus

F (n,2)
I I (A)×F (m,2)

I I (A)= f (n,2)
(0,1) (A)× f (m,2)

(0,1) (A)= Z
[
α(n+m)/2 0

0 β(n+m)/2

]
Z−1

f (`)(A)=
[
U`+1 −qU`

U` −qU`−1

]
, n+m = 2`.

(ii) If n is odd and m is even, then n+m is odd, thus

F (n,2)
I I (A)×F (m,2)

I I (A)= f (n,2)
(0,1) (A)× f (`)(A) with m = 2`

= Z×
[
αn/2αm/2 0

0 −βn/2βm/2

]
×Z−1

f (n+m,2)
(0,1) (A)= 1p

∆

[
Vn+m

2 +1 −qVn+m
2

Vn+m
2

−qVn+m
2 −1

]
.

Theorem 6. Let n and m be two integer numbers.

(i) If n and m are both odd, then

(a) ∆U n+m
2 +1 =Vn

2 +1Vm
2 +1 − qVn

2
Vm

2
,

(b) ∆U n+m
2

=Vn
2
Vm

2 +1 − qVn
2 −1Vm

2
.

(ii) If n is odd and m is even

(a) Vn+m
2 +1 =Vn

2 +1U m
2 +1 − qVn

2
U m

2
,

(b) Vn+m
2

=Vn
2
U m

2 +1 − qVn
2 −1U m

2
.

The results related to f(1,0)(A) and f(1,1)(A) are automatically covered by the above study,
i.e., the investigation of these branches does not lead to new identities. Furthermore, some
existing results in literature occur when n and m are both even. See for example [7], [9], [10],
[14], [15], [16] and references therein.

Finally, we underline that if the matrix functions defined in (10), (11), and (12) are evaluated
by substituting A by B, other identities can be obtained.

3. The Generalized Fibonacci and Lucas Sequences with
Arbitrary Rational Subscript

Consider the scalar complex function f (r,s)(z) ≡ zr/s, where (r, s) ∈ Z∗×N∗, such that r
s is an

irreducible fraction, i.e., gcd (r, s)= 1. Recall that the matrices A and B are nonsingular with
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the same minimal polynomial MA(z)= MB(z)= (z−α)(z−β). Accordingly, there exist s2 primary
matrix function A 7→ Ar/s, that may be determined by the expression

f (r,s)
(k1,k2)(A)=

exp
[

2ik1rπ
s

]
αr/s

α−β (A−βI2)+
exp

[
2ik2rπ

s

]
βr/s

β−α (A−αI2), (13)

where k1,k2 ∈ℜ (s)= {0, . . . , s−1}. Thus,

f (r,s)
(k1,k2)(A)=


K1α

r
s +1−K2β

r
s +1

α−β −q
(

K1α
r
s −K2β

r
s

α−β

)
K1α

r
s −K2β

r
s

α−β −q
(

K1α
r
s −1−K2β

r
s −1

α−β

)


=
K1+K2

2 U r
s+1 + K1−K2

2
p
∆

Vr
s+1 −q

(
K1+K2

2 U r
s
+ K1−K2

2
p
∆

Vr
s

)
K1+K2

2 U r
s
+ K1−K2

2
p
∆

Vr
s

−q
(

K1+K2
2 U r

s−1 + K1−K2
2
p
∆

Vr
s−1

) ,

where K1 = exp
[

2ik1rπ
s

]
and K2 = exp

[
2ik2rπ

s

]
.

Similarly, there exist s2 primary matrix function B 7→ Br/s, that can be defined by the formula
(13), i.e., by substituting A by B.

Theorem 7. Let r ∈Z∗,and s ∈N∗ such that r
s is an irreducible fraction, then

f (r,s)
(k1,k2)(A)=

K1+K2
2 U r

s+1 + K1−K2
2
p
∆

Vr
s+1 −q

(
K1+K2

2 U r
s
+ K1−K2

2
p
∆

Vr
s

)
K1+K2

2 U r
s
+ K1−K2

2
p
∆

Vr
s

−q
(

K1+K2
2 U r

s−1 + K1−K2
2
p
∆

Vr
s−1

) ,

and

f (r,s)
(k1,k2)(B)= 1

2

[ p
∆K1−Ks

2 U r
s
+ K1+Ks

2 Vr
s

K1+Ks
2 U r

s
+ K1−Ks

2
p
∆

Vr
s

∆K1+Ks
2 U r

s
+p

∆ K1−Ks
2 Vr

s

p
∆K1−Ks

2 U r
s
+ K1+Ks

2 Vr
s

]
,

where K1 = exp
[

2ik1rπ
s

]
and K2 = exp

[
2ik2rπ

s

]
and k1,k2 ∈ℜ (s)= {0, . . . , s−1}.

In the remainder of this section, we will focus on the principal branches of the previous
matrix function:

f (r,s)
(0,0)(A)=

[
U r

s+1 −qU r
s

U r
s

−qU r
s−1

]
and f (r,s)

(0,0)(B)= 1
2

[
Vr

s
U r

s
∆U r

s
Vr

s

]
.

Let r1, r2 ∈Z∗, and s ∈N∗. Then, it can be easily shown that:

(i) If r1
s , r2

s , and r1+r2
s are all irreducible fractions, then

f (r1,s)
(0,0) (A)× f (r2,s)

(0,0) (A)= f (r1+r2,s)
(0,0) (A), f (r1,s)

(0,0) (B)× f (r2,s)
(0,0) (B)= f (r1+r2,s)

(0,0) (B) .

(ii) If r1
s is any irreducible fraction and `= r2

s ∈N∗, then

f (r1,s)
(0,0) (A)× f (r2,s) (A)= f (r1+r2,s)

(0,0) (A),[
U r1

s +1U r2
s +1 − qU r1

s
U r2

s
−qU r1

s +1U r2
s
+ q2U r1

s
U r2

s −1
U r1

s
U r2

s +1 − qU r1
s −1U r2

s
−qU r1

s
U r2

s
+ q2U r1

s −1U r2
s −1

]
=

[
U r1+r2

s +1 −qU r1+r2
s

U r1+r2
s

−qU r1+r2
s −1

]
,
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and

f (r1,s)
(0,0) (B)× f (r2,s) (B)= f (r1+r2,s)

(0,0) (B) ,

1
2

 Vr1
s

Vr2
s
+∆U r1

s
U r2

s
Vr1

s
U r2

s
+U r1

s
Vr2

s

∆
(
U r1

s
Vr2

s
+Vr1

s
U r2

s

)
∆U r1

s
U r2

s
+Vr1

s
Vr2

s

=
[

Vr1+r2
s

U r1+r2
s

∆U r1+r2
s

Vr1+r2
s

]
.

The following theorem summarizes the previous discussion.

Theorem 8. Let consider r1, r2,∈Z∗, and s ∈N∗.

(i) If r1
s , r2

s , and r1+r2
s are irreducible fractions, then

(a) U r1+r2
s +1 =U r1

s +1U r2
s +1 − qU r1

s
U r2

s

(b) U r1+r2
s −1 =U r1

s
U r2

s
− qU r1

s −1U r2
s −1

(c) U r1+r2
s

=U r1
s

U r2
s +1 − qU r1

s −1U r2
s

(d) U r1+r2
s

=U r1
s +1U r2

s
− qU r1

s
U r2

s −1

(e) U r1+r2
s

= 1
2

(
Vr1

s
U r2

s
+U r1

s
Vr2

s

)
(f) Vr1+r2

2
= 1

2

(
Vr1

s
Vr2

s
+∆U r1

s
U r2

s

)
(ii) If r1

s is any irreducible fraction and `= r2
s ∈N∗, then

(a) U r1
s +`+1 =U r1

s +1U`+1 − qU r1
s

U`

(b) U r1
s +` =U r1

s +1U`− qU r1
s

U`−1

(c) U r1
s +` =U r1

s
U`+1 − qU r1

s −1U`

(d) U r1
s +`−1 =U r1

s
U`− qU r1

s −1U`−1

(e) U r1
s +` = 1

2

(
Vr1

s
U`+U r1

s
V`

)
(f) Vr1

s +` = 1
2

(
Vr1

s
V`+∆U r1

s
U`

)
(g) U r1

s +`+1 =U r1
s +1U`+1 − qU r1

s
U`
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