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1. Introduction
Unlike the other linear polymers, dendrimers can be constructed with a well-defined molecular
structure i.e. monodisperse. The dendrimers have a uniform and well-defined size and shape,
which are of prominent interest in the biomedical applications and nanotechnology. They
have three structural units named as the core, branching units and the terminal end groups.
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The charge on end groups plays a vital role in the exploration of the dendrimers as drug delivery
vehicles. The dendrimers are currently attracting the interest of a great number of scientists
and researchers because of their unusual chemical and physical properties and the wide range
of potential application in different fields of applied sciences such as biology, medicine, physics,
chemistry and engineering, to name a few [20].

In this paper, G is considered to be a molecular graph with vertex set V (G) and the edge set
E(G). The vertices of the graph G correspond to the atoms and an edge between two vertices
corresponds to the chemical bond between these vertices. In a graph G, two vertices u and
v are called adjacent if they are end vertices of an edge e ∈ E(G) and we write as e = uv or
e = vu. For a vertex u ∈ V (G), the set of neighbor vertices is denoted by Nu and is defined as
Nu = {v ∈ V (G) : uv ∈ E(G)}. The degree of a vertex u ∈ V (G) is denoted by du and is defined
as du = |Nu|. Similarly, for an edge e = uv, the set of neighbor edges is denoted by N̂e and is
defined as N̂e = { f ∈ E(G) : e and f share a common end-vertex}. The degree of an edge e ∈ E(G)
is denoted by d̂e and is defined as d̂e = |N̂e|.

A whole graph can be uniquely represented by a numeric number, a sequence of numbers,
a polynomial, or by a matrix. A topological index characterizes the topology of the graph by
associated a numeric quantity with a graph and it is invariant under the action of graph
automorphism. Among the major and most studied classes of topological indices, the degree
based topological indices and counting related polynomials indices have a prominent place and
play a vital role in chemical graph theory and particularly in theoretical chemistry. A topological
index denoted by Top(G) of a graph G has a property that if two graphs G and Ĝ are isomorphic,
then we have Top(G) = Top(Ĝ). In 1947, Harold Wiener [22] introduced a numeric quantity
We, eventually named Wiener index or Wiener number. He showed that there are excellent
correlations between the quantity We and a variety of physico-chemical properties of the organic
compounds.

The Zagreb indices are the oldest and most studied molecular structure descriptors and there
have been found significant applications of these molecular structure descriptors in theoretical
and computational chemistry. Nowadays, there exist hundreds of papers on Zagreb indices,
their variants and their related matters. In 1972, Gutman and Trinajstić [9] introduced the
first Zagreb index based on the degree of the vertices of a graph G. The first and second Zagreb
indices of a graph G can be defined in the following way

M1(G)= ∑
uv∈E(G)

(du +dv), (1.1)

M2(G)= ∑
uv∈E(G)

(du ×dv). (1.2)

For historical background, different properties, efficient ways of computation, relations and
bounds of these topological indices, the interested reader can refer to [3,23] and the references
cited therein. Shirdel and his co-authors [19] introduced a new degree-based Zagreb index of a
graph G in 2013, and they named it hyper-Zagreb index that is defined as follows:

HM(G)= ∑
uv∈E(G)

(du +dv)2 . (1.3)

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 4, pp. 647–657, 2018



On Theoretical Study of Zagreb Indices and Zagreb Polynomials . . . : Z. Iqbal et al. 649

Some properties of this index of different graphs have been discussed in the papers [1,5]. In
2012, the two new versions of Zagreb indices of a graph G which are named as multiple Zagreb
indices were introduced by Ghorbani and Azimi [8]. These indices are defined as:

PM1(G)= ∏
uv∈E(G)

(du +dv), (1.4)

PM2(G)= ∏
uv∈E(G)

(du ×dv). (1.5)

The properties of these multiple Zagreb indices have been discussed in [2, 4]. The first and
second Zagreb polynomials can be defined in the following way:

M1(G, y)= ∑
uv∈E(G)

y|du+dv| , (1.6)

M2(G, y)= ∑
uv∈E(G)

y|du×dv| . (1.7)

In 2009, Furtula and his co-authors [6] introduced the augmented Zagreb index, which is defined
as follow

AZI(G)= ∑
uv∈E(G)

(
dudv

du +dv −2

)3
. (1.8)

The different chemical and mathematical properties of this topological index have been studied
in [11,21]. Milovanović’ et al. [17] introduced the reformulated Zagreb indices in terms of the
edge-degrees as follows

EM1(G)= ∑
e∈E(G)

d̂(e)2 , (1.9)

EM2(G)= ∑
e∝ f

d̂(e)× d̂( f ) , (1.10)

where d̂(e) denotes the degree of the edge e in G and e ∝ f means that the edges e and f
share a common end vertex in G. The various physic-chemical properties, relations and bounds
of these indices in terms of other graph-theoretic parameters are explored in [16,18,24]. For
detailed discussions of these indices and other well-known topological indices, we refer the
interested reader to [7,9,10,12–14,17] and references therein.

The water-soluble PDI-cored dendrimers have broad biological applications, including gene
delivery, fluorescence live-cell imaging, and fluorescent labeling. In this paper, we compute
the closed formulas of the first and second Zagreb indices and their variants and their Zagreb
polynomials for the two classes of PDI-cored dendrimers. First class of PDI-cored dendrimers is
polyglycerol dendronized (PGD) PDIs, which was developed by Heek and Würthner et al. by
using the convergent approachin [10,15]. Let D1(n) be the molecular graph of first type of PDI-
cored dendrimer, where n represents the generation stage of D1(n). The core and first generation
of D1(n) are shown in Figure 1. D1(n) with n = 2 and n = 3 are shown in Figure 2. The second
class of PDI-cored dendrimers is fluorescent water-soluble PDI-cored cationic dendrimers that
were synthesized by Xu and his co-authors [23].
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2. Zagreb Indices and Polynomials of Nanostar Dendrimers D1(n)

 
 

 
 
  

Figure 1. From left to right, the core and first generation of D1(n), respectively.

 
 

 
  

Figure 2. From left to right, D(n) with n = 2 and n = 3, respectively.

Now, we compute the first and second Zagreb indices, hyper-Zagreb index, first and second
multiple Zagreb indices, first and second Zagreb polynomials and the augmented Zagreb index
of D1(n) in the following theorem.

Theorem 2.1. For the molecular graph D1(n) we have

• M1(D1(n))= 2n−1 ×100+2n+1 ×19+148.

• M2(D1(n))= 2n+2 +2n−1 ×120+2n+1 ×15+210.

• HM(D1(n))= 2n−1 ×500+2n+1 ×73+856.

• PM1(D1(n))= 32n+1 ×4(2n+1+1)4 ×55×2n+1 ×622.

• PM2(D1(n))= 22n+1 ×65×2n+1 ×642n+1 ×81(1+2n−1) ×922.

• M1(D1(n), y)= 2y3(11y3 +2n ×5y2 +2y+2n ×4y+2n).

• M2(D1(n), y)= 2y2(11y7 +2n ×5y4 +2y+2n ×3y2 +2n y+2n).

• AZI(D1(n))= 2n+4 ×128+2n+2 ×640+2n−1 ×432+8451
32

.

Proof. The total number of edges of the molecular graph D1(n) is 5×2n+2 +26. Now, we define
d1

i j(n) to be the number of edges connecting a vertex of degree i with a vertex of degree j in D1(n).
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Now, we get the edge partition based on the degree of the end vertices. For this molecular graph,
we have the following five edge partitions. The first partition E1

1(D1(n)) consists of 2n+1 edges
that have end vertices of degree 1 and 2. The second partition E1

2(D1(n)) has 4(2n−1 +1) edges
that have end vertices of degree 1 and 3. The third partition E1

3(D1(n)) consists of 3×2n+1 edges
that have both end vertices of degree 2. The forth partition E1

4(D1(n)) has 20×2n−1 edges that
have end vertices of degree 2 and 3. The fifth partition E1

5(D1(n)) consists of 22 edges that have
both end vertices of degree 3. It is easy to see that |E1

1(D1(n))| = d1
12(n), |E1

2(D1(n))| = d1
13(n),

|E1
3(D1(n))| = d1

22(n), |E1
4(D1(n))| = d1

23(n) and |E1
5(D1(n))| = d1

33(n). Now by using equations
(1.1)-(1.8), we get

M1(D1(n))= ∑
uv∈E(D1(n))

(du +dv)

= 3|E1
1(D1(n))|+4|E1

2(D1(n))|+4|E1
3(D1(n))|+5|E1

4(D1(n))|+6|E1
5(D1(n))|

= 2n−1 ×100+2n+1 ×19+148.

M2(D1(n))= ∑
uv∈E(D1(n))

(du ×dv)

= 2|E1
1(D1(n))|+3|E1

2(D1(n))|+4|E1
3(D1(n))|+6|E1

4(D1(n))|+9|E1
5(D1(n))|

= 2n+2 +2n−1 ×120+2n+1 ×15+210.

HM(D1(n))= ∑
uv∈E(D1(n))

(du +dv)2

= 9|E1
1(D1(n))|+16|E1

2(D1(n))|+16|E1
3(D1(n))|+25|E1

4(D1(n))|+36|E1
5(D1(n))|

= 2n−1 ×500+2n+1 ×73+856.

PM1(D1(n))= ∏
uv∈E(D1(n))

(du +dv)

= 3|E1
1(D1(n))|×4|E1

2(D1(n))|×4|E1
3(D1(n))|×5|E1

4(D1(n))|×6|E1
5(D1(n))|

= 32n+1 ×4(2n+1+1)4 ×55×2n+1 ×622.

PM2(D1(n))= ∏
uv∈E(D1(n))

(du ×dv)

= 2|E1
1(D1(n))|×3|E1

2(D1(n))|×4|E1
3(D1(n))|×6|E1

4(D1(n))|×9|E1
5(D1(n))|

= 22n+1 ×65×2n+1 ×642n+1 ×81(1+2n−1) ×922.

M1(D1(n), y)= ∑
uv∈E(G)

y|du+dv|

= y3|E1
1(D1(n))|+ y4|E1

2(D1(n))|+ y4|E1
3(D1(n))|+ y5|E1

4(D1(n))|+ y6|E1
5(D1(n))|

= 2y3(11y3 +2n ×5y2 +2y+2n ×4y+2n).

M2(D1(n), y)= ∑
uv∈E(G)

y|du×dv|
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= y2|E1
1(D1(n))|+ y3|E1

2(D1(n))|+ y4|E1
3(D1(n))|+ y6|E1

4(D1(n))|+ y9|E1
5(D1(n))|

= 2y2(11y7 +2n ×5y4 +2y+2n ×3y2 +2n y+2n).

AZI(D1(n))= ∑
uv∈E(D1(n))

(
dudv

du +dv −2

)3

= 8|E1
1(D1(n))|+ 27

8
|E1

2(D1(n))|+8|E1
3(D1(n))|+8|E1

4(D1(n))|+ 729
64

|E1
5(D1(n))|

= 2n+4 ×128+2n+2 ×640+2n−1 ×432+8451
32

.

In the next theorem, we will compute a closed formula for the first reformulated Zagreb
index of molecular graph D1(n).

Theorem 2.2. For the molecular graph D1(n), the first reformulated Zagreb index is given by

EM1(D1(n))= 2n−1 ×180+2n+1 ×17+368.

Proof. In the molecular graph D1(n), there are total 5×2n+2+26 edges among which 2n+1 edges
of degree 1, 4(2n+1+1) edges having degree 2, 20×2n−1 edges of degree 3 and 22 edges of degree
4. Now by using this information in equation (1.9), we can obtain the required result, which
completes the proof.

Let E(p1
i j(n)) ⊆ E(D1(n)) be the set of edges of degrees i and j that share a common end

vertex in the D1(n). By using the computational arguments, we have |E(p1
13(n))| = 2n+1 =

|E(p1
22(n))|, |E(p1

23(n))| = 6×2n+1, |E(p1
24(n))| = 8, |E(p1

33(n))| = 2n+3 −10, |E(p1
34(n))| = 20 and

|E(p1
44(n))| = 30. Now by using this information, we compute the second reformulated Zagreb

index in the following theorem.

Theorem 2.3. For the molecular graph D1(n), the second reformulated Zagreb index is given by

EM2(D1(n))= 2n+3 ×9+2n+1 ×43+694.

Proof. By using the equation (1.10), we get

EM2(D1(n))= ∑
e∝ f

d̂(e)× d̂( f )

= 2n+1(1×3)+2n+1(2×2)+6×2n+1(2×3)

+8(2×4)+ (2n+3 −10)(3×3)+20(3×4)+30(4×4)

= 2n+3 ×9+2n+1 ×43+694.

3. Zagreb Indices and Polynomials of D2(n)

Let D2(n) be the molecular graph of second type of PDI-cored dendrimer, where D2(n) represents
the generation stage of D2(n). The core and first generation of D2(n) are shown in Figure 3.
D2(n) with n = 2 is shown in Figure 4.
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Figure 3. From left to right, the core and first generation of D2(n), respectively.

 

 
                                           

Figure 4. D2(n) with n = 2.

The molecular graph D2(n) has four similar branches and one core. So we can partition the
molecular graph D2(n) into two parts; one of them is the core C2 and other is the maximal
subgraph T2(n) of D2(n) which has four similar branches with vertex set V (D2(n))−V (C2).
Now, we define d2

i j(n) to be the number of edges connecting a vertex of degree i with a
vertex of degree j in D2(n). Also, we define c2

i j , b2
i j and t2

i j to be the number of edges
connecting a vertex of degree i with a vertex of degree j in core, one branch of T2(n) and
T2(n), respectively. A simple calculation shows that c2

12 = 0, b2
12 = 2n, thus t2

12 = 2n+2, therefore
we have d2

12(n) = c2
12 + t2

12 = 2n+2. Similarly, c2
13 = 12, b2

13 = 6(2n − 1), thus t2
13 = 24(2n − 1),

therefore d2
13(n) = 24×2n −12. On same lines, c2

22 = 16, b2
22 = 14(2n −1), thus t2

22 = 56(2n −1),
therefore d2

22(n)= 8(7×2n−5). Also, we have c2
23 = 44, b2

23 = 11×2n−12, thus t2
23 = 4(11×2n−12),

therefore d2
23(n)= 4(11×2n−1) and finally c2

33 = 34, b2
33 = 2(2n−1), thus t2

33 = 8(2n−1), therefore
d2

33(n)= 8×2n +26. Now, we compute the first and second Zagreb indices, hyper-Zagreb index,
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first and second multiple Zagreb indices, first and second Zagreb polynomials and augmented
Zagreb index of D2(n) in the following theorem.

Theorem 3.1. For the molecular graph D2(n), we have the following results

• M1(D2(n))= 2n ×540+2n+3 ×6+2n+2 ×3−72.

• M2(D2(n))= 2n ×560+2n+3 ×10+14..

• HM(D2(n))= 2n ×2380+2n+2 ×9+2n+3 ×36+4.

• PM1(D2(n))= 32n+2 ×36(2n+2+13) ×256(5×2n+2−13) ×625(2n×11−1).

• PM2(D2(n))= 22n+2 ×81(2n+2+13) ×1296(11×2n−1) ×531441(2n+1−1) ×65536(7×2n−5).

• M1(D2(n), y)= 2y3(13y3 +2n ×4y3 +2n ×22y2 +2n ×40y−2y2 −26y+2n+1).

• M2(D2(n), y)= 2y2(13y7+2n×4y7+2n×22y4+2n×28y2+12y×2n−2y4−20y2−6y+2n+1).

• AZI((D2(n)))= 2n+5 ×32+2n+1 ×1296+2n ×28516−3083
32

.

Proof. The total number of edges of the molecular graph D2(n) is 136×2n −30. Now, we get the
edge partition based on the degree of the end vertices. For this molecular graph, we have the
following five edge partitions. The first partition E2

1(D2(n)) consists of 2n+2 edges that have end
vertices of degree 1 and 2. The second partition E2

2(D2(n)) has 24×2n −12 edges that have end
vertices of degree 1 and 3. The third partition E2

3(D2(n)) consists of 8(7×2n−5) edges that have
both end vertices of degree 2. The forth partition E2

4(D2(n)) has 4(11×2n−1) edges that have end
vertices of degree 2 and 3. The fifth partition E2

5(D2(n)) consists of 8×2n +26 edges that have
both end vertices of degree 3. It is easy to see that |E2

1(D2(n))| = d2
12(n), |E2

2(D2(n))| = d2
13(n),

|E2
3(D2(n))| = d2

22(n), |E2
4(D2(n))| = d2

23(n) and |E2
5(D2(n))| = d2

33(n). Now by using the equations
(1.1)-(1.8), we get

M1(D2(n))= ∑
uv∈E(D2(n))

(du +dv)

= 3|E2
1(D2(n))|+4|E2

2(D2(n))|+4|E2
3(D2(n))|+5|E2

4(D2(n))|+6|E2
5(D2(n))|

= 2n ×540+2n+3 ×6+2n+2 ×3−72.

M2(D2(n))= ∑
uv∈E(D2(n))

(du ×dv)

= 2|E2
1(D2(n))|+3|E2

2(D2(n))|+4|E2
3(D2(n))|+6|E2

4(D2(n))|+9|E2
5(D2(n))|

= 2n ×560+2n+3 ×10+14.

HM(D2(n))= ∑
uv∈E(D2(n))

(du +dv)2

= 9|E2
1(D2(n))|+16|E2

2(D2(n))|+16|E2
3(D2(n))|+25|E2

4(D2(n))|+36|E2
5(D2(n))|

= 2n ×2380+2n+2 ×9+2n+3 ×36+4.

PM1(D2(n))= ∏
uv∈E(D2(n))

(du +dv)

= 3|E2
1(D2(n))|×4|E2

2(D2(n))|×4|E2
3(D2(n))|×5|E2

4(D2(n))|×6|E2
5(D2(n))|
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= 32n+2 ×36(2n+2+13) ×256(5×2n+2−13) ×625(2n×11−1).

PM2(D2(n))= ∏
uv∈E(D2(n))

(du ×dv)

= 2|E2
1(D2(n))|×3|E2

2(D2(n))|×4|E2
3(D2(n))|×6|E2

4(D2(n))|×9|E2
5(D2(n))|

= 22n+2 ×81(2n+2+13) ×1296(11×2n−1) ×531441(2n+1−1) ×65536(7×2n−5).

M1(D2(n), y)= ∑
uv∈E(G)

y|du+dv|

= y3|E2
1(D2(n))|+ y4|E2

2(D2(n))|+ y4|E2
3(D2(n))|+ y5|E2

4(D2(n))|+ y6|E2
5(D2(n))|

= 2y3(13y3 +2n ×4y3 +2n ×22y2 +2n ×40y−2y2 −26y+2n+1).

M2(D2(n), y)= ∑
uv∈E(G)

y|du×dv|

= y2|E2
1(D2(n))|+ y3|E2

2(D2(n))|+ y4|E2
3(D2(n))|+ y6|E2

4(D2(n))|+ y9|E2
5(D2(n))|

= 2y2(13y7 +2n ×4y7 +2n ×22y4 +2n ×28y2 +12y×2n −2y4 −20y2 −6y+2n+1).

AZI(D2(n))= ∑
uv∈E(D2(n))

(
dudv

du +dv −2

)3

= 8|E2
1(D2(n))|+ 27

8
|E2

2(D2(n))|+8|E2
3(D2(n))|+8|E2

4(D2(n))|+ 729
64

|E2
5(D2(n))|

= 2n+5 ×32+2n+1 ×1296+2n ×28516−3083
32

.

In the following theorem, we compute the closed formula for the first reformulated Zagreb
index of the molecular graph D2(n).

Theorem 3.2. For the molecular graph D2(n), the first reformulated Zagreb index is given by
EM1(D2(n))= 2n ×848+172.

Proof. In D2(n), there are total 136× 2n − 30 edges among which 2n+2 edges of degree 1,
4(20×2n−13) edges of degree 2, 4(11×2n−1) edges having degree 3, 2n+3+26 edges of degree 4.
Now by using this information in equation (1.9), we can obtain the required result, which
completes the proof.

Let E(p2
i j(n)) ⊆ E(D2(n)) be the set of edges of degrees i and j that share a common

end vertex in D2(n). By using the computational arguments, we have |E(p2
12(n))| = 2n+2,

|E(p2
22(n))| = 2n+5−26, |E(p2

23(n))| = 4(19×2n−13), |E(p2
24(n))| = 2n+4, |E(p2

33(n))| = 4(5×2n+4),
|E(p2

34(n))| = 2n+4 +8 and |E(p2
44(n))| = 48.

Now, by using this information, we compute the second reformulated Zagreb index in the
following theorem.

Theorem 3.3. For the molecular graph D2(n), the second reformulated Zagreb index is given by
EM2(D2(n))= 2n ×1092+592.
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Proof. By using the equation (1.10), we have

EM2(D2(n))= ∑
e∝ f

d̂(e)× d̂( f )

= 2(9×2n+1 −13)(2×2)+4(19×2n −13)(2×3)+2n+4(2×4)

+4(5×2n +4)(3×3)+ (2n+4 +8)(3×4)+48(4×4)

= 2n ×1092+592.

4. Conclusion
The Zagreb indices and their alternative forms have been used to investigate the molecular
complexity, ZE-isomerism, heterosystems and chirality, whereas the overall Zagreb indices
presented a promising applicability for deducing the multilinear regression models. Zagreb
indices are also used by many investigators in their QSPR and QSAR studies. In this paper,
we have computed certain Zagreb indices and polynomials for two new classes of dendrimers.
For further study, some other topological indices can be computed for the considered structures
D1(n) and D2(n), which will be helpful to understand their underlying topologies in more
details.
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