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An Embedding Theorem given by the Modulus of Variation

László Leindler

Abstract. In [5] and [6] we extended an interesting theorem of Medvedeva [7]
pertaining to the embedding relation Hω ⊂ ΛBV , where ΛBV denotes the set of
functions of Λ-bounded variation. Our theorem proved in [6] unifies the notion of
ϕ-variation due to Young [8] and that of the generalized Wiener class BV (p(n) ↑)
due to Kita and Yoneda [4].

In this note we generalize the theorem proved in [6] such that it will use the
concept of the modulus of variation due to Chanturia [2]. For further references
pertaining to the new notion mentioned above we refer to an interesting paper
by Goginava and Tskhadaia [3].

We also show that our new theorem includes our previous result as a special
case.

1. Introduction

Let ω(δ) be a nondecreasing continuous function on the interval [0, 1] having
the following properties:

ω(0) = 0, ω(δ1 +δ2)µω(δ1) +ω(δ1) for 0µ δ1 µ δ2 µ δ1 +δ2 µ 1.

Such a function is called a modulus of continuity, and it will be denoted by
ω(δ) ∈ Ω.

The modulus of continuity of a continuous function will be denoted by ω( f ,δ),
that is,

ω( f ;δ) := sup
0µhµδ

0µxµ1−h

| f (x + h)− f (x)| .

As usual, set

Hω := { f ∈ C :ω( f ;δ) = O(ω(δ))} .
Chanturia [2] introduced the concept of the modulus of variation for everywhere

bounded 1-periodic functions.
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The modulus of variation of a function f is the function v( f , n) with domain the
positive integers, defined by

v( f , n) := sup
πn

n∑

k=1

| f (bk)− f (ak)| , (1.1)

where πn is an arbitrary system of n disjoint subintervals (ak, bk) of (0, 1).
Let v(n) be a nondecreasing and upwards convex function on [0,∞). Such a

function is called a modulus of variation, and it will be denoted by v(n) ∈ V . It is
clear that any v( f , n) ∈ V .

If v(n) ∈ V is given, then V[v(n)] denotes the class of functions for which
v( f , n) = O(v(n)).

Chanturia has extensively investigated the uniform and absolute convergence
of Fourier series if f ∈ V[(v, n)] (see e.g. the references given in [3]).

Next we define a generalization of the class V[v(n)].
Let Φ := {ϕk} be a sequence of nondecreasing functions ϕk : [0,∞) → R and

ϕk(0) = 0; and let Λ := {λk} be a nondecreasing sequence of positive numbers
such that

∞∑

k=1

1

λk
=∞ .

If v(n) ∈ V is given, then V[Φ,Λ, v(n)] denotes the class of functions
f : [0, 1]→ R for which the condition

sup
πn

n∑

k=1

ϕk(| f (bk)− f (ak)|)λ−1
k = O(v(n)), (1.2)

holds, where πn is defined at (1.1).
A sequence t := {tk} satisfying the conditions

tk ½ 0 and
∞∑

k=1

tk µ 1,

will be denoted by t ∈ T .
In the sequel, Φ,Λ and T always have these properties.
Our theorem to be generalized reads as follows, where the class Λ{ϕn}BV

means the class Λ[Φ,Λ, v(n)≡ 1] introduced now.

Theorem 1.1 ([6]). Assume that ω(t) ∈ Ω and for every k ∈ N, ϕk(ω(δ)) ∈ Ω.
Then the embedding relation Hω ⊂ Λ{ϕk}BV holds if and only if for any t ∈ T

∞∑

k=1

ϕk(ω(tk))λ
−1
k <∞ . (1.3)

2. Results

Our new theorem generalizes Theorem 1.1 proved in [6], which unified all of
the former results mentioned in the Abstract.
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Theorem 2.1. Assume thatω(t) ∈ Ω, v(n) ∈ V and for every k ∈ N, ϕk(ω(δ)) ∈ Ω.
Then the embedding relation Hω ⊂ V[Φ,Λ, v(n)] holds if and only if for every n ∈ N
and for any t ∈ T

n∑

k=1

ϕk(ω(tk))λ
−1
k µ M v(n), (2.1)

where M is a positive constant.

Remark 2.2. We shall show that if v(n) = O(1), then condition (2.1) is equivalent
to (1.3).

Hereby, in this special case, our theorem reduces to Theorem 1.1.

3. Lemmas

We shall use the following three lemmas.

Lemma 3.1 ([1, p. 78]). If ω(δ) ∈ Ω then there exists a concave function ω∗(δ)
such that

ω(δ)µω∗(δ)µ 2ω(δ).

Lemma 3.2 ([7]). If ω(δ) ∈ Ω and t := {tk} ∈ T, then there exists a function
f ∈ Hω such that if

x0 = 0, x1 =
t1

2
,

x2n =
n∑

i=1

t i and x2n+1 = x2n +
tn+1

2
, n½ 1,

then

f (x2n) = 0 and f (x2n+1) =ω(tn+1) f or al l n½ 0.

In [7] a concrete function with these properties is also given. This lemma plays
again a cardinal role in the proof.

Lemma 3.3 ([6]). If ω(t) ∈ Ω and for all k ∈ N, ϕk(ω(t)) ∈ Ω also holds,
furthermore for any t ∈ T the condition (1.3) stays, then there exists a positive
number M such that for any t ∈ T

∞∑

k=1

ϕk(ω(tk))λ
−1
k µ M (3.1)

holds.

4. Proof of Theorem 2.1

Necessity. Suppose that Hω ⊂ V [Φ,Λ, v(n)]. Without loss of generality, due to
Lemma 3.1, we can assume that, for every k, the functions ϕk(ω(δ)) are concave
moduli of continuity.
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Indirectly, let us assume that there is no number M with property (2.1). Then
for any i ∈ N there exists a sequence t(i) := {tk,i} ∈ T such that

2i v(n)<
n∑

k=1

ϕk(ω(tk,i))λ
−1
k . (4.1)

Now define

tk :=
∞∑

i=1

tk,i

2i . (4.2)

It is easy to see that t := {tk} ∈ T .
Since every ϕk(ω(δ)) is concave, thus by Jensen’s inequality, we obtain that

ϕk(ω(tk)) = ϕk

 
ω

 ∞∑

i=1

tk,i

2i

!!
½
∞∑

i=1

ϕk(ω(tk,i))

2i . (4.3)

Utilizing (4.1) and (4.3) we get that
n∑

k=1

ϕk(ω(tk))λ
−1
k ½

n∑

k=1

λ−1
k

∞∑

i=1

ϕk(ω(tk,i))2
−i

½
n∑

i=1

2−i
n∑

k=1

ϕk(ω(tk,i))λ
−1
k

½ nv(n) . (4.4)

Then, applying Lemma 3.2 with this t and ω(δ), we obtain that there exists a
function f ∈ Hω such that

| f (x2k−1)− f (x2k−2)|=ω(tk) for all k .

Hence, by (4.4), we get that

v(n)−1
n∑

k=1

ϕk(| f (x2k−1)− f (x2k−1)|)λ−1
k = v(n)−1

n∑

k=1

ϕk(ω(tk))λ
−1
k

½ n,

that is, (1.2) does not hold if bk = x2k−1 and ak = x2k−2, thus f does not belong
to the class V[Φ,Λ, v(n)].

This and the assumption Hω ⊂ V [Φ,Λ, v(n)] contradict, whence the necessity
of (2.1) follows.

Sufficiency. If we consider an arbitrary system of n disjoint subintervals (ak, bk) of
(0, 1) and take tk := (bk − ak), then t := {tk} ∈ T ; consequently for this t (2.1)
also holds. Thus, if f ∈ Hω, by (2.1) we have that

v(n)−1
n∑

k=1

ϕk(| f (bk)− f (ak)|)λ−1
k µ v(n)−1

n∑

k=1

ϕk(ω(bk − ak))λ
−1
k

µ M ,

and, by (1.2), this shows that f ∈ V [Φ,Λ, v(n)].
Hereby we verified that the condition (2.1) is also sufficient to the embedding

relation Hω ⊂ V [Φ,Λ, v(n)].
The proof is complete.
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5. Proof of Remark 2.2

If v(n) = O(1) and (2.1) holds for all n, then (2.1) is equivalent to (3.1). Clearly
(3.1) implies (1.3), furthermore, by Lemma 3.3, (1.3) implies (3.1). Since, then
(3.1) equivalent to (2.1), therefore the equivalence of (2.1) and (1.3) are proved,
herewith the proof is complete.

This also shows that Theorem 2.1 in the special case v(n) = O(1) includes
Theorem 1.1.
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