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1. Introduction and Preliminaries
One of the most important results in fixed point theory is the Banach contraction principle
[3] because of its application in many branches of mathematics and mathematical sciences. In
1993, Czerwik [4] introduced the concept of b-metric spaces afterward the concept of partial
metric spaces is introduced by Matthews [13] in 1994. In 2013, Shukla [21] introduced the
partial b-metric spaces by unification two notions of b-metric spaces and partial metric spaces.
Mustafa [15] gave a modified version of partial b-metric spaces which it is dependent on b-metric
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spaces and proved some common fixed point results for (ψ,ϕ)-weakly contractive mappings in
the set up of ordered partial b-metric spaces.

Generalization of the Banach contraction principle given by Geraghty [7] is one of the most
interesting results. Later, Harandi and Emami [1] characterized the result of Geraghty [7]
in the context of a partially ordered complete metric space. In 2013, Cho et al. [5] defined
the concept of α-Geraghty contractive type mappings in the setting of metric spaces. On
the other hand, Karapinar [10] investigated the existence and uniqueness of fixed point of
generalization of α-ψ-Geraghty contractive type mappings under new conditions concerning
with triangular α-admissible mappings. In 2014, Mukheimer [14] introduced the concept of
α-ψ-ϕ-contractive mappings in complete ordered partial b-metric spaces and studied fixed
points for such mappings. Recently, Popescu [16] generalized the results obtained in [5] and
gave triangular α-orbital admissible conditions to prove fixed point theorems.

For the sake of completeness, we recall some basic definitions and fundamental results.

Let F be the class of all functions β : [0,∞)→ [0,1) satisfying the following condition:

lim
n→∞β(tn)= 1 implies lim

n→∞ tn = 0.

Remark 1.1. We illustrate some interesting properties of functions in F .

(1) The class F is nonempty. Indeed, for each α ∈ [0,1) we define β : [0,∞)→ [0,1) by βα(t)=α
for all t ∈ [0,∞). We obtain that βα ∈F and F is uncountable.

(2) There exists a differentiable function which does not belong to the class F . For example,
take β(t) = t

1+t for all t ∈ [0,∞). If we put tn = n for all n ∈N, then we have lim
n→∞

tn
1+tn

= 1
but lim

n→∞ tn 6= 0. Therefore β 6∈F .

(3) There exists a function in F which is not continuous. For instance,

β(t)=
{

1
1+t , t > 0;
0 , t = 0.

It is obviously that β ∈F but it is not continuous from the right at x = 0.

Theorem 1.2 (Geraghty [7]). Let (X ,d) be a complete metric space and T : X → X be a mapping.
If T satisfies the following inequality:

d(Tx,T y)≤β(d(x, y))d(x, y),

for any x, y ∈ X , where β ∈F , then T has a unique fixed point.

Notice that T is a nonexpansive mapping and moreover, it is also a continuous function.
The results of Geraghty have attracted a numbers of authors [1,5,10,12,20,21].

Shukla [21] unified partial metrics and b-metric spaces by introducing the concept of partial
b-metric space as follows.

Definition 1.3 ([21]). A partial b-metric on a nonempty set X is a mapping pb : X × X → [0,∞)
satisfying the following conditions for all x, y, z ∈ X :

(pb1) x = y if and only if pb(x, x)= pb(x, y)= pb(y, y);
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(pb2) pb(x, x)≤ pb(x, y);

(pb3) pb(x, y)= pb(y, x);

(pb4) pb(x, y)≤ s[pb(x, z)+ pb(z, y)]− pb(z, z).

A partial b-metric space is a pair (X , pb) such that X is a nonempty set and pb is a partial
b-metric on X . The number s ≥ 1 is called the coefficient of (X , pb).

It is clear that every partial metric space is a partial b-metric space with the coefficient
s = 1 and every b-metric space is a partial b-metric space with the same coefficient and zero
self-distance. However, the converse of these facts need not hold.

Example 1.4 ([15]). Let (X ,d) be a metric space and pb(x, y) = d(x, y)q +a, where q > 1 and
a ≥ 0 are real numbers. Then pb is a partial b-metric with the coefficient s = 2q−1, but it is
neither a b-metric nor a partial metric.

Note that in a partial b-metric space, the limit of a convergent sequence may not be unique
(see [21, Example 2]). Some more examples of partial b-metrics can be constructed by using of
the following propositions.

Proposition 1.5 ([21]). Let X be a nonempty set, and let p be a partial metric and d be a
b-metric with the coefficient s ≥ 1 on X . Then the function pb : X × X → [0,∞), defined by
pb(x, y)= p(x, y)+d(x, y) for all x, y ∈ X , is a partial b-metric on X with the coefficient s.

Proposition 1.6 ([21]). Let (X , p) be a partial metric space and q ≥ 1. Then (X , pb) is a partial
b-metric space with the coefficient s = 2q−1, where pb is defined by pb(x, y)= [p(x, y)]q.

In the following definition, Mustafa [15] modified the Definition 1.3 in order to obtain that
each partial b-metric pb generates a b-metric dpb .

Definition 1.7 ([15]). Let X be a nonempty set and s ≥ 1 be given a real number. A function
pb : X ×X → [0,∞) is a partial b-metric if the following conditions are satisfied for all x, y, z ∈ X :

(pb1) x = y if and only if pb(x, x)= pb(x, y)= pb(y, y);

(pb2) pb(x, x)≤ pb(x, y);

(pb3) pb(x, y)= pb(y, x);

(pb4) pb(x, y)≤ s(pb(x, z)+ pb(z, y)− pb(z, z))+ (1−s
2

)
(pb(x, x)+ pb(y, y)).

The pair (X , pb) is called a partial b-metric space. The number s ≥ 1 is called the coefficient
of (X , pb).

Proposition 1.8 ([15]). Every partial b-metric space pb defines a b-metric dpb , where

dpb (x, y)= 2pb(x, y)− pb(x, x)− pb(y, y) for all x, y ∈ X .

Definition 1.9 ([15]). A sequence {xn} in a partial b-metric space (X , pb) is said to be:

(i) pb-convergent to a point x ∈ X if lim
n→∞ pb(x, xn)= pb(x, x);
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(ii) A pb-Cauchy sequence if x ∈ X if lim
n,m→∞ pb(xn, xm) exists (and is finite);

(iii) A partial b-metric space (X , pb) is said to be pb-complete if every pb-Cauchy sequence
{xn} in X pb-converges to a point x ∈ X such that

lim
n,m→∞ pb(xn, xm)= lim

n→∞ pb(xn, x)= pb(x, x).

The following lemma shows the relationship between the concepts of pb-convergent sequence,
pb-Cauchy sequence and pb-completeness in (X , pb) and (X ,dpb ).

Lemma 1.10 ([15]). (1) A sequence {xn} is a pb-Cauchy sequence in a partial b-metric space
(X , pb) if and only if it is a b-Cauchy sequence in the b-metric space (X ,dpb ).

(2) A partial b-metric space (X , pb) is pb-complete if and only if the b-metric space (X ,dpb ) is
b-complete. Moreover, lim

n→∞dpb (x, xn)= 0 if and only if

lim
n→∞ pb(x, xn)= lim

n,m→∞ pb(xn, xm)= pb(x, x).

Definition 1.11 ([15]). Let (X , pb) and (X ′, p′
b) be two partial b-metric spaces, and let

f : (X , pb) → (X ′, p′
b) be a mapping. Then f is said to be pb-continuous at a point a ∈ X

if for a given ε, there exists δ > 0 such that x ∈ X and pb(a, x) < δ+ pb(a,a) imply that
p′

b( f (a), f (x))< ε+ p′
b( f (a), f (a)). The mapping f is pb-continuous on X if it is pb-continuous at

a all a ∈ X .

Proposition 1.12 ([15]). Let (X , pb) and (X ′, p′
b) be two partial b-metric spaces. Then the

mapping f : X → X ′ is pb-continuous at a point x ∈ X if and only if it is pb-sequentially
continuous at x; that is, whenever {xn} is pb-convergent to x, { f (xn)} is p′

b-convergent to f (x).

The following vital lemma is useful in proving our main results.

Lemma 1.13 ([15]). Let (X , pb) be a partial b-metric space with the coefficient s > 1 and suppose
that {xn} and {yn} are convergent to x and y, respectively. Then we have

1
s2 pb(x, y)− 1

s
pb(x, x)− pb(y, y)≤ liminf

n→∞ pb(xn, yn)

≤ limsup
n→∞

pb(xn, yn)

≤ spb(x, x)+ s2 pb(y, y)+ s2 pb(x, y).

In particular, if pb(x, y)= 0, then we have lim
n→∞ pb(xn, yn)= 0.

Moreover, for each z ∈ X , we have
1
s

pb(x, z)− pb(x, x)≤ liminf
n→∞ pb(xn, z)≤ limsup

n→∞
pb(xn, z)

≤ spb(x, z)+ spb(x, x).

In particular, if pb(x, x)= 0, then we have
1
s

pb(x, z)≤ liminf
n→∞ pb(xn, z)≤ limsup

n→∞
pb(xn, z)≤ spb(z, z).
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On the other hand, in 2012, Samet et al. [3] introduced the concept of α-ψ-contractive and α-
admissible mappings and established various fixed point theorems for such mappings defined on
complete metric spaces. Afterward Salimi et al. [18] modified the notion of α-ψ-contractive and
α-admissible mappings and established fixed point theorems which are proper generalizations
of the recent results in [19], [8].

Definition 1.14 ([18]). Let T be a self mapping on X and α,η : X × X → [0,∞) be two functions.
We say that T is α-admissible with respect to η if for all x, y ∈ X ,

α(x, y)≥ η(x, y) implies α(Tx,T y)≥ η(Tx,T y).

We say that T is α-admissible if for all x, y ∈ X ,

α(x, y)≥ 1 implies α(Tx,T y)≥ 1.

Karapinar et al. [10] introduced the new concept of triangular α-admissible mappings to
investigate fixed points for such mappings in metric spaces.

Definition 1.15 ([10]). Let T : X → X and α : X × X → [0,∞). We say that T is a triangular
α-admissible mapping if

(T1) T is α-admissible;

(T2) α(x, z)≥ 1 and α(z, y)≥ 1 imply α(x, y)≥ 1.

Definition 1.16 ([11]). Let Ψ′ be a family of function ψ : [0,∞)→ [0,∞) satisfies the following
properties:

(i) ψ is continuous and nondecreasing;

(ii) ψ(t)= 0 if and only if t = 0;

(iii) ψ is subadditive, ψ(s+ t)≤ψ(s)+ψ(t).

Definition 1.17 ([10]). Let (X ,d) be a metric space and α : X×X → [0,∞). A mapping T : X → X
is said to be a generalized α-ψ-Geraghty contractive type mapping if there exists β ∈F such
that

α(x, y)ψ(d(Tx,T y))≤β(ψ(M(x, y)))ψ(M(x, y)) for any x, y ∈ X ,

where M(x, y)=max{d(x, y),d(x,Tx),d(y,T y)} and ψ ∈Ψ′.

Theorem 1.18 ([10]). Let (X ,d) be a complete metric space, α : X ×X → [0,∞) be a function, and
let T : X → X be a mapping. Suppose that the following conditions are satisfied:

(i) T is a generalized α-ψ-Geraghty contractive type mapping;

(ii) T is a triangular α-admissible mapping;

(iii) there exists x1 ∈ X such that α(x1,Tx1)≥ 1;

(iv) T is a continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

We are interesting in a class of Ψ by omitting the subadditivity of ψ.
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Definition 1.19. Let Ψ be a family of function ψ : [0,∞)→ [0,∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is continuous and nondecreasing;

(ii) ψ(t)= 0 if and only if t = 0.

The family Ψ is convex. Moreover, condition (i) is independent of (ii) and conversely. For
example, ψ(t) = ln(t+2) satisfies condition (i), but ψ(t) 6= 0 when t = 0 and ψ(t) = t

t−1 fails at
t = 1 which implies ψ is not a continuous function but ψ(t)= 0 if and only if t = 0.

In 2014, Popescu [16] introduced three new concepts of α-orbital admissible, triangular
α-orbital admissible and α-orbital attractive mappings.

Definition 1.20 ([16]). Let T : X → X be a mapping and α : X × X → [0,∞) be a function. Then
T is said to be triangular α-orbital admissible if

(O1) T is α-orbital admissible, that is, α(x,Tx)≥ 1 implies α(Tx,T2x)≥ 1;

(O2) α(x, y)≥ 1 and α(y,T y)≥ 1 imply α(x,T y)≥ 1.

Definition 1.21 ([16]). T : X → X be a mapping and α : X × X → [0,∞) be a function. Then T is
said to be α-orbital attractive if

α(x,Tx)≥ 1 implies α(x, y)≥ 1 or α(y,Tx)≥ 1

for every y ∈ X .

Theorem 1.22 ([16]). Let (X ,d) be a complete metric space, α : X ×X → [0,∞) be a function, and
let T : X → X be a mapping. Suppose that the following conditions are satisfied:

(1) T is a generalized α-Geraghty contractive type mapping;

(2) T is an α-orbital admissible mapping;

(3) there exists x∗ ∈ X such that α(x∗,Tx∗)≥ 1;

(4) T is an α-orbital attractive mapping.

Then T has a fixed point x∗ ∈ X and {Tnx∗} converges to x∗.

In 2016, Chuadchawna et al. [6] introduced the concept of triangular α-orbital admissible
mappings with respect to η and proved the lemma which will be used efficiently for proving our
main results.

Definition 1.23 ([6]). Let T : X → X be a mapping and α,η : X × X → [0,∞) be functions. Then
T is said to be α-orbital admissible with respect to η if

α(x,Tx)≥ η(x,Tx) implies α(Tx,T2x)≥ η(Tx,T2x).

Definition 1.24 ([6]). Let T : X → X be a mapping and α,η : X × X → [0,∞) be functions. Then
T is said to be triangular α-orbital admissible with respect to η if

(T1) T is α-orbital admissible with respect to η;

(T2) α(x, y)≥ η(x, y) and α(y,T y)≥ η(y,T y) imply α(x,T y)≥ η(x,T y).
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Remark 1.25. If we suppose that η(x, y) = 1 for all x, y ∈ X , then Definition 1.24 reduces to
Definition 1.20.

Lemma 1.26 ([6]). Let T : X → X be a triangular α-orbital admissible mapping with respect to
η. Assume that there exists x1 ∈ X such that α(x1,Tx1) ≥ η(x1,Tx1). Define a sequence {xn} by
xn+1 = Txn. Then we have α(xn, xm)≥ η(xn, xm) for all m,n ∈N with n < m.

In this paper, we introduce the notion of generalized α-η-ψ-Geraghty contractive type
mappings and α-orbital attractive mappings with respect to η in the set up of partial b-metric
spaces. Furthermore, the fixed point theorems for such mappings which are triangular α-orbital
admissible with respect to η in complete partial b-metric spaces are proven without assuming
the subadditivity of ψ. Examples are also provided for supporting of our main results. Our
results generalize and extend the results proved by [6], [10], [16].

2. Main Results
2.1 Generalized α-η-ψ-Geraghty Contractive Type Mappings with Fixed Point

Theorems
We now introduce the concept of generalized α-η-ψ-Geraghty contractive type mappings on
partial b-metric spaces.

Definition 2.1. Let (X , pb) be a partial b-metric space with the coefficient s ≥ 1. A mapping
T : X → X is said to be a generalized α-η-ψ-Geraghty contractive type mapping if there exist
ψ ∈Ψ, α,η : X × X → [0,∞) and β ∈F such that

α(x, y)≥ η(x, y) implies ψ(spb(Tx,T y))≤β(ψ(MT
s (x, y)))ψ(MT

s (x, y)) (1)

for all x, y ∈ X , where

MT
s (x, y)=max

{
pb(x, y), pb(x,Tx), pb(y,T y),

pb(x,T y)+ pb(y,Tx)
2s

}
.

If we suppose that η(x, y)= 1 for all x, y ∈ X and let

MT
s (x, y)= M(x, y)=max {d(x, y),d(x,Tx),d(y,T y)} ,

then Definition 2.1 reduces to Definition 1.17 in the setting of metric spaces.

Theorem 2.2. Let (X , pb) be a pb-complete partial b-metric space with the coefficient s ≥ 1.
Let T : X → X be a generalized α-η-ψ-Geraghty contractive type mapping. Suppose that the
following conditions hold:

(i) T is a triangular α-orbital admissible mapping with respect to η;

(ii) there exists x1 ∈ X such that α(x1,Tx1)≥ η(x1,Tx1);

(iii) if {xn} is a pb-convergent sequence to z in X and α(xn, xn+1) ≥ η(xn, xn+1) for each n ∈N,
then α(z, z)≥ η(z, z);

(iv) T is continuous.

Then T has a fixed point.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 3, pp. 455–478, 2018



462 Some Fixed Point Theorems for Generalized α-η-ψ-Geraghty Contractive Type . . . : A. Farajzadeh et al.

Proof. Let x1 ∈ X such that α(x1,Tx1)≥ η(x1,Tx1). Define the sequence {xn} in X by xn+1 = Txn

for all n ∈N. By Lemma 1.26, we get that

α(xn, xn+1)≥ η(xn, xn+1), for all n ∈N. (2)

If xn = xn+1 for some n ∈N, then xn is a fixed point of T . Assume that xn 6= xn+1 for all n ∈N.
We first prove that the sequence {pb(xn, xn+1)} is nonincreasing and tends to 0 as n → ∞.
By using (2), for each n ∈N, we have

ψ(spb(xn+1, xn+2))=ψ(spb(Txn,Txn+1))

≤β(ψ(MT
s (xn, xn+1)))ψ(MT

s (xn, xn+1))

<ψ(MT
s (xn, xn+1)), (3)

where

MT
s (xn, xn+1)=max

{
pb(xn, xn+1), pb(xn,Txn), pb(xn+1,Txn+1),

pb(xn,Txn+1)+ pb(xn+1,Txn)
2s

}
=max

{
pb(xn, xn+1), pb(xn, xn+1), pb(xn+1, xn+2),

pb(xn, xn+2)+ pb(xn+1, xn+1)
2s

}
≤max

{
pb(xn, xn+1), pb(xn, xn+1), pb(xn+1, xn+2),

spb(xn, xn+1)+ spb(xn+1, xn+2)+ (1− s)pb(xn+1, xn+1)
2s

}
=max {pb(xn, xn+1), pb(xn+1, xn+2)} . (4)

If max {pb(xn, xn+1), pb(xn+1, xn+2)} = pb(xn+1, xn+2), then ψ(spb(xn+1, xn+2)) <ψ(pb(xn+1, xx+2))
which contradicts to ψ(spb(xn+1, xn+2))≥ψ(pb(xn+1, xx+2)).
This implies that max {pb(xn, xn+1), pb(xn+1, xn+2)}= pb(xn, xn+1).
It follows that 0< pb(xn+1, xn+2)≤ pb(xn, xn+1). Hence the sequence {pb(xn, xn+1)} is nonnegative
nonincreasing and bounded below.
It follows that there exists r ≥ 0 such that

lim
n→∞ pb(xn, xn+1)= r.

Suppose that r > 0. By using (3), we have
ψ(pb(xn+1, xn+2))
ψ(pb(xn, xn+1))

≤ ψ(spb(xn+1, xn+2))
ψ(pb(xn, xn+1))

≤β(ψ(MT
s (xn, xn+1)))< 1,

for all n ∈N. Therefore

lim
n→∞β(ψ(MT

s (xn, xn+1)))= 1.

Since β ∈F , we have lim
n→∞ψ(MT

s (xn, xn+1))= 0 and so

r = lim
n→∞ pb(xn, xn+1)= 0. (5)

We next prove that {xn} is a pb-Cauchy sequence in (X , pb) by proving that {xn} is a b-Cauchy
sequence in (X ,dpb ). Suppose that {xn} is not a b-Cauchy sequence in (X ,dpb ). Then there exists
ε> 0 such that for all k > 0, there exist n(k)> m(k)> k for which we can find two subsequences
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{xn(k)} and {xm(k)} of {xn} such that n(k) is the smallest index for which

dpb (xm(k), xn(k))≥ ε, (6)

and

dpb (xm(k), xn(k)−1)< ε. (7)

Therefore

ε≤ dpb (xm(k), xn(k))≤ sdpb (xm(k), xn(k)−1)+ sdpb (xn(k)−1, xn(k))

< sε+ sdpb (xn(k)−1, xn(k)). (8)

Taking the lower limit for (8) as k →∞, we have
ε

s
≤ liminf

k→∞
dpb (xm(k), xn(k)−1)≤ limsup

k→∞
dpb (xm(k), xn(k)−1)≤ ε. (9)

From (8) and (9), we obtain that

ε≤ limsup
k→∞

dpb (xm(k), xn(k))≤ sε.

By using the triangular inequality, we have

dpb (xm(k)+1, xn(k))≤ sdpb (xm(k)+1, xm(k))+ sdpb (xm(k), xn(k))

≤ sdpb (xm(k)+1, xm(k))+ s2dpb (xm(k), xn(k)−1)+ s2dpb (xn(k)−1, xn(k))

≤ sdpb (xm(k)+1, xm(k))+ s2ε+ s2dpb (xn(k)−1, xn(k)).

By taking the upper limit as k →∞ in the above inequality, we obtain that

limsup
k→∞

dpb (xm(k)+1, xn(k))≤ s2ε.

Similarly, we also have

dpb (xm(k)+1, xn(k)−1)≤ sdpb (xm(k)+1, xm(k))+ sdpb (xm(k)+1, xn(k)−1)

≤ sdpb (xm(k)+1, xm(k))+ sε.

By taking the upper limit as k →∞ in the above inequality, this yields

limsup
k→∞

dpb (xm(k)+1, xn(k)−1)≤ sε.

By using the definition of dpb and (9), we obtain that

2limsup
k→∞

pb(xm(k), xn(k)−1)= limsup
k→∞

dpb (xm(k), xn(k)−1).

It follows that
ε

2s
≤ liminf

k→∞
pb(xm(k), xn(k)−1)≤ limsup

k→∞
pb(xm(k), xn(k)−1)≤ ε

2
. (10)

Similarly, we can prove that,

limsup
k→∞

pb(xm(k), xn(k))≤
sε
2

, (11)

ε

2s
≤ limsup

k→∞
pb(xm(k)+1, xn(k)), (12)

limsup
k→∞

pb(xm(k)+1, xn(k)−1)≤ sε
2

. (13)
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Since T is a triangular α-orbital admissible mapping with respect to η and using (3), we obtain
that α(xm(k), xn(k)−1)≥ η(xm(k), xn(k)−1). By using (1), we have

ψ(spb(xm(k)+1, xn(k)))≤β(ψ(MT
s (xm(k), xn(k)−1)))ψ(MT

s (xm(k), xn(k)−1)) (14)

where

MT
s (xm(k), xn(k)−1)=max

{
pb(xm(k), xn(k)−1), pb(xm(k),Txm(k)), pb(xn(k)−1,Txn(k)−1),

pb(xm(k),Txn(k)−1)+ pb(xn(k)−1,Txm(k))
2s

}
=max

{
pb(xm(k), xn(k)−1), pb(xm(k), xm(k)+1), pb(xn(k)−1, xn(k)),

pb(xm(k), xn(k))+ pb(xn(k)−1, xm(k)+1)
2s

}
. (15)

Taking the upper limit as k →∞ in the above inequality using (5), (10), (11) and (13), this yields

limsup
k→∞

MT
s (xm(k), xn(k)−1)=max

{
limsup

k→∞
pb(xm(k), xn(k)−1), limsup

k→∞
pb(xm(k), xm(k)+1),

limsup
k→∞

pb(xn(k)−1, xn(k)),

limsup
k→∞

pb(xm(k), xn(k))+ limsup
k→∞

pb(xn(k)−1, xm(k)+1)

2s

}
=max

{
limsup

k→∞
pb(xm(k), xn(k)−1),0,0,

limsup
k→∞

pb(xm(k), xn(k))+ limsup
k→∞

pb(xn(k)−1, xm(k)+1)

2s

}
≤max

{ε
2

,
ε

2

}
= ε

2
. (16)

By taking the upper limit in (14) as k →∞ and using (12) and (16), we have

ψ(s
ε

2s
)≤ψ(limsup

k→∞
spb(xm(k)+1, xn(k)))

≤β(ψ(limsup
k→∞

MT
s (xm(k), xn(k)−1)))ψ(limsup

k→∞
MT

s (xm(k), xn(k)−1))

≤β(ψ(limsup
k→∞

MT
s (xm(k), xn(k)−1)))ψ(

ε

2
).

This implies that
ψ( ε2 )
ψ( ε2 )

≤β(ψ(limsup
k→∞

MT
s (xm(k), xn(k)−1))).

Since β ∈F , we have

lim
k→∞

β(ψ(limsup
k→∞

MT
s (xm(k), xn(k)−1)))= 1.
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It follows that

ψ(limsup
k→∞

MT
s (xm(k), xn(k)−1))= 0.

By using (14) we obtain,

limsup
k→∞

pb(xm(k), xn(k)−1)= 0, (17)

which contradicts to(10). Therefore the sequence {xn} is a b-Cauchy sequence in the b-metric
space (X ,dpb ). Since (X , pb) is pb-complete, then (X ,dpb ) is b-complete. This implies that there
exists z ∈ X such that lim

n→∞dpb (xn, z)= 0. By applying Proposition 1.8, we have

2pb(xn, z)= dpb (xn, z)+ pb(xn, xn)+ pb(z, z)≤ dpb (xn, z)+ pb(xn, xn+1)+ pb(xn, z).

Therefore pb(xn, z) ≤ dpb (xn, z)+ pb(xn, xn+1). By taking the limit as n → ∞, we obtain that
lim

n→∞ pb(xn, z)= 0. By Lemma 1.10, we have

0= lim
n→∞ pb(xn, z)= lim

n→∞ pb(xn, xm)= lim
n→∞ pb(z, z).

We next prove that z = Tz. Suppose that z 6= Tz. By using the triangular inequality, we obtain
that

pb(z,Tz)≤ spb(z,Txn)+ spb(Txn,Tz).

By taking limit as n →∞ in the above inequality and using the continuity of T , we have

pb(z,Tz)≤ s lim
n→∞ pb(z, xn+1)+ s lim

n→∞ pb(Txn,Tz)= spb(Tz,Tz). (18)

Since α(z, z)≥ η(z, z) and using (1), we have

ψ(spb(Tz,Tz))≤β(ψ(MT
s (z, z)))ψ(MT

s (z, z)),

where

MT
s (z, z)=max

{
pb(z, z), pb(z,Tz), pb(z,Tz),

pb(z,Tz)+ pb(z,Tz)
2s

}
= pb(z,Tz). (19)

Therefore

ψ(spb(Tz,Tz))≤β(ψ(pb(z,Tz)))ψ(pb(z,Tz))<ψ(pb(z,Tz)). (20)

Since ψ is nondecreasing, we have spb(Tz,Tz) ≤ pb(z,Tz). This implies that spb(Tz,Tz) =
pb(z,Tz). From (20), we can deduce that

ψ(spb(Tz,Tz))
ψ(pb(z,Tz))

≤β(ψ(pb(z,Tz))).

We obtain that

lim
n→∞β(ψ(pb(z,Tz)))= 1.

Therefore pb(z,Tz) = 0. This implies that pb(z, z) = pb(z,Tz) = pb(Tz,Tz) = 0. That is Tz = z
and thus z is a fixed point of T .

We now investigate the fixed point result without continuity of a mapping T .

Definition 2.3. Let (X , pb) be a pb-complete partial b-metric space with the coefficient s ≥ 1,
α,η : X × X → [0,∞) be functions, and let T be a self mapping on X . The sequence {xn} is
α-regular with respect to η provided the following condition is satisfied: if {xn} is a sequence
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in X such that α(xn, xn+1)≥ η(xn, xn+1) for all n ∈N and {xn} is pb-convergent to x, then there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x)≥ η(xn(k), x) for all k ∈N.

In the following theorem, we replace the continuity of the mapping T in Theorem 2.2 by
α-regularity with respect to η.

Theorem 2.4. Let (X , pb) be a pb-complete partial b-metric space with the coefficient s ≥ 1. Let
T : X → X be a generalized α-η-ψ-Geraghty contractive type mapping. Suppose that the following
conditions hold:

(i) T is a triangular α-orbital admissible mapping with respect to η;

(ii) there exists x1 ∈ X such that α(x1,Tx1)≥ η(x1,Tx1);

(iii) {xn} is α-regular with respect to η.
Then T has a fixed point.

Proof. By the same proof as in Theorem 2.2, we can construct the sequence {xn} in X defined
by xn+1 = Txn for all n ∈ N such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and {xn} is pb-
convergent to z for some z ∈ X . By (iii), there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), z) ≥ η(xn(k), z) for all n ∈N. Since T is a generalized α-η-ψ-Geraghty contractive type
mapping, we have

ψ(spb(Txn(k),Tz))≤β(ψ(MT
s (xn(k), z)))ψ(MT

s (xn(k), z)), (21)

where,

MT
s (xn(k), z)=max

{
pb(xn(k), z), pb(xn(k),Txn(k)), pb(z,Tz),

pb(xn(k),Tz)+ pb(Txn(k), z)
2s

}
=max

{
pb(xn(k), z), pb(xn(k), xn(k)+1), pb(z,Tz),

pb(xn(k),Tz)+ pb(xn(k)+1, z)
2s

}
≤max

{
pb(xn(k), z), pb(xn(k), xn(k)+1), pb(z,Tz),

spb(xn(k), z)+ spb(z,Tz)+ pb(xn(k)+1, z)
2s

}
. (22)

By taking the upper limit as k →∞ in above inequality, we have

limsup
k→∞

MT
s (xn(k), z)≤ pb(z,Tz). (23)

From (21) and using Lemma 1.13, then taking the upper limit as k →∞, we obtain that

ψ(pb(z,Tz))=ψ(s
1
s

pb(z,Tz)

≤ψ(s liminf
k→∞

pb(xn(k)+1,Tz))

≤ψ(s limsup
k→∞

pb(xn(k)+1,Tz))

≤β(ψ(limsup
k→∞

MT
s (xn(k), z)))ψ(limsup

k→∞
MT

s (xn(k), z))

≤β(ψ(limsup
k→∞

MT
s (xn(k), z)))ψ(pb(z,Tz)).
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This implies that

lim
k→∞

β(ψ(limsup
k→∞

MT
s (xn(k), z)))= 1.

Therefore

ψ(limsup
k→∞

MT
s (xn(k), z))= 0,

and then we have

limsup
k→∞

MT
s (xn(k), z)= 0. (24)

Using Lemma 1.13 and (24), this yields
pb(z,Tz)

2s

s
≤ liminf

k→∞
pb(xn(k),Tz)

2s

≤ liminf
k→∞

pb(xn(k),Tz)+ pb(xn(k)+1, z)
2s

≤ liminf
k→∞

MT
s (xn(k), z)

≤ limsup
k→∞

MT
s (xn(k), z)

≤ pb(z,Tz).

Thus pb(z,Tz) = 0. Since pb(Tz,Tz) ≤ spb(Tz, z)+ spb(z,Tz), we have pb(z, z) = pb(z,Tz) =
pb(Tz,Tz) which implies that z = Tz. Hence z is a fixed point of T .

We now give an example to support Theorem 2.4.

Example 2.5. Let X = [0,∞) and with the partial b-metric pb : X × X → [0,∞) defined by
pb(x, y) = [max{x, y}2 for all x, y ∈ X . Obviously, (X , pb) is a partial b-metric space with s = 2.
Define the mapping T : X → X given by

Tx =
{

x
9 if x ∈ [0,1];
ln x+3 if x ∈ (1,∞).

.

Define ψ : [0,∞)→ [0,∞) and β : [0,∞)→ [0,1) by ψ(t)= t and

β(t)=


e−t

1+t if t ∈ (0,∞);
1
2 if t = 0.

Let α,η : X × X → [0,∞) defined by

α(x, y)=
{

6 if x ∈ [0,1];
0 if x ∈ (1,∞),

and

η(x, y)=
{

2 if x ∈ [0,1];
1 if x ∈ (1,∞).

Let α(x,Tx) ≥ η(x,Tx). Thus x,Tx ∈ [0,1] and so T2x = T(Tx) ∈ [0,1] which implies
that α(Tx,T2x) ≥ η(Tx,T2x) that is T is α-orbital admissible with respect to η. Now, let
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α(x, y) ≥ η(x, y) and α(y,T y) ≥ η(y,T y), we get that x, y,T y ∈ [0,1] and so α(x,T y) ≥ η(x,T y).
Therefore T is triangular α-orbital admissible with respect to η. Let {xn} be a sequence such that
{xn} is pb-convergent to z and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈N. Then {xn} ⊆ [0,1] for any
n ∈N and so z ∈ [0,1] which we have, α(xn, z)≥ η(xn, z). That is {xn} is α-regular with respect to
η. The condition (ii) of Theorem 2.4 satisfied with x1 = 1 ∈ X since α(1,T1)= 6≥ 2= η(1,T1). We
next prove that T is a generalized α-η-ψ-Geraghty contraction type mapping. Let x, y ∈ X with
α(x, y)≥ η(x, y). Thus x, y ∈ [0,1]. Without loss of generality, we may assume that 0≤ y≤ x ≤ 1.
Therefore

pb(Tx,T y)=
[
max

{ x
9

,
y
9

}]2 = x2

81
and

MT
s (x, y)=max

{
x2, x2, y2,

x2 + [
max

{
y, x

9

}]2

4

}
= x2.

Since 2
81 ≤ 1

2e ≤ e−x2

1+x2 , we obtain that

ψ(spb(Tx,T y))=ψ(2
x2

81
)= 2x2

81
≤ e−x2

1+ x2 · x2

≤β(ψ(x2))ψ(x2)

≤β(ψ(MT
s (x, y)))ψ(MT

s (x, y)).

Thus T is a generalized α-η-ψ-Geraghty contraction type mapping. Hence all assumptions in
Theorem 2.4 are satisfied and thus T has a fixed point which is x = 0.

2.2 α-orbital Attractive Mappings with Fixed Point Theorems
We now introduce the new concept of α-orbital attractive mappings with respect to η and
investigate some fixed point theorems.

Definition 2.6. Let T : X → X be a mapping and α,η : X × X → [0,∞) be functions. Then T is
said to be an α-orbital attractive mapping with respect to η if

α(x,Tx)≥ η(x,Tx) imply α(x, y)≥ η(x, y) or α(y,Tx)≥ η(y,Tx)

for every y ∈ X .

If we set η(x, y)= 1 for all x, y ∈ X , then it satisfies the Definition 1.21.

Theorem 2.7. Let (X , pb) be a pb-complete partial b-metric space with the coefficient s ≥ 1. Let
T : X → X be a generalized α-η-ψ-Geraghty contractive type mapping. Suppose that the following
conditions hold:

(i) T is an α-orbital admissible mapping with respect to η;

(ii) there exists x1 ∈ X such that α(x1,Tx1)≥ η(x1,Tx1);

(iii) T is an α-orbital attractive mapping with respect to η.

Then T has a fixed point.
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Proof. Let x1 ∈ X such that α(x1,Tx1)≥ η(x1,Tx1). Define the sequence {xn} in X by xn+1 = Txn

for all n ∈N. Since T is an α-orbital admissible mapping with respect to η, we obtain that

α(xn, xn+1)≥ η(xn, xn+1) for all n ∈N. (25)

If xn = xn+1 for some n ∈N, then xn is a fixed point of T . Suppose that xn 6= xn+1 for all n ∈N.
By applying (25) and since T is a generalized α-η-ψ-Geraghty contractive type mapping, for
each n ∈N, we have

ψ(spb(xn+1, xn+2))=ψ(spb(Txn,Txn+1))

≤β(ψ(MT
s (xn, xn+1)))ψ(MT

s (xn, xn+1))

<ψ(MT
s (xn, xn+1)), (26)

where

MT
s (xn, xn+1)=max

{
pb(xn, xn+1), pb(xn,Txn), pb(xn+1,Txn+1),

pb(xn,Txn+1)+ pb(xn+1,Txn)
2s

}
=max

{
pb(xn, xn+1), pb(xn, xn+1), pb(xn+1, xn+2),

pb(xn, xn+2)+ pb(xn+1, xn+1)
2s

}
≤max

{
pb(xn, xn+1), pb(xn, xn+1), pb(xn+1, xn+2),

spb(xn, xn+1)+ spb(xn+1, xn+2)+ (1− s)pb(xn+1, xn+1)
2s

}
=max {pb(xn, xn+1), pb(xn+1, xn+2)} .

If max {pb(xn, xn+1), pb(xn+1, xn+2)}= pb(xn+1, xn+2). By (26), we obtain that ψ(spb(xn+1, xn+2))<
ψ(pb(xn+1, xx+2)) which contradicts to ψ(spb(xn+1, xn+2))≥ψ(pb(xn+1, xx+2)). This implies that
max {pb(xn, xn+1), pb(xn+1, xn+2)}= pb(xn, xn+1). It follows that 0< pb(xn+1, xn+2)≤ pb(xn, xn+1).
Hence the sequence {pb(xn, xn+1)} is nonnegative nonincreasing and bounded below. Thus there
exists some r ≥ 0 such that

lim
n→∞ pb(xn, xn+1)= r.

Suppose that r > 0. By (26), we have
ψ(pb(xn+1, xn+2))
ψ(pb(xn, xn+1))

≤ ψ(spb(xn+1, xn+2))
ψ(pb(xn, xn+1))

≤β(ψ(MT
s (xn, xn+1)))< 1,

for all n ∈N. This yields that

lim
n→∞β(ψ(MT

s (xn, xn+1)))= 1.

Since β ∈F , we have lim
n→∞ψ(MT

s (xn, xn+1))= 0 and so

r = lim
n→∞ pb(xn, xn+1)= 0. (27)

We next prove that {xn} is a pb-Cauchy sequence in (X , pb) by proving that {xn} is a b-Cauchy
sequence in (X ,dpb ). Suppose that {xn} is not a b-Cauchy sequence in (X ,dpb ). Then there exists
ε> 0 such that for k ∈N, there exist n(k) > m(k) > k for which we can find two subsequences
{xn(k)} and {xm(k)} of {xn} such that n(k) is the smallest index for which,

dpb (xm(k), xn(k))≥ ε, (28)
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and

dpb (xm(k), xn(k)−1)< ε. (29)

Then, we have

ε≤ dpb (xm(k), xn(k))≤ sdpb (xm(k), xn(k)−1)+ sdpb (xn(k)−1, xn(k))

< sε+ sdpb (xn(k)−1, xn(k)). (30)

Taking the lower limit for (30) as k →∞, we have
ε

s
≤ liminf

k→∞
dpb (xm(k), xn(k)−1)≤ limsup

k→∞
dpb (xm(k), xn(k)−1)≤ ε. (31)

From (30) and (31), we obtain that

ε≤ limsup
k→∞

dpb (xm(k), xn(k))≤ sε.

By using the triangular inequality, we can deduce that

dpb (xm(k)+1, xn(k))≤ sdpb (xm(k)+1, xm(k))+ sdpb (xm(k), xn(k))

≤ sdpb (xm(k)+1, xm(k))+ s2dpb (xm(k), xn(k)−1)+ s2dpb (xn(k)−1, xn(k))

≤ sdpb (xm(k)+1, xm(k))+ s2ε+ s2dpb (xn(k)−1, xn(k)).

By taking the upper limit as k →∞ in the above inequality, we have

limsup
k→∞

dpb (xm(k)+1, xn(k))≤ s2ε.

We can also prove that

dpb (xm(k)+1, xn(k)−1)≤ sdpb (xm(k)+1, xm(k))+ sdpb (xm(k)+1, xn(k)−1)

≤ sdpb (xm(k)+1, xm(k))+ sε.

By taking the upper limit as k →∞ in the above inequality, we get that

limsup
k→∞

dpb (xm(k)+1, xn(k)−1)≤ sε.

By using the definition of dpb , we obtain that

2limsup
k→∞

pb(xm(k), xn(k)−1)= limsup
k→∞

dpb (xm(k), xn(k)−1).

It follows that
ε

2s
≤ liminf

k→∞
pb(xm(k), xn(k)−1)≤ limsup

k→∞
pb(xm(k), xn(k)−1)≤ ε

2
. (32)

Similarly, we can prove that.
ε

2
≤ limsup

k→∞
pb(xm(k), xn(k))≤

sε
2

, (33)

ε

2s
≤ limsup

k→∞
pb(xm(k)+1, xn(k))≤

s2ε

2
(34)

and

limsup
k→∞

pb(xm(k)+1, xn(k)−1)≤ sε
2

. (35)

Since α(xn(k)−1, xn(k))≥ η(xn(k)−1, xn(k)) and T is an α-orbital attractive mapping with respect to η
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and using (26), we obtain that α(xn(k)−1, xm(k))≥ η(xn(k)−1, xm(k)) or α(xm(k), xn(k))≥ η(xm(k), xn(k)).

We divide the proof in two cases as follows:

(1) There exists an infinite subset I of N such that α(xn(k)−1, xm(k))≥ η(xn(k)−1, xm(k)) for every
k ∈ I.

(2) There exists an infinite subset J of N such that α(xm(k), xn(k)) ≥ η(xm(k), xn(k)) for every
k ∈ J.

In the first case, since T is a generalized α-η-ψ-Geraghty contractive type mapping, we obtain
that

ψ(spb(xn(k), xm(k)+1))≤β(ψ(MT
s (xn(k)−1, xm(k))))ψ(MT

s (xn(k)−1, xm(k))) (36)

where

MT
s (xn(k)−1, xm(k))=max

{
pb(xn(k)−1, xm(k)), pb(xn(k)−1,Txn(k)−1), pb(xm(k),Txm(k)),

pb(xn(k)−1,Txm(k))+ pb(xm(k),Txn(k)−1)
2s

}
=max

{
pb(xn(k)−1, xm(k)), pb(xn(k)−1, xn(k)), pb(xm(k), xm(k)+1),

pb(xm(k), xn(k))+ pb(xn(k)−1, xm(k)+1)
2s

}
.

Taking the upper limit as k →∞ in the above inequality using (27), (32), (33) and (35), we get
that

limsup
k→∞,k∈I

MT
s (xn(k)−1, xm(k))

=max
{

limsup
k→∞,k∈I

pb(xn(k)−1, xm(k)), limsup
k→∞,k∈I

pb(xn(k)−1, xn(k)), limsup
k→∞,k∈I

pb(xm(k), xm(k)+1),

limsup
k→∞,k∈I

pb(xm(k), xn(k))+ pb(xn(k)−1, xm(k)+1)
2s

}
.

=max
{

limsup
k→∞,k∈I

pb(xn(k)−1, xm(k)),0,0,

limsup
k→∞,k∈I

pb(xm(k), xn(k))+ limsup
k→∞,k∈I

pb(xn(k)−1, xm(k)+1)

2s

}
≤max

{ε
2

,
ε

2

}
= ε

2
. (37)

By taking the upper limit in (36) as k →∞ and using (34) and (37), we have

ψ(s
ε

2s
)≤ψ(limsup

k→∞,k∈I
pb(xn(k), xm(k)+1))

≤β(ψ(limsup
k→∞,k∈I

MT
s (xn(k)−1, xm(k))))ψ(limsup

k→∞,k∈I
MT

s (xn(k)−1, xm(k)))

≤β(ψ(limsup
k→∞,k∈I

MT
s (xn(k)−1, xm(k))))ψ(

ε

2
).
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Therefore
ψ( ε2 )
ψ( ε2 )

≤β(ψ(limsup
k→∞,k∈I

MT
s (xn(k)−1, xm(k)))),

Since β ∈F , we obtain that

lim
k→∞,k∈I

β(ψ(limsup
k→∞,k∈I

MT
s (xn(k)−1, xm(k))))= 1.

Therefore

ψ(limsup
k→∞,k∈I

MT
s (xn(k)−1, xm(k)))= 0.

By using (36), we obtain that

limsup
k→∞,k∈I

pb(xn(k)−1, xm(k))= 0,

which contradicts to (32).

In the second case, since T is a generalized α-η-ψ-Geraghty contractive type mapping, we
obtain that

ψ(spb(xm(k)+1, xn(k)+1))≤β(ψ(MT
s (xm(k), xn(k))))ψ(MT

s (xm(k), xn(k))) (38)

where

MT
s (xm(k), xn(k))=max

{
pb(xm(k), xn(k)), pb(xm(k),Txm(k)), pb(xn(k),Txn(k)),

pb(xm(k),Txn(k))+ pb(xn(k),Txm(k))
2s

}
=max

{
pb(xm(k), xn(k)), pb(xm(k), xm(k)+1), pb(xn(k), xn(k)+1),

pb(xm(k), xn(k)+1)+ pb(xn(k), xm(k)+1)
2s

}
.

≤max
{

pb(xm(k), xn(k)), pb(xm(k), xm(k)+1), pb(xn(k), xn(k)+1),

spb(xm(k), xn(k))+ spb(xn(k), xn(k)+1)+ pb(xn(k), xm(k)+1)
2s

}
. (39)

Taking the upper limit as k →∞ in the above inequality using (27), (32), (33) and (34), we get

limsup
k→∞,k∈J

MT
s (xm(k), xn(k))=max

{
limsup
k→∞,k∈J

pb(xm(k), xn(k)), limsup
k→∞,k∈J

pb(xm(k), xm(k)+1),

limsup
k→∞,k∈J

pb(xn(k), xn(k)+1),

limsup
k→∞,k∈J

spb(xm(k), xn(k))+ spb(xn(k), xn(k)+1)+ pb(xn(k), xm(k)+1)
2s

}
.

=max
{

limsup
k→∞,k∈J

pb(xm(k), xn(k)),0,0,

limsup
k→∞,k∈J

spb(xm(k), xn(k))+ limsup
k→∞,k∈J

pb(xn(k), xm(k)+1)

2s

}
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≤max
{ sε

2
,
sε
2

}
= sε

2
. (40)

By taking the upper limit in (38) as k →∞ and using (33) and (40), we have

ψ(s
ε

2
)≤ψ( limsup

k→∞,k∈J
pb(xm(k)+1, xn(k)+1))

≤β(ψ( limsup
k→∞,k∈J

MT
s (xm(k), xn(k))))ψ( limsup

k→∞,k∈J
MT

s (xm(k), xn(k)))

≤β(ψ( limsup
k→∞,k∈J

MT
s (xm(k), xn(k))))ψ(

sε
2

).

Therefore
ψ( sε

2 )
ψ( sε

2 )
≤β(ψ( limsup

k→∞,k∈J
MT

s (xm(k), xn(k)))).

Since β ∈F , we have

lim
k→∞,k∈J

β(ψ( limsup
k→∞,k∈J

MT
s (xm(k), xn(k))))= 1.

Therefore

ψ( limsup
k→∞,k∈J

MT
s (xm(k), xn(k)))= 0.

By using (36), we obtain that

limsup
k→∞,k∈J

pb(xn(k), xm(k))= 0.

which a contradiction to (33). This implies that the sequence {xn} is a b-Cauchy in the b-metric
space (X ,dpb ). Since (X , pb) is pb-complete, then (X ,dpb ) is b-complete. It follows that there
exists z ∈ X such that lim

n→∞dpb (xn, z)= 0. We claim that z = Tz. Suppose on the contrary, that
z 6= Tz. Since T is an α-orbital attractive mapping with respect to η, we have for each n ∈N
that α(xn, z)≥ η(xn, z) or α(z, xn+1)≥ η(z, xn+1).

We divide the proof in two cases as follows.

(1) There exists an infinite subset I of N such that α(xn, z)≥ η(xn, z) for every n ∈ I.

(2) There exists an infinite subset J of N such that α(z, xn+1)≥ η(z, xn+1) for every n ∈ J.

In the first case, since T is a generalized α-η-ψ-Geraghty contractive type mapping, we obtain
that

ψ(spb(Txn,Tz))≤β(ψ(MT
s (xn, z)))ψ(MT

s (xn, z)), (41)

where

MT
s (xn, z)=max

{
pb(xn, z), pb(xn,Txn), pb(z,Tz),

pb(xn,Tz)+ pb(Txn, z)
2s

}
=max

{
pb(xn, z), pb(xn, xn+1), pb(z,Tz),

pb(xn,Tz)+ pb(xn+1, z)
2s

}
≤max

{
pb(xn, z), pb(xn, xn+1), pb(z,Tz),

spb(xn, z)+ spb(z,Tz)+ pb(xn+1, z)
2s

}
.

(42)
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By taking the upper limit in the above inequality, we obtain that

limsup
n→∞,n∈I

MT
s (xn, z)≤ pb(z,Tz).

From (41), using Lemma 1.13 and by taking the upper limit as n →∞, we obtain that

ψ(pb(z,Tz))=ψ(s
1
s

pb(z,Tz))

≤ψ(s liminf
n→∞,n∈I

pb(xn+1,Tz))

≤ψ(s limsup
n→∞,n∈I

pb(xn+1,Tz))

≤β(ψ( limsup
n→∞,n∈I

MT
s (xn, z)))ψ( limsup

n→∞,n∈I
MT

s (xn, z))

≤β(ψ( limsup
n→∞,n∈I

MT
s (xn, z)))ψ(pb(z,Tz)).

This implies that

limsup
n→∞,n∈I

β(ψ( limsup
n→∞,n∈I

MT
s (xn, z)))= 1.

Therefore

ψ( limsup
n→∞,n∈I

MT
s (xn, z))= 0. (43)

Using Lemma 1.13 and (43), we obtain that
pb(z,Tz)

2s

s
≤ liminf

n→∞
pb(xn,Tz)

2s
≤ liminf

n→∞
pb(xn,Tz)+ pb(xn+1, z)

2s

≤ liminf
n→∞ MT

s (xn, z)

≤ limsup
n→∞

MT
s (xn, z)

≤ pb(z,Tz).

This yields pb(z,Tz) = 0. Since pb(Tz,Tz) ≤ spb(Tz, z) + spb(z,Tz), we have pb(z, z) =
pb(z,Tz)= pb(Tz,Tz) which implies that z = Tz. Hence z is a fixed point of T .

In the second case, since T is a generalized α-η-ψ-Geraghty contractive type mapping, we
obtain that

ψ(spb(Tz,Txn+1))≤β(ψ(MT
s (z, xn+1)))ψ(MT

s (z, xn+1)), (44)

where

MT
s (z, xn+1)=max

{
pb(z, xn+1), pb(z,Tz), pb(xn+1,Txn+1),

pb(z,Txn+1)+ pb(xn+1,Tz)
2s

}
=max

{
pb(z, xn+1), pb(z,Tz), pb(xn+1, xn+2),

pb(z,Txn+1)+ pb(xn+1,Tz)
2s

}
≤max

{
pb(z, xn+1), pb(z,Tz), pb(xn+1, xn+2),

pb(z, xn+2)+ spb(xn+1, z)+ spb(z,Tz)
2s

}
.

(45)
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By taking the upper limit as above, we obtain

limsup
n→∞,n∈J

MT
s (z, xn+1)≤ pb(z,Tz).

From (44) and using Lemma 1.13, then taking the upper limit as n →∞, we obtain that

ψ(pb(z,Tz))=ψ(s
1
s

pb(z,Tz))

≤ψ(s liminf
n→∞,n∈J

pb(xn+2,Tz))

≤ψ(s limsup
n→∞,n∈J

pb(xn+2,Tz))

≤β(ψ( limsup
n→∞,n∈J

MT
s (z, xn+1)))ψ( limsup

n→∞,n∈J
MT

s (z, xn+1))

≤β(ψ( limsup
n→∞,n∈J

MT
s (z, xn+1)))ψ(pb(z,Tz)).

This implies that

limsup
n→∞,n∈J

β(ψ( limsup
n→∞,n∈J

MT
s (z, xn+1)))= 1.

Therefore

ψ( limsup
n→∞,n∈J

MT
s (z, xn+1))= 0. (46)

Using Lemma 1.13 and (46), we get that
pb(z,Tz)

2s

s
≤ liminf

n→∞
pb(xn+1,Tz)

2s

≤ liminf
n→∞

pb(z, xn+2)+ pb(xn+1,Tz)
2s

≤ liminf
n→∞ MT

s (z, xn+1)

≤ limsup
n→∞

MT
s (z, xn+1)

≤ pb(z,Tz).

It follows that pb(z,Tz) = 0. Since pb(Tz,Tz) ≤ spb(Tz, z)+ spb(z,Tz), we have pb(z, z) =
pb(z,Tz)= pb(Tz,Tz) which implies that z = Tz. Hence z is a fixed point of T .

The following example are given to support Theorem 2.7.

Example 2.8. Let X = {0,1,2,3} with the partial b-metric pb : X × X → [0,∞) define as
pb(x, y) = |x− y|2. Obviously, (X , pb) is a pb-complete partial b-metric space with coefficient
s = 2 ([15, Example 3]). Define a mapping T : X → X by

T0= T1= 2 and T2= T3= 3.

Define ψ : [0,∞)→ [0,∞) and β : [0,∞)→ [0,1) by ψ(t)= t
2 and β(t)= 1

2 , for each t ∈ (0,∞). Let
α,η : X × X → [0,∞) be defined by

α(x, y)=
{

1 if (x, y) ∈ {(1,2), (2,1)} ;
6 otherwise,
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and

η(x, y)=
{

2 if (x, y) ∈ {(1,2), (2,1)} ;
0 otherwise.

It is clear that T is α-orbital admissible with respect to η and also α-orbital attractive
admissible with respect to η. Moreover, there exists x1 = 2 and α (2,T2)= 6≥ 0= η (2,T2). Let
α(x, y)≥ η(x, y) and consider the following cases:

(1) If x, y ∈ {0,1}, then Tx = T y= 2. This implies that ψ(spb(Tx,T y))= 0;

(2) If x, y ∈ {2,3}, then Tx = T y= 3. This implies that ψ(spb(Tx,T y))= 0;

(3) If x ∈ {0,1}, y ∈ {2,3} or x ∈ {2,3}, y ∈ {0,1}, then we divide the proof into the following cases:

(3.1) If (x, y) ∈ {(0,3), (3,0)}, then

MT
s (0,3)=max

{
pb(0,3), pb(0,2), pb(3,3),

pb(0,3)+ pb(3,2)
4

}
=max

{
9,4,0,

9+1
4

}
= 9.

We get that,

ψ(2pb(T0,T3))= 1

≤ 1
2
· 9
2

≤β(ψ(MT
s (0,3)))ψ(MT

s (0,3)).

Since pb(x, y)= pb(y, x) for all x, y ∈ X , we also obtain that

ψ(2pb(T3,T0))≤β(ψ(MT
s (3,0)))ψ(MT

s (3,0)).

(3.2) If (x, y) ∈ {(1,3), (3,1)}, then

MT
s (1,3)=max

{
pb(1,3), pb(1,2), pb(3,3),

pb(1,3)+ pb(3,2)
4

}
= 4.

We get that,

ψ(2pb(T1,T3))= 1

≤ 1
2
· 4
2

≤β(ψ(MT
s (1,3)))ψ(MT

s (1,3)).

Since pb(x, y)= pb(y, x) for all x, y ∈ X , we also obtain that

ψ(2pb(T3,T1))≤β(ψ(MT
s (3,1)))ψ(MT

s (3,1)).

(3.3) If (x, y) ∈ {(0,2), (2,0)}, then

MT
s (0,2)=max

{
pb(0,2), pb(0,2), pb(2,3),

pb(0,3)+ pb(2,2)
4

}
= 4.

We get that,

ψ(2pb(T0,T2))= 1
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≤ 1
2
· 4
2

≤β(ψ(MT
s (0,2)))ψ(MT

s (0,2)).

Since pb(x, y)= pb(y, x) for all x, y ∈ X , we also obtain that

ψ(2pb(T2,T0))≤β(ψ(MT
s (2,0)))ψ(MT

s (2,0)).

Hence all assumptions in Theorem 2.7 are satisfied and thus T has a fixed point which is x = 3.

In this work, we can relax the subadditivity of ψ in [10] and assure the existence of fixed
point theorems for generalized α-η-ψ-Geraghty contractive type mappings in the setting of
partial b-metric spaces. Our results generalize and extend the results proved by [6], [10], [16]
as the aspect of generalized mappings and generalized metric spaces.
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