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Abstract. Topological tools provide features about spaces, which are insensitive to continuous
deformations. Applied to images, the topological analysis reveals important characteristics: how many
connected components are present, which ones have holes and how many, how are they related one to
another, how to measure them and find their locations. We show in this paper that the extraction of
such features by computing persistent homology is suitable for grayscale image segmentation.
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1. Introduction

In the last years, there have been concerted efforts to use the fundamental theories of topology
and developing it to more applied aspects like computational topology and applied algebraic
topology. These efforts, introduced by [5] and [10], have made possible the use of powerful
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mathematical concepts in many applications such as data analysis, signal processing, machine
learning and shape recognition [2]. A new appealing way to perform image segmentation is thus
the use of the topological spaces formalism. Indeed, spaces are studied by the mathematical
theory of topology [1] and functions between spaces can represent general transformations,
which preserve connectivity. The topological spaces formalism thus allows construction of
methods and algorithms that are inherently invariant to disruptive transformation such as
rotation, translation and other continuous transformations. The objective of this work is to
analyze if the association of topological features with classical ones improve the segmentation of
gray scale images. This paper introduces the topological spaces formalism and how persistence
features can be extracted in Section 2. Section 3 illustrates two applications of this methodology
in order to perform image segmentation on an unstained tissue section imaged by a quantitative
phase imaging system and on a satellite grayscale image.

2. Topological Background and Methods

The proposed topological features calculation of a gray scale image follows a concept workflow
that begins with its “spatialization”. Then the linearization of its combinatorial representation
permits the use of tools from algebraic topology and, among them, the persistence. Each of these
steps are described in extent below.

2.1 Spatialization

The input image is viewed as a continuous function f from the domain D ⊆ R2 into the real
line R, i.e. f : D →R. This point of view is correct for grayscale images and thus several spaces
can be defined regarding f . The sublevel sets are given by all points of the domain whose
value does not exceed a level a : Ua = f −1 ]−∞;a]. The sublevel sets are ordered by their level a
under inclusion, hence Ua ⊆Ub when a < b. This permits to define the filtration as the nested
sequence of spaces

φ⊂Ua ⊂Ub ⊂ ·· · ⊂Uz ⊂ D . (2.1)

2.2 Combinatorial Representation

The spaces under study are mathematically well defined but are not suited for algorithmic
calculation. Therefore, spaces are decomposed into cells. The set of all cells and the gluing
information provided by its boundaries are called the cell complex [7]. This is particularly suited
in the case of grayscale image: a pixel is seen as a square, which shares its boundary with its
four neighbors and its corner with eight neighbors. The image viewed as a function gives a value
for each cell of its domain representation. For example, f (x) is the grayscale value assigned to a
pixel x. The value of an edge is the minimum of values of surrounding pixels, while a corner’s
value is the minimum of values of incoming edges.

According to this procedure, the sublevel sets obtained by selecting the cells whose value is
below a constant level a is necessarily a sub-complex. It means that if a p-cell is in the complex,
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its boundary is also in the complex. This evaluation of cells implies that the filtration of spaces
(2.1) has an equivalent filtration of complex along the level a that preserves the inclusion
property.

2.3 Linearization

Even if it is possible to develop the following theory for general coefficients, we limit our work
over Z2 for the sake of simplicity. The complex previously built gives birth to several vector
spaces Cp that are finite formal sums of p-cells. We call the elements of Cp a p-chain [6]. That
is, c =∑

aiσi , where the σi are the p-cells and the ai are the coefficients in Z2. Its boundary
operator is ∂pc = ∑

ai∂pσi , where ∂pσi represents the boundary of the p-cell σi and it’s the
sum of the boundaries of its cells. Hence, by taking the boundary function we map a p-chain to a
(p−1)-chain. We write this homomorphism as ∂p : Cp → Cp−1. A chain complex is a sequence of
chain groups connected by boundary homomorphisms such that ∂p∂p−1 = 0 for all dimensions p:

· · · ∂p+2−−−→ Cp+1
∂p+1−−−→ Cp

∂p−→ Cp−1
∂p−1−−−→ ·· · (2.2)

2.4 Homology

Homology is an algebraic and topological tool to detect connectivity of topological spaces.
Boundary less p-chains are meaningful and form a subgroup of Cp that we call the p-th cycle
group Zp :

Zp = {
x ∈ Cp | ∂px = 0

}= ker ∂p . (2.3)

Among these cycles, we consider the ones that surround chains. They form a subgroup called
the p-boundary group Bp .

Bp = {
x ∈ Cp | ∃ y ∈ Cp+1, x = ∂p+1 y

}= im∂p+1 . (2.4)

The p-th homology group Hp is defined as the quotient group Zp/Bp. It’s the group of non-
bounding cycles. The homology group Hp keeps the count of essentially different cycles that
are interesting by distributing all cycles into equivalent classes. An element of Hp gathers
together equivalent cycles, which can be deformed continuously one onto the other. In other
words, two cycles are equivalent if their difference is a boundary. In addition, the dimension of
Hp is called the p-th Betti number, βp. The Betti numbers in dimensions 0,1, and 2 are the
number of connected components, tunnels, and voids of the complex, respectively. Because of
the linearity, homology groups Hp can be easily computed by standard matrix manipulations
given a combinatorial representation of the chain complex.

2.5 Persistent Homology

Persistent homology comes from the ideas of filtration and the functionality of homology
described above. Let K = {σ1, . . . ,σi} a cell complex of dimension d. We assume an ordering on
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the cells such that for each i ≤ n, K i = {σ1, . . . ,σi} is a cell complex. The chain φ = K0 ⊂ K i ⊂
·· · ⊂ Kn = K is a filtration of K . In our case, such a filtration is defined according to a function
f : K →R that orders the cells of K by function value. In addition, by tracking the topological
evolution of this filtration using homology, we get a sequence of homology groups that are
connected by linear maps induced by inclusions:

H(K0)→ H(K1)→···→ H(K i)→···→ H(Kn) . (2.5)

Persistent homology tracks the appearance of classes in this sequence. As we go from K i−1 to
K i , we gain new homology classes and we lose some [4]. This is clear following this procedure:
if f j

i : H(K i)→ H(K j), we say that an element α ∈ H(K i) is born in H(K i). If it does not belong
to the image of the map f i

i−1, we say that α dies at H(K j) if f j
i (α) ∈ im f j

i−1 but f j−1
i (α) ∉ im f j−1

i−1 .
If there is a class α born in H(K i) that dies in H(K j), we record this as a pair (i, j).

2.6 Computation of Persistent Homology

We can compute the homology Hp(K i) for all sublevel sets K i of (2.1) in order to depict the
evolution of the number of topological features of an image. However, we lose the information
concerning the evolution of each particular cycle. Indeed, a cycle may emerge at a given level i
and die further at the level j. Recording the “life duration” of each characteristic cycle is more
informative than recording the evolution of Betti numbers. The life duration of a cycle is given
by the difference between the death time and its birth time along the filtration. The persistence,
and its algorithm [3], gives this recording of the evolution of cycles along the level. The evolution
of lifetimes of 0-cycles and 1-cycles can be represented using a persistent diagram or a barcode
with respect to filtration time, which is not shown here, due to the limited space.

3. Application to Image Segmentation

The topological features calculated using persistent homology have a big importance in image
segmentation. More explicitly, we manipulate images by an overlapping square sliding window.
And after computation of persistent homology in each window we can get the life duration
of 0-cycles and of 1-cycles as well as the persistent entropy, that is −∑

i∈I pi log pi , where I
represents the intervals of life durations, pi = l i

L , l i = death time − birth time and L =∑
i∈I l i [9].

Besides topological features, we calculate the mean and the standard deviation of the life
durations of 0-cycles and 1-cycles in each window, their persistent entropies for dimensions 0
and 1, and the mean and standard deviation of pixel values, which will form a set of 8 features
calculated in each patch. Then we perform the standard clustering method k-means that classify
the observations of the features calculated into classes [8]. Finally, we obtain a classification of
the data of the image, which lead to a segmentation based on topological and statistical features.

This methodology was applied on a quantitative phase image of a prostate gland, the
grayscale levels reflect the refractive index map of the unstained histopathology slide (Figure 1).
The segmentation of the gland shows four classes corresponding to the main types of
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tissue areas. The same methodology was applied on a satellite image (Figure 2). In these
applications, topological features show their discriminative power in image segmentation. These
characteristics give more refined measures than only using statistical ones in sake of detecting
texture features of images.

Figure 1. (a) Quantitative phase image of a prostate gland of size 1880×1324 pixels, (b) Segmentation
of the gland after processing with an overlapping square sliding window. The size of the window was
chosen to 50×50 pixels and the overlapping to 10 pixels. The eight features were calculated for each
window after filtration of non-interesting cycles. (c) Histogram of the one dimension persistent entropy
for each class. We see clearly that values of persistent entropy define the distribution of classes, which
show the power of topological features calculated in the sake of image segmentation.

Figure 2. (a) Application of the method described above on a grayscale image of size 929×960 pixels
taken by a satellite. (b) Segmentation of the image after processing with an overlapping square sliding
window. The size of the window was chosen to 30×30 pixels and the overlapping to 10 pixels.

4. Conclusion

The topological spaces formalism can be used to represent functions between spaces as
transformations preserving connectivity. Algebraic structures allows transforming algebraic
topology theorems into computationally feasible algorithms. Indeed, the linearization of
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the spatialization permits the use of the persistence, a powerful tool for depicting the evolution
of the number of topological features. Translated to grayscale images, this methodology
allows extracting features invariant to geometric transformations such as rotation, translation
and scaling. Performing image segmentation based on topology and persistent homology
characteristics guarantees several nice properties and initial results demonstrate a high
potential, as shown the application on two real images, one acquired by a quantitative phase
imaging system on an unstained tissue section and one representing a more familiar grayscale
satellite image. An improvement in segmentation could be achieved by using other topological
invariants and criteria like sheaf theory and multidimensional persistence.
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