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Using Random Sets to Model Learning in Manufacturing

Paul Speaker and C.R. MacCluer

Abstract. It is widely observed that manufacturing quality metrics improve as
experience is gained during production. The traditional empirical learning curves
modeling such improvements have recently been explained by a predictive model
deduced from first principles, namely certain principles imported into artificial
intelligence from statistical mechanics. However, this new learning model is
limited to a finite lesson pool of paradigm shifts. This paper presents an extension
to incremental learning using sampling based on the notion of dynamic random
sets.

1. Introduction to the learning curve

It is widely observed that manufacturing measurements of quality (quality
metrics) exhibit improvement as experience is gained during production. Various
empirical models for these learning curves have taken the form of either power
laws

C(q) = C0q−α (1)

or as exponential laws of the form

C(q) = C0e−λq, (2)

where C(q) is the metric associated with the learning curve and q is the
accumulated quantity produced [Zangwill and Kantor 1998, 2000]. This metric
C(q) is a quantitative measure that a manager would wish to minimize, such as
manufacturing cost or production errors. Past models have been little more than
a choice between which function is a better fit to the data, rather than a causal
explanation for why this might be observed [Speaker 2009].

However, we have recently obtained an explanation for this observed learning-
during-production that is based on a small number of assumptions widely held by
workers in this field [Speaker and MacCluer 2009]; this result is summarized as
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Theorem A below. We fix ideas by assuming the quality metric to be production
cost per unit manufactured.

Theorem A (Speaker 2009). As production of a good proceeds, lessons are drawn
(with replacement) independently from the pool of n possible lessons. Suppose the i-th
lesson, once learned, yields an ongoing cost saving of ci per unit manufactured. Once
this saving is realized, it is unavailable for future improvement. Then the expected
cost U per unit is predicted to decrease by the rule

U(k) = U0 −
n∑

i=1

[1− (1−αeβ ci )k]ci , (3a)

where U0 is the initial cost per unit, where k is proportional to accumulated
production q, where

1

α
=

n∑

j=1

eβ c j , (3b)

and where β is a measure of the effectiveness of the manager.

All of the model assumptions underlying Theorem A are strongly advocated by
many investigators as detailed in [Speaker 2009].

Our goal in this paper is to first remodel cost savings as a result of a mix of
incremental as well as discrete learning using Stieltjes integrals to replace the sums
of (3a) and (3b). An attempt to obtain expected cost savings from arbitrary random
sets of lessons via Robbin’s theorem is seen to be impossible because of the possible
correlation between lessons. We then construct a weakly convergent sequence
of dynamic random sets, each of which grows over time to eventually cover all
possible lessons, that yields in the weak limit a generalized dynamic random set
that is the correct sampling model for dynamic learning. This generalized dynamic
sampling preserves the essential refinement of lessons property, yet retains the
independence of lesson choice. We conclude by showing that the incremental
model devolves to the discrete model (3) when estimated.

2. A model for incremental improvement

Suppose each lesson to be learned has been labeled by exactly one real number
x so that the cost savings realized by learning the lessons labeled by points lying
in a measurable set X is given by the Stieltjes integral

∆C(X ) =

∫

X

dC(x), (4)

where the cumulative cost savings function C(x) is an everywhere defined,
nondecreasing, right-continuous function that is continuously differentiable
between isolated jumps.
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Points of differentiability of the cumulative cost savings function C should be
thought of as incremental improvements, while jump discontinuities are paradigm
shifts. For the incremental movements, improvement happens continuously over
time. This type of learning is what March called exploitation [March 1991] and
is considered supervised learning in the artificial intelligence context [Russell and
Norvig 2002].

On the other hand, the paradigm shift corresponds to March’s idea of the
exploration aspect of learning, which is considered unsupervised learning in
the artificial intelligence context. Learning under the category of exploration
includes, for example, new technology, new worker insight to production, new
cost structure, material replacement, etc. Rather than continuous improvement,
this type of learning takes the form of sudden leaps forward. While continuous
improvement may be modeled with a continuum of learning choices, explorative
learning takes the form of a finite number of breakthroughs.

As was argued for the discrete case in [Speaker and MacCluer 2009], the
probability prob(X ) of choosing the lessons forming the measurable set X is a
smooth function p = p(y) of the cost savings y = ∆C(X ) resulting from these
lessons:

prob(X ) = p
�∫

X

dC(x)
�

. (5)

Because the largest number of distinct learning trials — by Boltzmann’s H-
theorem [Feynman 1972] — occurs simultaneously with maximum entropy, it
follows that p(y) = αexp(β y), where the normalization α will be determined
below. See [Speaker and MacCluer 2009].

In particular, if F is the cumulative probability that all lessons indexed by x or less
will be chosen, then

F(x) = αexp
�
β

∫ x

−∞
dC(y)

�
= αexp(βC(x)

�
, (6a)

where

1

α
= exp

�
β

∫ ∞

−∞
dC(x)

�
= exp

�
βC(∞)�. (6b)

Note that the corresponding probability density function must be

f (x) = F ′(x) = αβ exp(βC(x))c(x) = βF(x)c(x), (7a)

where

c(x) = C ′(x) (7b)

at points x of differentiability of C . Jumps of C of height c0 will yield jumps in F
of height αexp(β c0).
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But now suppose X is a random set of lessons, that is, X is a measurable-set-
valued random variable (see Appendix). Each random set X possesses a hitting
probability TX (x), which is the probability that x lies in X . This hitting probability
is obtained by integrating the characteristic function χX (x) over the probability
space of the setvalued random variable X .

For any integrable realvalued function g of a real variable x we have the famous
theorem of Robbins [1944] on expected values:

E
�∫

X

g(x)d x
�
=

∫ ∞

−∞
g(x)TX (x)d x = E[g(x) | x ∈ X ]. (8)

(The first equality of (8) is nothing more than an application of Fubini’s theorem
— see the Appendix.)

Remark. At first glance, the expected cost savings from learning all the lessons
from this random sample of lessons X would from (4) appear to be

∆C(X ) = E
�∫

X

dC(x)
�
=

∫ ∞

−∞
TX (x) dC(x). (9)

The second equality of (9) is indeed a correct statement of probability. However,
lesson choice must be independent for this to be the learning observed in
manufacturing — see [Speaker 2009]. Moreover, this independence is necessary
to obtain the probability structure (6). Unfortunately, a random set X may possess
correlated points, that is, where x1 6= x2 yet

prob(x1 ∈ X and x2 ∈ X ) 6= TX (x1)TX (x2).

But when correlation is absent, (4) holds for random lesson choice.

Result A. If lesson choice from X is uncorrelated, then the expected cost savings from
learning the random set of lessons of X is indeed given by

∆C(X ) = E
�∫

X

dC(x)
�
=

∫ ∞

−∞
TX (x) dC(x). (10)

Our task then is to construct an evolving random lesson sampling technique that
grows over time to eventually cover all lessons, a process suggested by Robbins’s
1944 modeling of airfield carpet bombing. This dynamic model of learning must
allow uncorrelated sampling of lessons as well as additivity of the resulting cost
savings when compound lessons are refined into independent sublessons. Both
properties are necessary if we hope to retain the probability structure (6).

3. Constructing dynamic random sampling

We present here only the finite incremental learning case, where cumulative cost
saving C = C(x) is everywhere continuously differentiable and where C ′(x) = c(x)
has compact support.
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Suppose that learning is taking place at the fixed Poisson rate λ so that the lessons
that comprise the measurable set L require t = µ(L)/λ seconds to learn, where µ
is Lebesgue measure.

The construction. For each natural number k let Xk(t) denote the random set of
lessons that is the union of k intervals of type [a, a+ λt/k), where the k left end
points a are the result of k independent draws with probability given by the density
function f of (7). Intuitively, and as the next result shows,

E[µ(Xk(t))]≤ λt, (11)

that is, the lessons of Xk(t) require on average at most t seconds to learn. Thus
Xk(t) is a random sample of k compound lessons of a certain type which can be
learned in time t.

Lemma A. Let TXk(t)(x) denote the hitting probability of Xk(t), namely the
probability that x will lie in Xk(t). Then

TXk(t)(x) = 1−
�

1−
∫ x

x−λt/k

f (y) d y
�k

. (12)

Proof. The point x will lie in the random interval [a, a + λt/k) exactly when
x ≥ a > x −λt with probability

prob
�
a ∈ (x −λt/k, x]

�
=

∫ x

x−λt/k

f (y) d y. (13)

Thus x lies in none of the k intervals [a, a+λt) forming Xk(t) with probability
�

1−
∫ x

x−λt/k

f (y) d y
�k

,

giving (12). ¤

Lemma B. Lesson choice is asymptotically independent: Let

TXk(t)(x1, x2) = prob
�

x1 ∈ Xk(t) and x2 ∈ Xk(t)
�
. (14)

If x1 6= x2, then for all sufficiently large k,

TXk(t)(x1, x2) = TXk(t)(x1) · TXk(t)(x2). (15)

Proof. When λt/k < |x2 − x1| it is impossible for both x1 and x2 to belong to the
same one of the k random intervals [a, a+λt/k) that comprise Xk(t).

Thus as k increases, the sample Xk(t) consisting of k ever-shortening compound
lessons begins to reassemble an independent sample of individual lessons, all of
which can be learned in time t. ¤

Lemma C. The hitting probabilities converge pointwise. In fact, for each x and t ≥ 0,
we have

lim
k→∞

TXk(t)(x) = 1− e−λt f (x). (16)
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Proof. Since the probability density f has compact support,
∫ x

x−λt/k

f (x) d x =
λt f (x)

k
+O(1/k2). (17)

Therefore

lim
k→∞

�
1−
∫ x

x−λt/k

f (y) d y
�k

= lim
k→∞

�
1− λt f (x)

k
+O(1/k2)

�k

= exp(−λt f (x)). (18)

¤

4. Prediction of unit cost

As seen in Lemma B, our random sample Xk(t) of k compound lessons, learnable
in t seconds, approaches for large k an independent sampling of individual lessons.
By Lemma C, the corresponding hitting probability TXk(t) approaches the limiting
simple expression (16). Therefore, it is more than plausible that in the limit we
have obtained a prediction of the decrease in cost-per-unit during manufacturing.

Theorem B. Assume cumulative cost saving C = C(x) is continuously differentiable
and that its derivative has compact support. If learning is proceeding at the Poisson
rate λ, then the expected production cost U per unit is given by the rule

U(t) = U0 −
∫ ∞

−∞
(1− eλt f (x)) dC(x), (19)

where U0 is the initial cost per unit at the onset of production and where the
probability density f is given by

f (x) = αexp(βC(x))C ′(x). (20)

Proof. The unit cost is decreased from its initial cost by the expected cost saving
per unit from learning during time t, i.e.,

U(t) = U0 −∆C(t). (21)

But as argued above,

∆C(t) = lim
k→∞

E
�∫

Xk(t)

dC(x)
�

.

Hence (16) will then yield (19). ¤

5. Devolution to the discrete case

As further evidence that Theorem B gives the correct model for unit cost
evolution resulting from incremental learning, let us demonstrate that it cuts back
to the discrete case of Theorem A.

Let I = [a, b] be the smallest closed interval containing the compact support of
f . We may, as always, translate and rescale our lesson labeling system at will, so
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that in this case I = [0, 1]. Let us partition I in the usual way into n congruent
subintervals [x i−1, x i], with 0= x0 < x1 < · · ·< xn = 1 and∆x i = x i−x i−1 = 1/n.

Then as in (4) the cost saving accrued by the compound lesson [x i−1, x i) is

ci =

∫ x i

x i−1

dC(x), (22a)

which will be chosen via (7) with probability

pi =

∫ x i

x i−1

f (x) d x =
f (x∗i )

n
. (22b)

We take snapshots in time tk under the time scaling where one compound lesson
[x i−1, x i) is learned on average per second. Then because λ is the average rate of
learning per lesson length, we have tkλ= k/n.

Therefore the Riemann-Stieltjes sum approximation of the integral of (19) takes
on the form

∫ ∞

−∞
1− e−λtk f (x) dC(x) =

∫ 1

0

1− e−k f (x)/n dC(x) (23)

=
n∑

i=1

�
1− e−k f (x∗i )/n

�
ci +O(1/n2)

=
n∑

i=1

�
1−
�

1− f (x∗i )

n

�k�
ci +O(k/n2) (24)

=
n∑

i=1

[1− �1− pi
�k] ci + O(k/n2), (25)

which is consistent with the discrete result (3).

6. Summary

We have obtained a prediction of how cost per unit falls during the
manufacturing of a good when learning is incremental. When incremental lessons
are grouped into discrete compound lessons, the model devolves into a previously
obtained prediction of unit cost when learning occurs in discrete jumps.
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Appendix

Let us nail down the somewhat slippery notion of a random set.

Definition. Let M denote the family of all measurable subsets B of the real
numbers R. Let Σ(M ) be a σ-algebra of subsets S of M which contains at the
very least, for each real x , the collection Sx of all B that contain x . Suppose π is a
probability measure on Σ(M ). Then the identity map

X :M →M (A1)

is called the random set of the probability space
�M ,Σ(M ),π�.

(Some authors prefer to restrict the setvalues that X can take on [Goutsias], a
practice which conflicts with the traditional usage for realvalued random variables.
In our formulation, the probability π often may possess small support so that X
may take on most setvalues almost never.)

The function TX : R → [0, 1] given by the expected value that x lies in X , in
symbols

TX (x) = E[χX (x)] =

∫

M
χB(x) dπ(B), (A2)

is called the hitting probability of x in X .

Robbins’s Theorem (1944). For any integrable realvalued function g of a real
variable x,

E
�∫

X

g(x) d x
�
=

∫

R

g(x)TX (x) d x . (A3)

Proof. By Fubini’s theorem,

E
�∫

X

g(x) d x
�
=

∫

M

∫

B

g(x) d x dπ(B)

=

∫

M

∫

R

χB(x)g(x) d x dπ(B)

=

∫

R

g(x)

∫

M
χB(x) dπ(B) d x

=

∫

R

g(x)TX (x) d x . (A4)

Let us revisit the construction of the random sets Xk(t) of §3. Fix t > 0 and set
λt = b. Suppressing all mention of t, the random set Xk is a category of sets of
special type, namely sets that are the union of k half-open intervals [a, a + b/k),
each such union determined uniquely (within permutations of subscripts) by the
k-tuple (a1, a2, . . . , ak) of left endpoints, chosen by k successive independent draws
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with probability density f . Since the outcome of the random variable Xk is declared
to be only such unions, these unions form the support Kk of the probability πk of
the probability space (M ,Σk(M ),πk) belonging to this random set Xk. Let us now
deduce Σk(M ) and πk.

Let S be an element of Σk(M ), that is, a πk-measurable set of measurable sets.
Since the subset S \ Kk of all measurable sets of S not of type Xk has πk-measure
zero and may be discarded, the remaining subcollection S∩Kk occurs with relative
frequency

πk(S) = πk(S ∩ Kk)

= λk(AS)

=

∫

AS

f (a1) f (a2) · · · f (ak) da1 · · · dak , (A5)

where AS is the set of all left endpoints (a1, a2, . . . , ak) (over all permutations of
their subscripts) of the sets in S of type Xk. The proper sigma algebra Σk(M ) is
thus seen to be the smallest collection of all sets S of measurable sets B such that
the left endpoints (a1, a2, . . . , ak) of members B ∈ S of type Xk form a measurable
set A of Rk.

Result. The sequence of dynamic random sets Xk of §3 converges weakly in the sense
that for each integrable realvalued function g of a real variable and each t > 0,

E[g(x)|x ∈ Xk] =

∫

R

g(x)TXk
(x) d x →

∫

R

g(x)
�
1− e−λt f (x)� d x . (A6)

Proof. The result follows from the Lebesgue dominated convergence theorem. ¤
Remark. We have been unable to decide whether or not these random sets Xk(t)
of §3 converge to a random set. It is impossible for their associated probability
measures to converge strongly (in distribution) to a measure associated with some
putative limit random set, since such strong convergence leads to statements
contradicting Choquet’s theorem — that a capacity functional for a random set
has to be uppersemicontinuous [Goutsias]. However, it may be possible that the
Xk(t) converge in some useful weak sense like the above to an actual random set
with the hitting probability given in (16). The weak limit [Billingsley 1968] of the
probability measures λk of (A5) to a probability product measure on R∞ is one
possible candidate for the probability associated with this limit random set (once
proper identifications are made). But in the end it may surprisingly turn out that
learning during the production of a good is given by a generalized, but not actual
evolving random set with a generalized hitting probability given by (16).
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