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Some Notes on Dual Spherical Curves

Yusuf Yayli and Semra Saracoglu

Abstract. In this study, by investigating one parameter spherical motion in D3

with two different kinds of dual indicatrice curves, we have obtained the ruled
surfaces that correspond to tangent, principal normal and binormal indicatrices
of the dual curve are developable. Furthermore, it can be easily seen that this
study gives a link between the classical surface theory and dual spherical curves
on the dual unit spheres.

1. Introduction

The presentation of dual spherical motion expressed with the help of dual unit
vectors is based on the study of Clifford and E. Study.

Recently, dual space curves and surfaces have been extensively studied and they
are powerful mathematical tools for spherical motion in D3. Such notions as dual
numbers, dual vectors, dual angles, dual orthogonal matrices...etc. in general dual
elements have been originally conceived by Clifford (1873) [1]. After him, the first
applications to mechanics are due to Study (1901) [8] and he defined the mapping
which is called after his name: There is a one-to-one correspondence between an
oriented straight line in the Euclidean 3-space E3 and a dual point on the surface
of a dual unit sphere S2 in the dual space D3 [8]. Hence, a differentiable curve on
the sphere S2 corresponds to a ruled surface in the line space in R3 [2, 3, 4, 5].
Here, it can be easily said that dual spherical motion is closely analogous to real
spherical motion.

In this study, we present the characterizations of dual spherical curves in
dual space. In the second section of this paper, we briefly give the mathematical
formulations and the necessary notational conventions for the reader who is not
familiar with.

In the next section, we define a dual curve inD3 with the assistance of unit speed
curve in E3. Then we have showed that these curves have the same parameter.
Accordingly, by describing an orthonormal moving frame along dual curve, we
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give one parameter spherical motion in dual space. At that time, we have different
results that have been extensively studied in [6] and [10].

In the fourth section of the study, by defining another unit speed curve with
the same parameter of the first curve and also another closed spherical dual curve
of class C1 on a unit dual sphere S1 in D3, different cases are investigated with
taking tangent, principal normal and binormal indicatrices of these curves. In the
last section, we show that the ruled surfaces that correspond to tangent, principal
normal and binormal indicatrices of the other dual curve are developable. At the
end of the section, the Darboux vector of this motion is calculated with the Darboux
indicatrice of the dual curve.

Therefore, this study gives us a link and relation between the classical surface
theory and dual spherical curves on the dual unit spheres.

2. Basic concepts

2.1. Frenet frame [3, 4]

We assume that the curve α is parametrized by arclength. Then, α′(s) is the unit
tangent vector to the curve, which we denote by T (s) Since t has constant length,
T ′(s) will be orthogonal to T (s). If T ′(s) 6= 0 then we define principal normal

N(s) =
T ′(s)
T ′(s)

(2.1)

vector and the curvature

k1(s) = ‖T ′(s)‖ . (2.2)

So far, we have

T ′(s) = k1(s) · T (s) . (2.3)

If k1(s) = 0, the principal normal vector is not defined. If k1(s) 6= 0 then the
binormal vector b(s) is given by

B(s) = T (s)× N(s) . (2.4)

Then {T (s), N(s), B(s)} form a right-handed orthonormal basis for R3. In summary
Frenet formulas can be given as

T ′(s) = k1(s) · N(s) , (2.5)

N ′(s) =−k1(s) · T (s) + k2(s) · B(s) , (2.6)

B′(s) =−k2(s) · N(s) . (2.7)

2.2. Involute [3, 4]

The orbit that is the perpendicular to the tangents of a curve is involute of this
curve.
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2.3. Mannheim partner curves in 3-space [7, 9]

Let E3 be the 3-dimensional Euclidean space with the standard inner product
〈 , 〉. If there exists a corresponding relationship between the space curves Γ and
Γ1such that, at the corresponding points of the curves, the principal normal
lines of coincides with the binormal lines of Γ1, then Γ is called a Mannheim
curve, and a Γ1 Mannheim partner curve of Γ. The pair {Γ,Γ1} is said to be
a Mannheim pair. From the elementary differential geometry we have the well-
known characterizations of Bertrand pair. But there are rather few works on
Mannheim pair. It is just known that a space curve in E3 is a Mannheim curve
if and only if its curvature κ and torsion τ satisfy the formula κ = λ(κ2 + τ2),
where λ is a nonzero constant.

Let Γ : x(s) be a Mannheim curve in E3 parameterized by its arc length s and
Γ1 : x1(s1) the Mannheim partner curve of with an arc length parameter s1. Denote
by {α(s),β(s),γ(s)} the Frenet frame field along Γ : x(s), that is, α(s) is the tangent
vector field, β(s) the normal vector field and γ(s) the binormal vector field of the
curve Γ, respectively.

Here and in the following, we use “dot” to denote the derivative with respect to
the arc length parameter of a curve.

2.4. Mannheim partner curves in dual space [7, 9]

Let D3 be the dual space with the standard inner product 〈, 〉. If there exists a
corresponding relationship between the dual space curves bα and bβ such that, at the
corresponding points of the dual curves, the principal normal lines of bα coincides
with the binormal lines of bβ , then bα is called a dual Mannheim curve, and bβ a dual
Mannheim partner curve of bα The pair {bα, bβ} is said to be a dual Mannheim pair.

3. One parameter spherical motion in D3

3.1. First kind of dual indicatrice curve

Let

α :I → E3 (3.1)

s 7→ α(s)
be unit speed curve and {T, N , B} Frenet frame of α. T, N , B are the unit tangent,
principal normal and binormal vectors respectively. With the assistance of α, we
define a dual curve in D3. So, let us have a closed spherical dual curve bα of class
C1 on a unit dual sphere S1in D3. The curve α describes a closed dual spherical
motion. If

bα :I → D3 (3.2)

s 7→ bα(s) = α(s) + ε
∫
α∧ T ds =

∫
(T + ε(α∧ T ))ds
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then the curve α can be written as:

bα= α(s) + εα?(s). (3.3)

At this time, when we get α?(s) as proper integral, different geometrical approach
can be given as the following.

In this case, when we have

α :I → E3 (3.4)

s 7→ α(s)
the Peano direction of α and the projection of Pα can be given by [11]

Pα =

∮

S1

α∧ T d t (3.5)

Figure 1. Projection area of closed curve α on the plane

Hence, Fα is a projection area of closed curve α on the plane that its normal is N .

Fα = 〈Pα, N〉. (3.6)

On the other hand, we can easily show that the curves α and bα have the same
parameter s. If we write bα as:

bα(s) = α(s) + εα?(s) (3.7)

= α(s) +

∫
α∧ T ds =

∫
(T + ε(α∧ T ))ds

then we can get

bα′(s) = bT (s) = α′(s) + ε(α∧ T ), (3.8)

bα′(s) = T + ε(α∧ T ).
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Thus we have

bs = s+ ε

t∫

0

〈T,α∧ T 〉 d t (3.9)

= s+ 0= s .

Now, we define an orthonormal moving frame along dual curve as follows in D3;
accordingly, we can easily give dual curves in D3 as:

bα(s) =
∫
[T (s) + εα(s)∧ T (s)]ds, (3.10)

bµ(s) =
∫
[N(s) + εα(s)∧ N(s)]ds, (3.11)

bγ(s) =
∫
(B(s) + εα(s)∧ B(s))ds. (3.12)

And also, let the tangent, principal normal and binormal indicatrice curves of bα be
bT (s), bN(s) and bB(s) respectively.

bT (s) = T + ε(α∧ T ),

bN(s) = N + ε(α∧ N),

bB(s) = B+ ε(α∧ B).

Subsequently, we can give the following theorem:

Theorem 1. The curves bα(s), bµ(s) and bγ(s) are involute-evolute curve pairs.

Proof. It can be easily seen that

bα′(s), bµ′(s)�= 
bα′(s),bγ′(s)�= 
bµ′(s),bγ′(s)�= 0. (3.13)

¤

Theorem 2. The tangent, principal normal and binormal indicatrice curves of bα(s)
are bT (s), bN(s) and bB(s) respectively. And also, {bT , bN , bB} frame is a Blaschke Frame.

Proof. It is clear that

bα(s) = bT (s), (3.14)

bN =
d bT
ds




d bT
ds







and

bB(s) = bT ∧ bN .

¤
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At this time, the ruled surfaces in R3 correspond to dual curves bT , bN and bB are
the ruled surfaces that drawn by the lines T , N and B of α. That is to say, these
ruled surfaces can be given as:

ΦbT = α(s) +υT (s), (3.15)

ΦbN = α(s) +υN(s),

ΦbB = α(s) +υB(s).

On the other hand, let the unit dual spheres K and K be

K = {e1, e2, e3} and K = {bT , bN , bB}. (3.16)

These are two orthonormal coordinate systems of moving unit sphere K and fixed
unit dual sphere K with the same origin. At this time, one parameter dual spherical
motion (dual rotation) between these dual spheres K and K can be given with K/K .
In this case, we can easily investigate dual spherical motion K/K with



cT ′
cN ′
bB′


=




0 k1 0
−k1 0 k2 + ε

0 −k2 − ε 0






bT
bN
bB


 . (3.17)

Besides, let the Darboux indicatrice curve of bα(s) be cW . According to this, the
Darboux vector of this motion is:

cW = (k2 + ε)bT + k1bB . (3.18)

On the other hand, the curvatures bk1(s) and bk2(s) can be calculated. Let bk1(s) and
bk2(s) be bκ(s) and bτ(s) in turn. Thus,

bk1(s) = bκ(s) and also k1(s) = κ(s), (3.19)

bk2(s) = bτ(s) and also bk2(s) = k2(s) + ε = τ(s) + ε.

And then
dbα
dbs =

dbα
ds
= bT (s), ‖bT (s)‖= 1 (3.20)

such that bα(s) is unit speed curve.
If bα(s) is a normal curve such that

bα(s) = λ(s)bN(s) +η(s)bB(s) (3.21)

then the curvatures of dual curve bα(s) are k1(s) and k2(s) as following:

k1 =

�
c1 · cos

�
arctan

c∗1 + sc2

c1s− c∗2

�
+ c2 · sin

�
arctan

c∗1 + sc2

c1s− c∗2

��−1

, (3.22)

k2 =
d

ds

�
arctan

c∗1 + sc2

c1s− c∗2

�
.

Theorem 3. The dual curve bα(s) is a normal curve if and only if
∫
(α ∧ T )ds is in

rectifying plane of α(s).
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Proof. We know that

bα= α+ εα∗ = α+ ε
∫
(α∧ T )ds, (3.23)

bN = N + εN ∗ and N ∗ = α∧ N ,

bB = B+ εB∗ and B∗ = α∧ B

and also from [6]
1
bk1

=
1

k1
− (g(α(s), N ∗) + g(α∗, N)), (3.24)

bk1 = k1.

Then,


α(s), N ∗

�
+


α∗(s), N

�
= 0, (3.25)

〈α(s),α∧ N〉+
®∫
(α∧ T )ds, N

¸
= 0.

Here, we get
®∫
(α∧ T )ds, N

¸
= 0 (3.26)

then ®�∫
αds

�
∧ T, N

¸
= 0 . (3.27)

In this case,

det

�∫
αds, T, N

�
= 0 . (3.28)

Thus,
∫
(α ∧ T)ds is in rectifying plane of α(s).And also, we know that the dual

curve bα(s) is in normal plane if and only if bα(s) is a dual spherical curve from [6].
Now it can be easily seen that

∫
αds is the element of osculating plane,that is

to say
∫
αds ∈ Sp {T, N}. Accordingly, we can give an example for this situation. If

we get
∫
αds = N(s) (3.29)

then the value of the determinant will be zero. In this case, when we get

α(s) = k1T − k2B (3.30)

the curve α will be in the rectifying plane. That is to say, the curve α is rectifying
curve. Also it can be easily seen that

∫
αds ∈ Sp {T, B}. ¤

Result 1. The dual curve bα(s) is a dual spherical curve if and only if
∫
(α ∧ T )ds is

in rectifying plane of α(s).
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Theorem 4. If the curve α : I → E3 is a Salkowski curve such that the curvature k1

is constant and k2 is linear, then bα is in rectifying plane.

Proof. From [10], we can investigate the linearity of this curve when we have

bk2

bk1

=
bτ
bκ =

k2 + ε
k1

= bc1bs+bc2. (3.31)

Let bc1 and bc2 be

bc1 = c1 + εc
∗
1, (3.32)

bc2 = c2 + εc
∗
2.

Accordingly,

k2 + ε
k1

= bc1bs+bc2 = (c1 + εc
∗
1)s+ (c2 + εc

∗
2) (3.33)

= c1s+ c2 + ε(c
∗
1 + c∗2).

Thus,

k2

k1
= c1s+ c2 and

1

k1
= c∗1 + c∗2 (3.34)

Here, this shows us that k1 is constant and k2 is linear. Hence it can be seen that

the curvature
k2 + ε

k1
of the Salkowski curve is also linear such that k1 is constant

and k2 is linear. In general, the curvature
k2 + ε

k1
can be given as:

k2 + ε
k1

= (as+ b) · 1

k1
= as+bc . (3.35)

¤

4. Second Kind of Dual Indicatrice Curve

In this section, with the assistance of α, we can define curve β . Let β(s) be unit
speed curve and its parameter be the same as the parameter of the curve α(s).

β :I → E3 (4.1)

s 7→ β(s)
Similarly, we define another dual curve bβ inD3. At this time, we have to say that

{T, N , B} frame is Frenet Frame of α. Thus, let us have another closed spherical
dual curve bβ of class C1 on a unit dual sphere S1 in D3. The curve β describes a
closed dual spherical motion if

bβ :I → D3 (4.2)

s 7→ bβ(s) = α(s) + ε
∫
β ∧ T ds =

∫
(T + ε(β ∧ T))ds
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In that case, taking T , N and B be tangent, principal normal and binormal
indicatrices of the other dual curve bβ =

∫
(T + ε(β ∧ T ))ds, we get

T = T + εβ ∧ T, (4.3)

N = N + εβ ∧ N ,

B = B+ εβ ∧ B.

and also ruled surfaces that correspond to these indicatrices of the other dual curve
bβ can be given as:

ΦT = β + vT, (4.4)

ΦN = β + vN ,

ΦB = β + vB.

On the other hand, although we have investigated above that the arc parameters
are equal to each other, the frame that occurred is not the Blaschke Frame.

Now, we can investigate the developability of the ruled surfaces that correspond
to T , N and B tangent, principal normal and binormal indicatrices of the dual curve
bβ . Firstly, if ΦT = β + vT then

PT = det(β ′, T, T ′) (4.5)

= det(β ′, T, k1N)

= k1 det(β ′, T, N).

Thus, β ′ ∈ Sp {T, N} if and only if the ruled surface ΦT that corresponds to T
is developable. On the other hand, if β ′ = λB, then the ruled surface is not
developable.

Subsequently, if ΦN = β + vN then

PN = det(β ′, N , N ′) (4.6)

= det(β ′, N ,−k1T + k2B)

=−k1 det(β ′, N , T ) + k2 det(β ′, N , B)

= k1λ3 + k2λ1.

Therefore, the ruled surface that corresponds to N is developable if and only if

k1λ3 + k2λ1 = 0, (4.7)

k1

k2
=−λ1

λ3
.

After that, it can be easily seen that if ΦB = β + vB then

PB = det(β ′, B, B′) (4.8)

= det(λ1T +λ2N +λ3B, B,−k2N)

=−k2 det(λ1T +λ2N +λ3B, B, N)
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=−k2(−λ1)

= λ1k2 .

As stated above, the ruled surface that corresponds to B is developable if and
only if β ′ ∈ Sp {T, N} or the curve α is planar. Accordingly, we can investigate
different cases:

4.1. β(s) = α(s)

In this case, we can get the same frame and results as 3.1.

4.2. β(s) = T (s)

In this case, the dual frame is

T = T, (4.9)

N = N + εB,

B = B− εN .

The ruled surfaces that correspond to T , N and B can be given as:

ΦT = T +υT, (4.10)

ΦN = N +υN , (4.11)

ΦB = B+υB. (4.12)

Theorem 5. From (4.10), the ruled surface is coni; also from (4.11) and (4.12), it
can be easily seen that the ruled surfaces are developable.

Proof. It is clear that

PT =
det(T ′, T, T ′)
〈T ′, T ′〉 = 0, (4.13)

PN =
det(T ′, N , N ′)
〈N ′, N ′〉 = 0,

PB =
det(T ′, B, B′)
〈B′, B′〉 = 0.

Thus, the ruled surfaces that correspond to T , N and B are developable. ¤

Subsequently, from (4.9), dual spherical motion of this case can be calculated
with: 


T ′

N ′

B′


=




0 k1 −εk1
−k1 0 k2
εk1 −k2 0







T
N
B


 (4.14)

Besides, the Darboux indicatrice curve of bβ(s) be W for this case. According to
this, the Darboux vector of this motion is:

W =−k2T − εk1N − k1B . (4.15)
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Thus,

W ∧ T =−εk1B+ k1N = T ′, (4.16)

W ∧ N =−k2B− k1T = N ′,

W ∧ B =−k2N + εk1T = B′ .

4.3. β(s) = N(s)

In this case, if we take β(s) = N(s) then we have the dual frame as following:

T = T − εB, (4.17)

N = N ,

B = B+ εT.

Thus, the ruled surfaces that correspond to T , N and B are
•
ΦT = N +υB, (4.18)
•
ΦN = N +υN , (4.19)
•
ΦB = N +υT. (4.20)

From (4.18), it can be seen that

•
PT =

det(N ′, B, B′)
〈B′, B′〉 (4.21)

=
det(−k1T + k2B, B,−k2N)

k2
2

=−k1

k2
= constant.

Result 2. The curve α is helix if and only if
•
PT is constant. At the same time, from

(4.19), we can easily say that the surface is coni. Similarly, from (4.20)

•
PT =

det(N ′, T, T ′)
〈T ′, T ′〉 (4.22)

=
det(−k1T + k2B, T,−k1N)

k2
1

=
k2

k1
= constant.

Result 3. The curve α is helix if and only if
•
PB is constant.

Result 4. It can be easily calculated that
•
PT ·

•
PB =−1

Subsequently, from (4.17), dual spherical motion of this case can be calculated
with: 


T ′

N ′

B′


=




0 k1 + εk2 0
−k1 − εk2 0 k2 − εk1

0 −k2 + εk1 0







T
N
B


 . (4.23)
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Besides, the Darboux indicatrice curve of bβ(s) be fW for this case. According to
this, the Darboux vector of this motion is:

fW = (−k2 + εk1)T + (k1 + εk2)B . (4.24)

Thus,

fW ∧ T = (−k1 − εk2)N = T ′, (4.25)

fW ∧ N = (−k2 + εk1)B+ (−k1 − εk2)T = N ′,

fW ∧ B = (−k2 + εk1)N = T ′ .

4.4. β(s) = B(s)

In this case, if we take β(s) = B(s) then we have the dual frame as:

T = T + εN , (4.26)

N = N − εT,

B = B

and then we can get the ruled surfaces of T , N and B as:
ö
ΦT = B+υN , (4.27)
ö
ΦN = B+υT, (4.28)
ö
ΦB = B+υB. (4.29)

From (4.27), (4.28) and (4.29), it can be easily seen that
ö
PT =

ö
PN =

ö
PB = 0. (4.30)

Thus, the ruled surfaces are developable. Accordingly, from (4.26), dual spherical
motion of this case can be calculated with:


T ′

N ′

B′


=




0 k1 0
−k1 0 k2
−εk2 −k2 0







T
N
B


 . (4.31)

Besides, the Darboux indicatrice curve of bβ(s) be
←→
W for this case. According to

this, the Darboux vector of this motion is:
←→
W = k2T − εk2N + k1B. (4.32)

Thus,
←→
W ∧ T = k1N + εk2B = T ′, (4.33)
←→
W ∧ N =−k1T + k2B = N ′,
←→
W ∧ B =−εk2T − k2N = B′.
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5. Conclusions

The starting point of this study is to define two different dual spherical curves
with the same parameter. We have developed this approach with giving one
parameter spherical motion in dual space. Accordingly, different cases and results
have occurred. Some of these cases have showed us that we have obtained different
Darboux vectors for each motion.
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