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Some Subspaces of Generalized Entire Sequences of
Fuzzy Numbers

T. Balasubramanian and A. Padiarani

Abstract. The object of the present paper is to introduce the sequence spaces
λ0(F, p) defined by the sequence of fuzzy numbers and p = (pk) be any bounded
sequence of positive real numbers. We study their different algebraic and
topological properties. We also obtain some inclusion relations between these
spaces.

1. Introduction

The concept of fuzzy set theory was introduced by Zadeh [14] and subsequently
several authors have discussed various aspects of the theory and applications of
fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy orderings,
fuzzy measures of fuzzy events, fuzzy mathematical programming. Matloka [7]
introduced bounded and convergent sequences of fuzzy numbers and studied some
of their properties. Later on sequences of fuzzy numbers have been discussed
by Nanda [9], Savas [12], Mursaleen [8], Tripathy [13], Dutta [2] and many
others. Ganapathy Iyer [1] studied the space of all entire functions. Maddox [5]
generalised the space of all entire functions as a special class of sequences of
complex numbers c0(p).

Let p = (pk) be any sequence of strictly positive real numbers. The class of
sequences defined by Maddox [5] was

c0(p) = {x ∈ω : |xk|pk → o}.
When all the terms of (pk) are constants and all equal to p > o we have
c0(p) = c0, the space all null sequences. The special FK-space c0(1/k) was studied
by Ganapathy Iyer [1] who identified it with the space of all entire functions.In
fuzzy theory, the entire sequence space of fuzzy numbers was introduced by
Kavikumar [4].

2010 Mathematics Subject Classification. 40A05, 46A45.
Key words and phrases. Fuzzy number; Entire sequence spaces; Completeness; Bounded sequence;
Cauchy sequence.



146 T. Balasubramanian and A. Padiarani

Kampthan [3] studied the class,

X =
�

f : f (z) =
∑

anzn, |n!an|
1
n → 0 as n→∞

�

consisting of all entire functions of order 1 and type 0 and showed that X is a
Frechet-space with the total paranorm

|| f ||= sup
�|n!an|

1
n : (n≥ 1)

	
.

Recently, Nuray and Savas [10] have defined the following space of sequences of
fuzzy numbers

lF (p) =
�

x = (xk) :
∑

k

[d(xk, 0)]pk <∞
�

where (pk) is a bounded sequence of strictly positive real numbers. Mursaleen and
Metin Basarir [8] studied the spaces F0(p), F∞(p) and F(p).

Our aim is to introduce the space λ0(F, p). We establish the condition for
λ0(F, p) to be identical with c0(F, p). Also we give the necessary and sufficient
condition for λ0(F, p) to be included in µ0(F, p).

2. Definitions and Preliminaries

We begin with giving some required definitions and statements of theorems,
propositions and lemmas. A fuzzy number is a fuzzy set on the real axis i.e. a
mapping u : R→ [0, 1] which satisfies the following four conditions.

(i) u is normal i.e. there exists an x0 ∈ R such that u(x0) = 1.
(ii) u is fuzzy convex i.e. u[λx + (1− λ)y] ≥ min{u(x), u(y)} for all x , y ∈ R

and for all λ ∈ [0, 1].
(iii) u is upper semi continuous.
(iv) The set [u]0 =

�
x ∈ R : u(x)> 0

	
is compact (Zadeh [1]) where�

x ∈ R : u(x)> 0
	

denotes the closure of the set
�

x ∈ R : u(t)> 0
	

in the
usual topology of R. We denote the set of all fuzzy numbers on R by E′ and
called it as the space of fuzzy numbers. The λ-level set [u]λ of u ∈ E′ is

defined by [u]λ =




{t ∈ R : u(t)≥ λ}, (0< λ≤ 1)

{t ∈ R : u(t)> λ}, λ= 0.

The set [u]λ is a closed bounded and non-empty interval for each λ ∈ [0, 1] which
is defined by

[u]λ = [u
−(λ), u+(λ)]

R can be embedded in E′. Since each r ∈ R can be regarded as a fuzzy number r
defined by

r(x) =

¨
1 (x = r)
0 (x 6= r)
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Let u, v, w ∈ E′ and k ∈ R. The operations addition, scalar multiplication and
division defined on E′ by

u+ v = w⇔ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]

⇔ w−(λ) = [u−(λ), v−(λ)]

and

w+(λ) = [u+(λ), v+(λ)] and for all λ ∈ [0, 1]

[ku]λ = k[u]λ for all λ ∈ [0, 1]

and

uv = w⇔ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1]

where it is immediate that

w−(λ) =min{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}
and

w+(λ) =max{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}
for all λ ∈ [0, 1]

u/v = w⇔ [w]λ = [u]λ/[v]λ for all λ ∈ [0, 1]

= [u−(λ), u+(λ)] ·
�

1

v−(λ)
,

1

v+(λ)

�

=
�

min
�
[u]−(λ)
[v]+(λ)

,
u−(λ)
v−(λ)

,
u+(λ)
v+(λ)

,
u+(λ)
v−(λ)

�
,

max
�
[u]−(λ)
[v]+(λ)

,
u−(λ)
v−(λ)

,
u+(λ)
v+(λ)

,
u+(λ)
v−(λ)

��

Let W be the set of all closed and bounded intervals A of real numbers with
endpoints A and A i.e. A= [A, A].
Define the relation d on W by

d(A, B) =max{|A− B|, |A− B|}
Then it can be observed that d is a metric on W and (W, d) is a complete metric
space (Nanda [9]) . Now we can define the metric D on E′ by means of a Hausdroff
metric d as

D(u, v) = sup d([u]λ,[v]λ) = sup
λ∈[0,1]

max{|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|}

(E′, D) is a complete metric space. One can extend the natural order relation on
the real line to intervals as follows.

A≤ B if and only if A≤ B and A≤ B

The partial order relation on E′ is defined as follows.

u≤ v⇔ [u]λ ≤ [v]λ⇔ u−(λ)≤ v−(λ) and u+(λ)≤ v+(λ) for all λ ∈ [0, 1].
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An absolute value |u| of a fuzzy number u is defined by

|u|(t) =
¨

max{u(t), u(−t)}, (t ≥ 0)
0, (t < 0).

λ-level set [|u|]λ of the absolute value of u ∈ E′ is in the form [|u|]λ, where

|u|−(λ) =max{0, u−(λ),−u+(λ)}, |u|+(λ) =max{|u−(λ)|, |u+(λ)|}
The absolute value |uv| of u, v ∈ E′ satisfies the inequalities (Talo [11])

|uv|−(λ)≤ |uv|+(λ)
≤max{|u−(λ)||v−(λ)|, |u−(λ)||v+(λ)|, |u+(λ)||v−(λ)|, |u+(λ)||v+(λ)|}.

u ∈ E′ is a non-negative fuzzy number if and only if u(x) = 0 for all x < 0. It is
immediate that u≥ 0 if u is a non negative fuzzy number.

One can see that

D(u, 0) = sup max
λ∈[0,1]

{|u−(λ)|, |u+(λ)|}=max{|u−(λ)|, |u+(λ)|}.

Proposition 2.1. Let u, v, w ∈ E′ and k ∈ R. Then

(i) (E′, D) is a complete metric space.
(ii) D(ku, kv) = |k|D(u, v).

(iii) D(u+ v, w+ v) = D(u, w).
(iv) D(u+ v, w+ z)≤ D(u, w) + D(v, z).
(v) |D(u, 0)− D(v, 0)| ≤ D(u, v)≤ D(u, 0) + D(v, 0).

Lemma 2.2. The following statements hold (Talo [11]):

(i) D(uv, 0)≤ D(u, 0)D(v, 0) for all u, v ∈ E′.
(ii) If uk → u as k→∞ then D(uk, 0)→ D(u, 0) as k→∞ where (uk) ∈ w(F).

In the sequel, we require the following definitions and lemmas.

Definition 2.3. A sequence u= (uk) of fuzzy numbers is a function u from the set
N into the set E′. The fuzzy number uk denotes the value of the function at k ∈ N
and is called the kth term of the sequence. Let w(F) denote the set of all sequences
of fuzzy numbers.

Definition 2.4. A sequence (uk) ∈ w(F) is called convergent with limit u ∈ E′ if
and only if for every ε > 0 there exists an n0 = n0(ε) ∈ N such that

D(uk, u)< ε for all k ≥ n0.

Theorem 2.5 ([7]). Let (uk), (vk) ∈ w(F) with uk→ a, vk → b as k→∞. Then,

(i) uk + vk → a+ b as k→∞.
(ii) uk − vk → a− b as k→∞.

(iii) uk vk → ab as k→∞.
(iv) uk/vk → a/b as k→∞ where 0 /∈ [vk]0 for all k ∈ N and 0 /∈ [b]0.
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Definition 2.6. A sequence (uk) ∈ w(F) is called bounded if and only if the set of
all fuzzy numbers consisting of the terms of the sequence (uk) is a bounded set.

That is to say that a sequence (uk) ∈ w(F) is said to be bounded if and only if
there exist two fuzzy numbers m and M such that m≤ uk ≤ M for all k ∈ N .

3. The space λ0(F)

Let Λ = (λk) be a sequence of non-zero fuzzy numbers and let u = (uk) be any
sequence of fuzzy numbers. Put Λu= (λkuk) and (Λu)k = λkuk.

We define

λ0(F) = {u= (uk) ∈ c0(F) : lim
k→∞

D[(Λu)k, 0] = 0}.

Theorem 3.1. λ0(F) is a complete metric space if and only if

lim
k→∞

inf{D(λk, 0)}> 0 (3.1)

Proof. The metric on λ0(F) is given by

d0(u, v) = sup
k

D[(Λu)k, (Λv)k]

= sup
k

sup
α∈[0,1]

max{|(λkuk)
−(α)− (λk vk)

−(α)|, |(λkuk)
+(α)− (λk vk)

+(α)|}.

Let {u(i)} be any Cauchy sequence in λ0(F).
Then given ε > 0 there exists a positive integer n0 such that

sup
k

D[(Λu(i))k, (Λu(i))k]< ε (3.2)

for all i, j ≥ n0 and for all k. i.e.,

sup
k

sup
α∈[0,1]

max{|(λkui
k)
−(α)− (λku j

k)
−(α)|, |(λkui

k)
+(α)− (λku j

k)
+(α)|}< ε (3.3)

for all i, j ≥ n0 and for all k.

Let L = lim inf{D(λk, 0)}
= lim inf

n
sup
α∈[0,1]

max{|λ−k (α)|, |λ+k (α)|}
o

(3.4)

Using (3.3) and (3.4)

|u(i)−k (α)− u( j)−k (α)|< ε
L

and |u(i)+k (α)− u( j)+k (α)|< ε
L

(3.5)

for all i, j ≥ n0.
Hence {u(i)k } is a Cauchy sequence in E′ and since (E′, D) is complete

{u(i)k } → uk as i→∞.

Thus D(u(i)k , uk)<
ε

L
for all i, j ≥ n0 for all k.

Letting j→∞ in (3.5),

|u(i)−k (α)− uk(α)|<
ε

L
and |u(i)+k (α)− uk(α)|<

ε

L
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Now

|λ−k (α)||u
(i)−
k (α)− u−k (α)|< ε and |λ+k (α)||u

(i)+
k (α)− u−k (α)|< ε

Hence

sup
k

sup
α∈[0,1]

max{|λ−k (α)||u
(i)−
k (α)− u−k (α)|, |λ+k (α)||u

(i)+
k (α)− u+k (α)|}< ε

Thus u(i)k → u in λ0(F).
Since each (ui) is in λ0(F) we have

D(u(i)k , 0)<
ε

L
(3.6)

Using (3.4) and (3.6),

D[(λu)k, 0] = D[λkuk, 0]

≤ D(λk, 0)D(uk, 0) (Talo [11])

≤ L
�
ε

L

�
< ε

Hence u ∈ λ0(F). Thus λ0(F) is complete.

Conversely suppose (3.1) is not true. Then {D(λk, 0)} contains a subsequence
{D(λnk

, 0)} which is steadily decreasing and tends to zero. Consider the sequence

{u(n)k }∞n=1 where

u(n)k =

¨
1, if k = k1, k2, k3, . . . kn

0, 0therwise

Then u(n)k ∈ λ0(F) for all n= 1, 2, 3, . . .
For n> m we have

λ0(u
(m)
k , u(n)k ) = sup

k
D[λnk

u(m)k ,λnk
u(n)k ]

= D(λ(n+1)k , 0)

which tends to 0 as n, m→∞.
But lim

n→∞
u(m)k = (1, 1, . . .), which is not in λ0(F).

Thus (3.1) must hold whenever λ0(F) is complete. ¤

4. The space λ0(F, p)

Throughout, let (pk) be a bounded sequence of strictly positive real numbers
and M =max(1, sup pk).

The space λ0(F, p) is defined as follows.

λ0(F, p) =
�

u= (uk) ∈ c0(F, p) : lim
n→∞

n∑

k=1

D[(Λu)k, 0]pk = 0
�

.
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Now λ0(F, p) is endowed with two topologies one is the metric topology τ given
by metric d, where

d(u, v) = sup
k

D(uk, vk)
pk/M , u, v ∈ λ0(F, p).

The metric d is induced by the paranorm

g(u) = sup
k

�
D(uk, 0)pk

�1/M

The other is the topology τλ whose metric dλ is given by

dλ(u, v) = sup
k

�
D[(Λu)k, (Λv)k]

pk
�1/M , u, v ∈ λ0(F, p)

Theorem 4.1. λ0(F, p) = c0(F, p) if and only if (λk) ∈ `∞(F, p).

Proof. Suppose that (λk) ∈ `∞(F, p).
Then (λkuk) ∈ c0, (F, p) for every (uk) ∈ c0(F, p).
Hence c0(F, p)⊂ λ0(F, p). Always λ0(F, p)⊂ c0(F, p).
Therefore λ0(F, p) = c0(F, p).
On the other hand suppose that λ0(F, p) = c0(F, p).
If (λk) /∈ `∞(F, p) then there exist a positive integer r such that for each r, there
exist a k(r) such that

D(λk(r), 0)> 1

Define u by

uk =

¨
1, for k = k(r)
0, otherwise

and take (pk) = (1).
Then u ∈ c0(F, p).
But D((Λu)k, 0)> 1 showing that u /∈ λ0(F, p).
This contradiction shows that (λk) ∈ `∞(F, p). ¤

Corollary 4.2. λ0(F) = c0(F) if and only if (λk) ∈ `∞(F).

Theorem 4.3. λ0(F, p)⊂ µ0(F, p) if

min{D(γk, 0)pk , D(µk, 0)pk} is bounded. (4.1)

where γk =
µk

λk
.

Proof. Let A denote the set of positive integers k for which D(λk, 0)pk > 1.
Let B denote the set of positive integer k for which D(λk, 0)pk ≤ 1.
If k ∈ A then min{D(γk, 0)pk , D(µk, 0)pk}= D(γk, 0)pk .
If k ∈ B then {D(γk, 0)pk , D(µk, 0)pk}= D(µk, 0)pk .
Hence (4.1) is equal to the assertion that {D(γk, 0)pk} is bounded for k ∈ A and
{D(µk, 0)pk} is bounded for k ∈ B.
Suppose (4.1) holds and let u ∈ λ0(F, p).
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If k ∈ A, write ukµk = (ukλk)
µk

λk
.

If k ∈ B, ukµk = (uk)µk.
In either case {D(ukµk, 0)pk} is arbitrarily small for sufficiently large k.
Hence λ0(F, p)⊂ µ0(F, p) ¤

Corollary 4.4. λ0(F)⊂ µ0(F) if min{D(γk, 0), D(µk, 0)} is bounded.

Theorem 4.5. (λ0(F, p),τλ) is a complete metric space if and only if

lim inf{[D(λk, 0)pk]1/M}< 0.

Proof. The proof is similar to that of Theorem 3.1. ¤

Theorem 4.6. τ is finer than τλ if

lim
k→∞

sup{[D(λk, 0)pk]1/M}<∞. (4.2)

Proof. Suppose that (4.2) holds then,

lim
k→∞

sup{[D(λk, 0)pk]1/M}= L <∞
for some positive real number L > 0. That is

lim
k→∞

sup
�

sup
α∈[0,1]

max{|λ−k (α)|pk/M |λ+k (α)|pk/M}	= L <∞ (4.3)

Let ε > 0 be any real number. Let {u(n)} be any sequence converging to zero in
λ0(F, p) with respect to τ.
Then there exist some n0 such that D(u(n)k , 0)< ε/L for all n≥ n0.
Consequently,

sup
k
{[D(u(n)k , 0)pk]1/M}< ε/L for all n≥ n0

i.e.,

sup
k

�
sup
α∈[0,1]

max{|u(n)−k (α)|pk/M , |u(n)+k (α)|pk/M}	< ε/L (4.4)

Using (4.3) and (4.4)

dλ(u
(n)
k , 0) = sup

k
[D(λk, 0)pk]1/M[D(u(n)k , 0)pk]1/M

< L(ε/L) = ε for all n≥ n0.

Therefore {u(n)k } converges to zero with respect to τ. In other words the identity
map on (λ0(F, p),τ) onto (λ0(F, p),τλ) is continuous.
Hence τ > τλ. ¤

Theorem 4.7. Let (λ0(F, p)) be a complete metric space and let q = (qk) be a bounded
sequence of strictly positive real numbers. Then the following are equivalent

(i) λ0(F, p)⊂ λ0(F, q).

(ii) lim
k→∞

�
qk

pk

�
> 0
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Proof. Assume that (ii) is not true.
Then we can determine an increasing sequence of positive integers k(1) < k(2) <

· · · , such that qk(i) <

�
1

i

�
pk(i).

Define

uk(i) =





�
1

i(D(λk(i), 0))pk(i)

�
, for k = k(i)

0, for k 6= k(i).

Then

D(λk(i)uk(i), 0)pk(i) =
�

1

i

�
→ 0 as i→∞

Also

D(uk(i), 0)pk(i) → 0 as i→∞
But

D(λk(i)uk(i), 0)qk(i) > exp[−(log i)(log i)/i]> exp
�−1

2

�
.

This shows that u does not belong to λ0(F, q) which contradicts (i) and (ii) must
hold.

(ii)⇒(i): Suppose (ii) holds.
Then there exists r > 0 such that qk > rpk for all sufficiency large k.
Therefore D(λkuk, 0)qk ≤ [D(λkuk, 0)pk]r .
Thus λ0(F, p)⊂ λ0(F, q). ¤
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