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1. Introduction
Let E be a Banach space and E∗ be the dual space of E. For all x ∈ E and f ∈ E∗, let the value
of f at x be denoted by 〈x, f 〉. The normalized duality mapping J : E → 2E∗

is defined by

J(x)= { f ∈ E∗ : 〈x, f 〉 = ‖x‖2,‖ f ‖ = ‖x‖}

for all x ∈ E. A single-valued normalized duality mapping is denoted by j, which means a
mapping j : E → E∗ such that, for each u ∈ E, j(u) ∈ E∗satisfying the following:

〈 j(u),u〉 = ‖ j(u)‖‖u‖,‖ j(u)‖ = ‖u‖.

In 2008, Kohsaka and Takahashi [3] also introduced the class of mappings called the class
of nonspreading mappings to study the resolvent of a maximal monotone operator in Banach
spaces. Let E be a smooth, strictly convex and reflexive Banach space and K be a nonempty
closed convex subset of E.

Definition 1.1. A mapping T : K → K is said to be nonspreading if

φ(Tx,T y)+φ(T y,Tx)≤φ(Tx, y)+φ(T y, x)

for all x, y ∈ C, where

φ(x, y)= ‖x‖2 −2〈x, j(y)〉+‖y‖2.

The set of fixef points of a mapping T : K → K is defined by

F(T) := {x ∈ C : Tx = x}.

In 1954, Mann [5] introduced the following iteration to finding a fixed point, which is referred
to as the Mann iteration,

xn+1 =βnxn + (1−βn)Txn

for each n ≥ 1, where βn ∈ [0,1] is a sequence with some condition. However, there are not many
convergence theorems of such a iteration in a order Banach space (E,≤). Motivated by the
above results, we consider the weak convergence of the Mann iterative scheme for a monotone
nonspreading mapping T under the condition

∞∑
n=1

βn(1−βn)=∞

which contain βn = 1
n+1 as a special case. By motivation of Mann iteration for a monotone

nonexpansive mapping of Dehaish and Khamsi [2].

2. Preliminaries
Let P be a closed convex cone of a real Banach space E. A partial order “≤” with respect to P in
E is defined as follows:

x ≤ y (x ≤ y) if and on if y− x ∈ P (y− x ∈ P̊)

for all x, y ∈ E, where P̊ is the interior of P .

Throughout this paper, let E be a Banach space with the norm “‖ ·‖” and the partial order
“≤". Let F(T)= {x ∈ H : Tx = x} denote the set of all fixed points of a mapping T . Also, we assume
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that the order intervals are closed and convex. An order interval [x, y] for all x, y ∈ E is given by

[x, y]= {z ∈ E : x ≤ z ≤ y}. (1)

Then the convexity of the order interval [x, y] implies that

x ≤ tx+ (1− t)y≤ y for all x, y ∈ E with x ≤ y. (2)

Definition 2.1. Let K be a nonempty closed and convex subset of a Banach space E. A mapping
T : K → K is said to be:

(1) monotone if Tx ≤ T y for all x, y ∈ K with x ≤ y;

(2) monotone nonspreading if T is monotone and

‖Tx−T y‖2 ≤ ‖x− y‖2 +2〈x−Tx, J(y−T y)〉
for all x, y ∈ K with x ≤ y and J is normalized duality mapping.

A Banach space E is said to be:
(1) strictly convex if ‖ x+y

2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y;

(2) uniformly convex if, for all ε ∈ (0,2], there exists δ> 0 such that ‖x+y‖
2 < 1−δ for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.

The following inequality was showed by Xu [9] in a uniformly convex Banach space E, which
is known as Xu’s inequality.

Lemma 2.2 (Xu [9, Theorem 2]). For any real numbers q > 1 and r > 0, a Banach space E
is uniformly convex if and only if there exists a continuous strictly increasing convex function
g : [0,+∞)→ [0,+∞) with g(0)= 0 such that

‖tx+ (1− t)y‖q ≤ t‖x‖q + (1− t)‖y‖q −ω(q, t)g(‖x− y‖) (3)

for all x, y ∈ Br(0)= {x ∈ E;‖x‖ ≤ r} and t ∈ [0,1], where ω(q, t)= tq(1− t)+ t(1− t)q. In particular,
take q = 2 and t = 1

2 ,∥∥∥ x+ y
2

∥∥∥2 ≤ 1
2
‖x‖2 + 1

2
‖y‖2 − 1

4
g(‖x− y‖). (4)

The following conclusion is well known:

Lemma 2.3 (Takahashi [8, Theorem 1.3.11]). Let K be a nonempty closed convex subset of a
reflexive Banach space E. Assume that ϕ : K → R is a proper convex lower semi-continuous and
coercive function. Then the function ϕ attains its minimum on K , that is, there exists x ∈ K such
that

ϕ(x)= inf
y∈K

ϕ(y).

Theorem 2.4. Let {xn} be a bounded above monotone nondecreasing sequence. Then {xn}
converges to the supemum of {xn : n ∈N}.

Lemma 2.5. Let K be a nonempty closed convex subset of a uniformly convex Banach space
(E,≤) and T : K → K be a monotone nonspreading mapping. If x ∈ K such that xn+1 = Txn,
the sequence {Txn}∞n=1 is bounded. Then limsup

n→∞
‖xn −Txn‖→ 0.
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Proof. From Theorem 2.4 {xn} is bounded and monotone increasing then there exists M > 0
such that ‖xn‖ ≤ M so,

limsup
n→∞

‖xn −M‖ ≤ 0

by analogy we obtain

limsup
n→∞

‖xn+1 −M‖ ≤ 0

so,

limsup
n→∞

‖xn − xn+1‖ ≤ limsup
n→∞

[‖xn −M‖+‖xn+1 −M‖]

≤ limsup
n→∞

‖xn −M‖+ limsup
n→∞

‖xn+1 −M‖

= 0,

therefore, we can conclude that

limsup
n→∞

‖xn − xn+1‖→ 0. (5)

Theorem 2.6. Let {xn} be a bounded above monotone nonincreasing sequence, then {xn} converges
to the infimum of {xn : n ∈N}.

Lemma 2.7. Let K be a nonempty closed convex subset of an uniformly convex Banach space
(E,≤) and T : K → K be a monotone nonspreading mapping. If x ∈ K such that xn+1 = Txn, the
sequence {Txn}∞n=1 is bounded. Then limsup

n→∞
‖xn −Txn‖→ 0.

Proof. From Theorem 2.6 {xn} is bounded and monotone decreasing then there exists M > 0
such that ‖xn‖ ≤ M so,

liminf
n→∞ ‖xn −M‖ ≤ 0

by analogy we get

liminf
n→∞ ‖xn+1 −M‖ ≤ 0

so,

liminf
n→∞ ‖xn − xn+1‖ ≥ liminf

n→∞ [‖xn −M‖+‖xn+1 −M‖]

≥ liminf
n→∞ ‖xn −M‖+ liminf

n→∞ ‖xn+1 −M‖
= 0.

Therefore, we can conclude that

liminf
n→∞ ‖xn − xn+1‖→ 0

on the other hand, we can conclude that

liminf
n→∞ ‖xn − xn+1‖ = limsup

n→∞
‖xn − xn+1‖→ 0. (6)
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Definition 2.8. Let E be a smooth Banach space and define the functional φ : E×E → R by

φ(x, y)= ‖x‖2 −2〈x, J y〉+ |y|2
for x, y ∈ E from the definition of φ, we have

(‖x‖−‖y‖)2 ≤φ(x, y)≤ (‖x‖+‖y‖)2,

‖x‖2 −2‖x‖‖y‖+‖y‖2 ≤ ‖x‖2 −2〈x, J y〉+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2

and, we can conclude that

2〈x, J y〉 ≤ 2‖x‖‖y‖. (7)

3. Main Results
3.1 Existence of Fixed Points
In this section, we prove the existence theorem of fixed points of a monotone nonspreading
mapping in an uniformly convex Banach space (E,≤).

Theorem 3.1. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonspreading mapping. Assume that there exists x ∈ K
such that x ≤ Tx, the sequence {Txn}∞n=1 is bounded and Txn ≤ y for some y ∈ K and all n ≥ 1.
Then F(T) 6= ; and x ≤ y∗ for some y∗ ∈ F(T).

Proof. Let x1 = x, and xn+1 = Txn = Tnx. So, we have x1 = x ≤ Tx = x2, and so, we get

x2 = Tx1 = Tx ≤ Tx2 = T2x = x3.

By analogy, we must have

x = x1 ≤ x2 ≤ x3 ≤ ·· · ≤ xn ≤ xn+1 ≤ ·· · .

Let Kn = {z ∈ K ; xn ≤ z} for all n ≥ 1. Clearly, for each n ≥ 1, Kn is closed convex (Kn ∈ K ) and

Kn is nonempty too (y ∈ Kn). Let K∗ =
∞⋂

n=1
Kn. Then K∗ is a nonempty closed convex subset of

K . Since {xn} is bounded, we can define a function ϕ : K∗ → [0,+∞) as follows:

ϕ(z)= limsup
n→∞

‖xn − z‖2

for all z ∈ K∗. From Lemma 2.3, it follows that there exists y∗ ∈ K such that

ϕ(y∗)= inf
z∈K∗ϕ(z). (8)

Now, we show y∗ = T y∗. In fact, by the definition of K∗, we obtain

x1 ≤ x2 ≤ x3 ≤ ·· · ≤ xn ≤ xn+1 ≤ ·· · ≤ y∗.

Then, we have xn+1 = Txn ≤ T y∗ by the monotonicity of T and hence, for each n ≥ 1, xn ≤ T y∗. So
we have T y∗ ∈ K∗. From the convexity of K∗, it follows that y∗+T y∗

2 ∈ K∗ and so, by equation (8),
we have

ϕ(y∗)≤ϕ
( y∗+T y∗

2

)
and ϕ(y∗)≤ϕ(T y∗). (9)

By the way, from equations (5) and (7), we obtain

ϕ(T y∗)= limsup
n→∞

‖xn+1 −T y∗‖2
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= limsup
n→∞

‖Txn −T y∗‖2

≤ limsup
n→∞

[‖xn − y∗‖2 +2〈xn −Txn, J(y∗−T y∗)〉]

≤ limsup
n→∞

[‖xn − y∗‖2 +2‖xn −Txn‖‖y∗−T y∗‖]

≤ limsup
n→∞

‖xn − y∗‖2 + limsup
n→∞

2‖xn −Txn‖‖y∗−T y∗‖

≤ limsup
n→∞

‖xn − y∗‖2 (10)

=ϕ(y∗).

Combining equations (9) and (10), we have

ϕ(T y∗)=ϕ(y∗). (11)

It follows from Lemma 2.7 (q = 2 and t = 1
2 ) and equation (11) that

ϕ
( y∗+T y∗

2

)
= limsup

n→∞

∥∥∥xn − y∗+T y∗

2

∥∥∥2

= limsup
n→∞

∥∥∥ xn − y∗

2
+ xn −T y∗

2

∥∥∥2

≤ limsup
n→∞

(1
2
‖xn − y∗‖2 + 1

2
‖xn −T y∗‖2 − 1

4
g(‖y∗−T y∗‖)

)
≤ 1

2
ϕ(y∗)+ 1

2
ϕ(T y∗)− 1

4
g(‖y∗−T y∗‖)

=ϕ(y∗)− 1
4

g(‖y∗−T y∗‖).

Noticing equation (9), we have

g(‖y∗−T y∗‖)≤ϕ(y∗)−ϕ
( y∗+T y∗

2

)
≤ 0

and from Lemma 2.2, we have g(‖y∗−T y∗‖)= 0. Thus we have y∗ = T y∗ by the property of g.
This yields the desired conclusion.

Theorem 3.2. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonspreading mapping. Assume that there exists x ∈ K
such that Tx ≤ x, the sequence {Txn}∞n=1 is bounded and y ≤ Txn for some y ∈ K and all n ≥ 1.
Then F(T) 6= ; and y∗ ≤ x for some y∗ ∈ F(T).

Proof. Let x1 = x and xn+1 = Txn = Txn. Then Tx = x2 ≤ x1 = x, and so,

Tx2 = T2x = x3 ≤ x2 = Tx1 = Tx .

By analogy, we have

· · · ≤ xn+1 ≤ xn ≤ ·· · ≤ x3 ≤ x2 ≤ x = x1.

Let Kn = {z ∈ K ; z ≤ xn} for all n ≥ 1. Clearly, for each n ≥ 1, Kn is closed convex (Kn ∈ K ) and

Kn is nonempty too (y ∈ Kn). Let K∗ =
∞⋂

n=1
Kn. Then K∗ is a nonempty closed convex subset of
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K . Since {xn} is bounded, we can define a function ϕ : K∗ → [0,+∞) as follows:

ϕ(z)= limsup
n→∞

‖xn − z‖2

for all z ∈ K∗. From Lemma 2.2, it follows that there exists y∗ ∈ K such that

ϕ(y∗)= inf
z∈K∗ϕ(z). (12)

Now, we show y∗ = T y∗. In fact, by the definition of K∗, we obtain

y∗ ≤ ·· · ≤ xn+1 ≤ xn ≤ ·· · ≤ x3 ≤ x2 ≤ x1.

Then, we have T y∗ ≤ xn+1 = Txn by the monotonicity of T and hence, for each n ≥ 1, T y∗ ≤ xn.
So we have T y∗ ∈ K∗. From the convexity of K∗, it follows that y∗+T y∗

2 ∈ K∗ and so, by equation
(12), we have

ϕ(y∗)≤ϕ
( y∗+T y∗

2

)
and ϕ(y∗)≤ϕ(T y∗). (13)

On the other hand, by using equations (6) and (7) we get

ϕ(T y∗)= limsup
n→∞

‖xn+1 −T y∗‖2 = limsup
n→∞

‖Txn −T y∗‖2

≤ limsup
n→∞

[‖xn − y∗‖2 +2〈xn −Txn, J(y∗−T y∗)〉]

≤ limsup
n→∞

[‖xn − y∗‖2 +2‖xn −Txn‖‖y∗−T y∗‖]

≤ limsup
n→∞

‖xn − y∗‖2 + limsup
n→∞

2‖xn −Txn‖‖y∗−T y∗‖

≤ limsup
n→∞

‖xn − y∗‖2

=ϕ(y∗). (14)

Combining equations (13) and (14), we have

ϕ(T y∗)=ϕ(y∗). (15)

It follows from Lemma 2.7 (q = 2 and t = 1
2 ) and (15) that

ϕ
( y∗+T y∗

2

)
= limsup

n→∞

∥∥∥xn − y∗+T y∗

2

∥∥∥2

= limsup
n→∞

∥∥∥ xn − y∗

2
+ xn −T y∗

2

∥∥∥2

≤ limsup
n→∞

(1
2
‖xn − y∗‖2 + 1

2
‖xn −T y∗‖2 − 1

4
g(‖y∗−T y∗‖)

)
≤ 1

2
ϕ(y∗)+ 1

2
ϕ(T y∗)− 1

4
g(‖y∗−T y∗‖)

=ϕ(y∗)− 1
4

g(‖y∗−T y∗‖).

Noticing equation(13), we have

g(‖y∗−T y∗‖)≤ϕ(y∗)−ϕ
( y∗+T y∗

2

)
≤ 0

and from Lemma 2.2, we have g(‖y∗−T y∗‖)= 0. Thus we have y∗ = T y∗ by the property of g.
This yields the desired conclusion. This completes the proof.
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3.2 The Convergence of the Mann Iteration
In this section, for a monotone nonspreading mapping T , we consider the Mann iteration
sequence defined by

xn+1 =βnxn + (1−βn)Txn (16)

for each n ≥ 1, where {βn} in (0,1) satisfies the following condition:
∞∑

n=1
βn(1−βn)=∞.

Clearly, the above condition contains βn = 1
n+1 as a special case.

Lemma 3.3 (Dehaish and Khamsi [2, Lemma 3.1]). Let K be a nonempty and closed convex
subset of a Banach space (E,≤) and T : K → K be a monotone mapping. Assume that the sequence
{xn} is defined by equation (16) and x1 ≤ Tx1 (or Tx1 ≤ x1). If F(T) 6= ; and p ≤ x1 (or x1 ≤ p) for
some p ∈ F(T), then

(1) {xn} is bounded and xn ≤ xn+1 ≤ Txn (or Txn ≤ xn+1 ≤ xn);

(2) xn ≤ x (or x ≤ xn) for all n ≥ 1 provided {xn} weakly converges to a point x ∈ K .

Lemma 3.4. Let K be a nonempty and closed convex subset of a Banach space (E,≤) and
T : K → K be a monotone nonspreading mapping. Assume that the sequence {xn} is defined by
equation (16) and x1 ≤ Tx1 (or Tx1 ≤ x1). If F(T) 6= ; and p ≤ x1 (or x1 ≤ p) for some p ∈ F(T),
then

lim
n→∞‖xn − p‖ exists.

Proof. Assume that p ≤ xn for any n ≥ 1. Since T is monotone, then we obtain p = T p ≤ Tx1.
Since the order interval [p,→) is convex, assume p ≤ x2 since T is monotone, then we have
T p ≤ Tx2. By induction we will show that p ≤ xn for any n ≥ 1, as claimed. Since T is monotone
nonspreading, from equation (7), we have p = T p and we get

‖Txn − p‖2 = ‖Txn −T p‖2

≤ ‖xn − p‖2 +2〈xn −Txn, J(p−T p)〉
≤ ‖xn − p‖2 +2‖xn‖‖p−T p‖
≤ ‖xn − p‖2

it follows that,

‖Txn − p‖ ≤ ‖xn − p‖.

Since equation (16), which implies

‖xn+1 − p‖ ≤ tn‖Txn − p‖+‖(1− tn)‖xn − p‖
≤ tn‖xn − p‖+‖(1− tn)‖xn − p‖
≤ ‖xn − p‖

for any n ≥ 1. This means that ‖xn−p‖ is a monotone sequence, which implies that lim
n→∞‖xn−p‖

exists.
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Theorem 3.5. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonspreading mapping. Assume that the sequence
{xn} is defined by equation (16) and x1 ≤ Tx1 (or Tx1 ≤ x1). If F(T) 6= ; and p ≤ x1 (or x1 ≤ p) for
some p ∈ F(T), then

lim
n→∞‖xn −Txn‖ = 0.

Proof. It follows from Lemma 3.4 that

p ≤ x1 ≤ xn (or xn ≤ x1 ≤ p)

for all n ≥ 1. Then it follows from the nonspreadingness of T , p = T p and an application of
Lemma 2.7 (q = 2 and t =βn) that

‖xn+1 − p‖2 = ‖βn(xn − p)+ (1−βn)(Txn −T p)‖2

≤βn‖xn − p‖2 + (1−βn)‖Txn −T p‖2 −βn(1−βn)g(‖xn −Txn‖)

≤βn‖xn − p‖2 + (1−βn)‖xn − p‖2 +2‖xn −Txn‖‖p−T p‖−βn(1−βn)g(‖xn −Txn‖)

≤βn‖xn − p‖2 + (1−βn)‖xn − p‖2 −βn(1−βn)g(‖xn −Txn‖)

≤ ‖xn − p‖2 −βn(1−βn)g(‖xn −Txn‖)

and so

βn(1−βn)g(‖xn −Txn‖)≤ ‖xn − p‖2 −‖xn+1 − p‖2.

Therefore, we have
∞∑

n=1
βn(1−βn)g(‖xn −Txn‖)≤ ‖x1 − p‖2 <+∞. (17)

Now, we claim that there exists a subsequence {xnk } such that

lim
k→∞

g(‖xnk −Txnk‖)= 0. (18)

Suppose that the conclusion is not true. Then, for all subsequence {xnk } such that lim
k→∞

g(‖xnk −
Txnk‖)> 0, we have

liminf
n→∞ g(‖xn −Txn‖)> 0.

Thus there exists a positive number a and a positive integer N such that g(‖xn −Txn‖)> a > 0
for all n > N . Consequently, we have

βn(1−βn)g(‖xn −Txn‖)≥ aβn(1−βn)

and hence, by the condition
∞∑

n=1
βn(1−βn)=+∞, we obtain

∞∑
n=1

βn(1−βn)g(‖xn −Txn‖)=+∞.

This contradicts equation (17). So equation (18) holds and hence, by the property of g(0)= 0, we
have

lim
k→∞

‖xnk −Txnk‖ = 0.

Otherwise, we obtain

‖xn+1 −Txn+1‖ = ‖βn(xn −Txn)+ (Txn −Txn+1)‖
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≤βn‖xn −Txn‖+‖xn+1 − xn‖
=βn‖xn −Txn‖+ (1−βn)‖xn −Txn‖
= ‖xn −Txn‖.

Therefore, the sequence {‖xn −Txn‖} is monotonically nonincreasing and hence it follows that
lim

n→∞‖xn −Txn‖ exists. This yields the desired conclusion.
Recall that a Banach space E is said to satisfy Opial’s condition ([7]) if a sequence {xn} with

{xn} weakly converges to a point x ∈ E implies

limsup
n→∞

‖xn − x‖ < limsup
n→∞

‖xn − y‖
for all y ∈ E with y 6= x.

Next, we show the weak convergence of the sequence {xn} defined by equation (16). The proof
is similar to ones of Dehaish and Khamsi [2], but, for more details, we give the proof.

Theorem 3.6. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonspreading mapping. Assume that E satisfies
Opial’s condition and the sequence {xn} is defined by equation (16) with x1 ≤ Tx1 (or Tx1 ≤ x1).
If F(T) 6= ; and p ≤ x1 (or x1 ≤ p) for some p ∈ F(T), then {xn} weakly converges to a fixed point
x∗ of T .

Proof. It follows from Lemma 3.4 and Theorem 3.5 that {xn} is bounded and

lim
n→∞‖xn −Txn‖ = 0.

Then, there exists a subsequence {xnk }⊂ {xn} such that {xnk } weakly converges to a point x∗ ∈ K .
Following Lemma 3.4, we have x1 ≤ xnk ≤ x∗ (or x∗ ≤ xnk ≤ x1) for all k ≥ 1. In particular, we
have

lim
k→∞

‖xnk −Txnk‖ = 0.

Now, we claim that x∗ = Tx∗. In fact, assume that this is not true. Then, from the
nonspreadingness of T and Opial’s condition, it follows that

limsup
k→∞

‖xnk − x∗‖ < limsup
k→∞

‖xnk −Tx∗‖

≤ limsup
k→∞

(‖xnk −Txnk‖+‖Txnk −Tx∗‖)

≤ limsup
k→∞

(‖Txnk −Tx∗‖). (19)

Consider equation (19),

limsup
k→∞

‖Txnk −Tx∗‖2 ≤ limsup
k→∞

[‖xnk − x∗‖2 +2‖xnk −Txnk‖‖x∗−Tx∗‖]

≤ limsup
k→∞

‖xnk − x∗‖2 + limsup
k→∞

2‖xnk −Txnk‖‖x∗−Tx∗‖

≤ limsup
k→∞

‖xnk − x∗‖2. (20)

So, we get

limsup
k→∞

‖Txnk −Tx∗‖ ≤ limsup
k→∞

‖xnk − x∗‖. (21)
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From equations (19) and (21), we obtain

limsup
k→∞

‖xnk − x∗‖ ≤ limsup
k→∞

‖xnk − x∗‖

which is a contradiction. Thus, by Lemma 3.4, it follows that the limit lim
n→∞‖xn−x∗‖ exists. Now,

we show that {xn} weakly converges to the point x∗. Suppose that this is not true. Then There
exists a subsequence {xn j } to converge weakly to a point z ∈ K and z 6= x∗. Similarly, it follows
that z = Tz and lim

n→∞‖xn − z‖ exists. It follows from Opial’s condition that

lim
n→∞‖xn − z‖ < lim

n→∞‖xn − x∗‖ = limsup
i→∞

‖xni − x∗‖ < lim
n→∞‖xn − z‖.

This is a contradiction and hence x∗ = z. This completes the proof.

4. Conclusions
We prove some existence theorems of fixed point for monotone nonspreading mapping in a
Banach space E with the partial order ≤.

Theorem 4.1. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonspreading mapping. Assume that there exists x ∈ K
such that x ≤ Tx, the sequence {Txn}∞n=1 is bounded and Txn ≤ y for some y ∈ K and all n ≥ 1.
Then F(T) 6= ; and x ≤ y∗ for some y∗ ∈ F(T).

Theorem 4.2. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonspreading mapping. Assume that there exists x ∈ K
such that Tx ≤ x, the sequence {Txn}∞n=1 is bounded and y ≤ Txn for some y ∈ K and all n ≥ 1.
Then F(T) 6= ; and y∗ ≤ x for some y∗ ∈ F(T).

In part of convergence theorem, we prove a weak convergence theorem for monotone
nonspreading in order Banach space (E,≤).

Theorem 4.3. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonspreading mapping. Assume that E satisfies
Opial’s condition and the sequence {xn} is defined by equation (16) with x1 ≤ Tx1 (or Tx1 ≤ x1).
If F(T) 6= ; and p ≤ x1 (or x1 ≤ p) for some p ∈ F(T), then {xn} weakly converges to a fixed point
x∗ of T .

And we can get some results if we reduce some conditions for prove some existence theorems
of fixed point by using a monotone nonexpansive mapping T in a Banach space E with the
partial order “≤”, in Theorem 4.1 and 4.2, we have following corollaries respectively.

Corollary 4.4. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that there exists x ∈ K
such that x ≤ Tx, the sequence {Txn}∞n=1 is bounded and Txn ≤ y for some y ∈ K and all n ≥ 1.
Then F(T) 6= ; and x ≤ y∗ for some y∗ ∈ F(T).

Corollary 4.5. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that there exists x ∈ K
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such that Tx ≤ x, the sequence {Txn}∞n=1 is bounded and y ≤ Txn for some y ∈ K and all n ≥ 1.
Then F(T) 6= ; and y∗ ≤ x for some y∗ ∈ F(T).

And if we consider the convergence of Mann iteration for a monotone nonexpansive mapping
T , in Theorem 3.5 and 4.3 by using Dehaish and Khamsi [2, Lemmas 3.1 and 3.2], we have
following corollary:

Corollary 4.6. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that the sequence {xn}
is defined by equation (16) and x1 ≤ Tx1 (or Tx1 ≤ x1). If F(T) 6= ; and p ≤ x1 (or x1 ≤ p) for
some p ∈ F(T), then lim

n→∞‖xn −Txn‖ = 0.

Corollary 4.7. Let K be a nonempty and closed convex subset of an uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that E satisfies
Opial’s condition and the sequence {xn} is defined by equation (16) with x1 ≤ Tx1 (or Tx1 ≤ x1).
If F(T) 6= ; and p ≤ x1 (or x1 ≤ p) for some p ∈ F(T), then {xn} weakly converges to a fixed point
x∗ of T .
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