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Abstract. The first three Zagreb indices of a graph G denoted, M1(G), M2(G) and M3(G), are well
known. In this paper we derive recursive formula for these indices for the family of thorn Jaco graphs.
The concept of a vertex invaded graph is also introduced.
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1. Introduction
For a general reference to notation and concepts of graph theory see [1]. For further reading we
also refer to [2, 5]. The concept of linear Jaco graphs is well discussed in Kok et al. [6]. Finite
linear Jaco graphs are derived from an infinite directed graph, called the f (x)-root digraph.
The incidence function is a linear function f (x)= mx+ c, x ∈N, m, c ∈N0. The f (x)-root graph is
denoted by J∞( f (x)). Much research has been done for the case f (x)= x hence, in respect of the
linear Jaco graph Jn(x), n, x ∈N. For brevity, linear Jaco graphs are called Jaco graphs.

2. Finite Jaco Graphs

These directed graphs are derived from the infinite Jaco Graph called, the x-root digraph.
The underlying graph will be denoted J∗

n (x) and if the context is clear, both the directed and
undirected graphs are referred to as a Jaco graph. Similarly the difference between arc and
edge and degree, dJn(x)(v) and dJ∗

n (x)(v) will be understood.
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Definition 2.1 ([6]). The infinite Jaco Graph J∞(x), x ∈N is defined by V (J∞(x)) = {vi : i ∈N},
A(J∞(x))⊆ {(vi,v j) : i, j ∈N, i < j} and (vi,v j) ∈ A(J∞(x)) if and only if 2i−d−(vi)≥ j.

Definition 2.2 ([6]). The family of finite Jaco Graphs is defined by {Jn(x)⊆ J∞(x) : n, x ∈N}. A
member of the family is referred to as the Jaco Graph, Jn(x).

Definition 2.3 ([6]). The set of vertices attaining degree ∆(Jn(x)) is called the set of Jaconian
vertices; the Jaconian vertices or the Jaconian set of the Jaco Graph Jn(x), and denoted, J(Jn(x))
or, Jn(x) for brevity.

Definition 2.4 ([6]). The lowest numbered (subscripted) Jaconian vertex is called the prime
Jaconian vertex of a Jaco Graph.

The x-root digraph has four fundamental properties which are:

(i) V (J∞(x))= {vi : i ∈N},

(ii) if v j is the head of an arc then the tail is always a vertex vi , i < j,

(iii) if vk, for smallest k ∈N is a tail vertex then all vertices v`, k < `< j are tails of arcs to v j ,
and

(iv) the degree of vertex vk is d(vk)= k.

The family of finite directed graphs are those limited to n ∈N vertices by lobbing off all vertices
(and arcs to vertices) vt, t > n. Hence, trivially d(vi)≤ i for i ∈N. Figure 1 depicts the J10(x).

Figure 1. Jaco graph J10(x).

3. Zagreb Indices of Thorn Jaco Graphs
Recall that a thorn graph is defined by Gutman [4] is a graph G? obtained from a graph G
of order n by attaching si ≥ 0, i = 1,2, . . . ,n, pendant vertices to the ith vertex of G. In this
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paper si = d−(vi) ∀ vi ∈V (Jn(x)). The motivation is that each vertex vi , i ≤ n is a source of some
capacity transmission to the head vertices. To ensure that capacity transmission through to vn

is sustained, each vertex is allocated d−(vi) thorns as spare capacity sources.
For illustration the adapted table below follows from the Fisher algorithm [6] for Jn(x),

n ≤ 12 and also depicts the degree sequence of J∗
n (x) denoted, D(J∗

n (x)). Note that the entries of
the degree sequence are in the consecutive order d(v1),d(v2), . . . ,d(vn).

Table 1

i ∈N d−(vi) d+(vi)= i−d−(vi) D(J∗
i (x))

1 0 1 (0)

2 1 1 (1, 1)

3 1 2 (1, 2, 1)

4 1 3 (1, 2, 2, 1)

5 2 3 (1, 2, 3, 2, 2)

6 2 4 (1, 2, 3, 3, 3, 2)

7 3 4 (1, 2, 3, 4, 4, 3, 3)

8 3 5 (1, 2, 3, 4, 5, 4, 4, 3)

9 3 6 (1, 2, 3, 4, 5, 5, 5, 4, 3)

10 4 6 (1, 2, 3, 4, 5, 6, 6, 5, 4, 4)

11 4 7 (1, 2, 3, 4, 5, 6, 7, 6, 5, 5, 4)

12 4 8 (1, 2, 3, 4, 5, 6, 7, 7, 6, 6, 5, 4)

Although the formal algorithm to determine the degree sequence of J∗
i (x) is complex an

easy instrumental algorithm can be derived directly from Table 1. Note that the last entry
of the degree sequence of J∗

i (x) corresponds to d−(vi). From Definition 2.1 it follows that the
ith-degree sequence increases consecutively to some maximum vertex degree. For illustration
consider row 9 corresponding to D(J∗

9 (x)). Clearly the first five entries increase consecutively
to a maximum value of 5. Constructing D(J∗

10(x)) means that the last four entries may each
increase by 1 and a 10th-entry of 4 may be added. We further observe that the first entry say,
kth with maximum value j, hence d(vk)= j, is the prime Jaconian vertex of the corresponding
J∗

i (x), (ith-row) (see Definition 2.4). Also the subsequent entries equal to j correspond to the
Jaconian set (see Definition 2.3). For example, for J∗

7 (x) the Jaconian set is {v4,v5} and for J∗
11(x)

it is {v7}.
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Following from Table 1 we summarise important observations as follow. If for n ∈ N the
degree sequence of J∗

n (x) is (1,2,3, . . . , p, q1, q2, . . . , qt) then:

(i) p+ t = n,

(ii) vp is the prime Jaconian vertex of J∗
n (x),

(iii) p ≥ q1 ≥ q2 and p > qi, i = 3,4, . . . , t,

(iv) d−(vn)= qt hence, d−(vn+1)= t,

(v) the number of thorns allocated to v j , j = 1,2,3, . . . , p, qi, 1≤ i ≤ t remains equal in J∗
n (x)

and J∗
n+1(x),

(vi) The degree sequence of J∗
n+1(x) is (1,2,3, . . . , p, q1 +1, q2 +1, . . . , qt +1, t),

(vii) In J?
n+1(x) the vertex vn+1 is always allocated t thorns.

With regard to notation note the subtle difference between the underlying Jaco graph J∗
n (x) and

the thorn Jaco graph J?
n (x).

3.1 Zagreb Indices
Recall that the first three Zagreb indices are defined to be:

M1(G)= ∑
v∈V (G)

d(v)2 = ∑
vu∈E(G)

(d(v)+d(u)),

M2(G)= ∑
vu∈E(G)

d(v)d(u),

M3(G)= ∑
vu∈E(G)

|d(v)−d(u)|.

Proposition 3.1. The first Zagreb index of the thorn Jaco graph J?
n+1(x) derived from M1(J?

n (x)),
is:

M1(J?
n+1(x))= M1(J?

n (x))+2
t∑

j=1
dJ?n (x)(vp+ j)+2t(t+1).

Proof. The degree sequence of Jn(x), n ∈ N can be expressed as (1,2,3, . . . , p, q1, q2, . . . , qt).
Constructing a thorn graph J?

n (x) with d−(vi) pendant vertices attached to each vi ∈V (Jn(x))
results in:

M1(J?
n (x))=

p∑
i=1

dJ?n (x)(vi)2 +
t∑

j=1
dJ?n (x)(vp+ j)2 +

n∑
k=1

d−
Jn(x)(vk).

In constructing J?
n+1(x) the vertex vn+1 is added with t pendant vertices attached to vn+1

together with the edges, v jvn+1, 1≤ j ≤ t. Therefore:

M1(J?
n+1(x))=

p∑
i=1

dJ?n (x)(vi)2 +
t∑

j=1
(dJ?n (x)(vp+ j)+1)2 +

n∑
k=1

d−
Jn(x)(vk)+4t2 + t

= M1(J?
n (x))+2

t∑
j=1

dJ?n (x)(vp+ j)+4t2 +2t .
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3.2 Vertex Invaded Graph G]` w
Let G be a simple finite graph of order n. Let NG(v) denote the open neighbourhhood of v ∈V (G).
Let the vertex invaded graph of G be the graph obtained by adding a new vertex w with edges
to any number 1≤ `≤ n vertices of G. We also call a vertex invaded graph the 1-vertex invasion
of a graph. Denote this vertex invaded graph by, G]` w. By adding ` thorns to w we obtain a
thorn graph G?]` w. It is easy to see that path Pn+1 is isomorphic to some Pn ]1 vn+1 and the
complete graph Kn+1 = Kn]nvn+1. Also the complete bipartite graph Km,n+1 = Km,n]mvn+1. But
in general, for a connected graph G we have that after removal of a vertex v with dG(v)= s that
G is isomorphic to some (G−v)]s v. Clearly vertex invasion is not well-defined in that it does
not derive a unique graph. In fact for a vertex labeled graph, G]` w ∈

{
n!

`!(n−`)! possible graphs
}
.

For an unlabaled graph the number of distinct vertex invaded graphs up to isomorphism can
be noticeable less. Finding this number remains an open problem. The Pólya Enumeration
Theorem, also known as the Redfield-Pólya Theorem might be key to solving this problem.

Theorem 3.2. For simple graph G of order n with second Zagreb index M2(G) we have:

M2(G?]` w)= M2(G)+4`2 +2`
∑̀
i=1

dG(vi)vi∈N(w)

+ ∑
∀vi∈NG? (w)

( ∑
∀u j∈NG (vi),u j∉N(w)

dG(u j)
)

+ ∑
pvi ,v jq∈T (w)

(dG(vi)+dG(v j))+|T (w)|.

Proof. Label the vertices v ∈ NG?(w) randomly as v1,v2,v3, . . . ,v`, which is always possible.
Clearly dG?(w) = 2`. Hence, from the definition of M2(G? ]` w) the new sum-term
2` ·1+2` ·1+·+2` ·1︸ ︷︷ ︸

`-terms

= 2`2 is required in respect of the new thorns.

In respect of the edges wvi, 1≤ i ≤ ` the new sum-terms 2`
∑̀
i=1

(dG(vi)+1)= 2`
∑̀
i=1

dG(vi)+2`2

are required.
Without loss of generality label the say m vertices in NG(vi) to be u j , 1≤ j ≤ mi .

Case 1: In respect of each vi ∈ NG?(w) and each u j ∈ NG(vi), u j ∉ NG?(w), the new sum-terms

come to the fore i.e.
mi∑
j=1

(dG(vi)+1)dG(u j). On expansion of the summation to
mi∑
j=1

dG(vi)dG(u j)+
mi∑
j=1

dG(u j) we note that the sum-term
mi∑
j=1

dG(vi)dG(u j) has been accounted for in M2(G). Hence

only the additional sum-term
∑

∀u j∈NG (vi),u j∉N(w)
dG(u j) is required ∀vi .

The aforesaid are the sum-terms
∑

∀vi∈NG? (w)

( ∑
∀u j∈NG (vi),u j∉N(w)

dG(u j)
)
. Therefore, the partial

value of M2(G?]`w) is given by:

M2(G)+4`2 +2`
∑̀
i=1

dG(vi)vi∈N(w) +
∑

∀vi∈NG? (w)

( ∑
∀u j∈NG (vi),u j∉N(w)

dG(u j)
)
.
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Case 2: In respect of each distinct pair of adjacent vertices pvi,v jq, vi,v j ∈ NG?(w) the new sum
terms dG(vi)dG(v j)+dG(vi)+dG(v j)+1 come to the fore. Since dG(vi)dG(v j) has been accounted
for in M2(G) only dG(vi)+ dG(v j)+1 must be added for each such distinct pair of adjacent
vertices. Denote the set of such distinct pairs of adjacent vertices, T (w).
Therefore

M2(G?]`w)= M2(G)+4`2 +2`
∑̀
i=1

dG(vi)vi∈N(w)

+ ∑
∀vi∈NG? (w)

( ∑
∀u j∈NG (vi),u j∉N(w)

dG(u j)
)

+ ∑
pvi ,v jq∈T (w)

(dG(vi)+dG(v j))+|T (w)|.

That settles the result.

We note that in terms of J?
n (x) the thorn Jaco graph J?

n+1(x) is indeed J?
n ]n−p vn+1.

Furthermore, the vertices vn,vn−1, . . . ,vp+1 adjacent to vertex vn+1 are well-defined. From
this observation the next results follow.

Proposition 3.3. The second Zagreb index of the thorn Jaco graph J?
n+1(x) derived from

M2(J?
n (x)), is:

M2(J?
n+1(x))= M2(J?

n (x))+4(n− p)2 +2(n− p)
n−p∑
i=1

dJ?n (x)(vi+p)

+ ∑
vi ,v j∈V (H(Jn(x)))

(dJ?n (x)(vi)+dJ?n (x)(v j))+ 1
2

(n− p)(n− p−1).

Proof. Follows as a direct application of Theorem 3.2 with simplication.

Theorem 3.4. For simple graph G of order n with third Zagreb index M3(G) we have:

M3(G?]` w)= M3(G)+`(2`−1)+ ∑̀
i=1

|2`− (dG(vi)+1)|+ ∑
∀viu j∈E(G),vi∈NG? (w),u j∉NG? (w)

1.

Proof. The proof follows similar to that of Theorem 3.2.

Proposition 3.5. The third Zagreb index of the thorn Jaco graph J?
n+1(x) derived from

M3(J?
n (x)), is:

M3(J?
n+1(x))= M3(J?

n (x))+ (n− p)(2(n− p)−1)+
n−p∑
i=1

|2(n− p)− (dJ?n (x)(vi+p)+1)|

+ ∑
∀viu∈E(J?n (x)),vi∈V (H(Jn(x))),u∉V (H(Jn(x)))

1.

Proof. Follows as a direct application of Theorem 3.4.
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4. Conclusion
In the main the paper discusses Zagreb indices for a specific structured thorn Jaco graph. It is
clear that despite the well-defineness of Jaco graphs, Zagreb indices are complex invariants to
determine. Authors suggest that a wide scope for complexity analysis is available for worthy
research.

The general result for graph invasion by a singular vertex proves to be complex. The concept
can be generalised to model invasion by a finite number of vertices called n-vertex invasion.
Clearly recursive algorithms will result from such generalisation. Application will be found in
determining Zagreb indices for chemical derivatives of a given chemical compound modeled
as graph G. For example regardless of the change in atom type, deriving butane, C4H10 from
methane, CH4 requires three, 3-vertex invasion iterations from a graph theoretic perspective.
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