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Abstract. As a generic mathematical tool, the concept of soft sets introduced in 1999 by Molodtesov [8],
and in continuation of this research the soft groups defined and studied for their nice properties by
Aktas [1] in 2007. Because of the extensive applications of soft sets and soft groups in all branches
of sciences involving mathematics we prefer to concentrate on the algebraic properties of algebraic
structures. The action of groups on sets is an effective instrument in algebra. In this note we drive
some basic combinatorial properties of soft groups using Aktas’s definition of soft group and soft
subgroups. By giving the definition of soft actions of groups and semigroups we managed to exhibit
their congruence properties in this paper.
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1. Introduction

The set-valued function has a longer history in Analysis, but, their algebraic structures began to
study by Molodtesov [8] in 1999. During the years, certain authors had some contributions in this
area of research that developing algebraic attitudes of Molodtesov, one may consult [1,2,6,12],
for examples.

Theory of soft groups began by Aktas [1] in 2007 and followed by many authors such as
Aslam [4], and Lin and Wang [5]. Sezgin [10] studied normalistic soft groups. Aktas [3] by
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defining the power of a soft subset of a soft group and the order of a soft group, investigate their
properties. Also, they define cyclic soft groups and prove some of their properties which are
analogous to the crisp case. Yin [11] has more specialized study on soft groups.

One of the interesting topics in finite group theory is the enumerating of subgroups of a
group. We attempt to enumerate the soft subgroups of finite soft groups. Also, we will extend
the well-known notion of group action to soft action of groups.

2. Overview of actions and soft groups

Following [1,7], we recall some fundamental definitions:

Definition 2.1. For a monoid S and a non-emty set Ω,S is said to act on Ω if for some function
S×Ω→Ω, where (s,ω)→ sω then the following properties hold:

(i) 1ω=ω,

(ii) s2(s1ω)= (s2s1ω), for all s1, s2 ∈ S and ω ∈Ω.

If such function exists, we use the notation (S |Ω) to declare that S acts on Ω.

Definition 2.2. Let G be an initial set and E be a set of parameters on the elements of G. For
each A ⊆ E the pair (F, A) is called a soft set (over G) if and only if F is a mapping of E into
P(G), the set of all subsets of G where F(e)=∅ for all e ∈ E− A.

The soft set (F, A) may be written as the set of ordered pairs {(F(a),a);a ∈ A}.

Definition 2.3. A soft set (F, A) over G is said to be empty whenever A =∅. Symbolically, we
write (∅,∅) for the empty soft set over G. The pair (F, A) is called a Universal soft set if A = E
and F(a)=G, for all a ∈ A. The universal soft set over G will be denoted by (G,E). For a subset
B of A the B-universal soft set on G is the soft set (F,B) on G such that F(a)=G, for all a ∈ B.
A-universal soft set on G may be called absolute soft set and denoted by (G, A) or GA .

Definition 2.4. Let (F, A) and (H,B) be two soft sets over G. We say that (F, A) is a subset of
(H,B), denoted by (F, A) ⊆ (H,B), if either (F, A) = (∅,∅) or A ⊆ B and F(a) ⊆ H(a), for every
a ∈ A. Two soft sets (F, A) and (H,B) are said to be equal, denoted by (F, A)= (H,B), if and only
if (F, A)⊆ (H,B) and (H,B)⊆ (F, A).

Definition 2.5. For two soft sets (F, A) and (H,B), the intersection (F, A)∩ (H,B) is defined by
(F∩H,C) where C = {a ∈ A∩B| F(a)∩H(a) 6=∅} and (F∩H)(a)= F(a)∩H(a), for all a ∈ C. Also,
the union (F, A)∪ (H,B) is defined by (F ∪H,D) where, D = A∪B and (F ∪H)(a)= F(a)∪H(a)
for all a ∈ D.

Throughout this paper, G is a group and S is a monoid. When A = Ω we simply use F
instead of FΩ.
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Definition 2.6. Let G be a group and (F, A) be a soft set over G. Then, (F, A) is said to be a
soft group over G if and only if F(a) is a subgroup of G, for all a ∈ A. A soft cyclic group on G is
a soft group (F, A) on G where F(a) is a cyclic subgroup of G. If F(a)= H for all a ∈ A, we say
that (F, A) is an H-Identity soft group on G. When H = {e} where e is the identity element of
G and when H =G, (F, A) is said to be absolout soft group [9]. A soft subset (H,B) of (F, A) is
a soft subgroup of (F, A) if and only if H(b) ≤ F(b) for all b ∈ B. Moreover, the Order of (F, A)
defines as the number of elements of (F, A), i.e., |A|.
Definition 2.7. A soft group (F, A) on a group G is called a Normal soft group over G, if and
only if F(a)EG for all a ∈ A.

Definition 2.8. Let (F, A) be a soft group on a group G and (H,B) is a soft subset of (F, A).
Soft subgroup of G generated by (H,B) is the soft intersection of all soft subgroups of (F, A)
containing (H,B) and denoted by 〈(H,B)〉. If (H,B) is singleton, say (H,B) = {(F(a),a)} then
〈{(F(a),a)}〉 = 〈(F(a),a)〉 will refer as soft cyclic subgroup of (F, A).

In Section 5 we will give certain concrete examples concerning the above notations.

3. Enumerating Soft Subgroups

In this section we purpose to study the subgroups of soft groups. Our preliminary result is:

Proposition 3.1. (i) If A has |A| elements and the group G has m subgroups, then there
exists m|A| soft groups (F, A) on G.

(ii) Let (F, A) be a soft group on a group G. Then, (F, A)≤ (F, A). Moreover, if (H,B), (K ,C) are
soft subgroups of G such that (K ,C)≤ (H,B), then (K ,C)≤ (F, A).

(iii) If (F, A) and (H,B) are two soft groups on a group G, then (F, A)∩ (H,B) is a soft group on
G.

(iv) If (F, A) be a soft group on a group G and for a ∈ A,F(a) be a subgroup of G, then
〈(F(a),a)〉 = {(F(a),a)}.

(v) Let (F, A) be a soft group on a group G and (H,B)⊆ (F, A). Then 〈(H,B)〉 is the smallest
soft subgroup of (F, A) consists of (〈F(b)〉,b) for all b ∈ B.

Proof. (i) Let A = {1,2, . . . , |A|} and Ω= {H1,H2, . . . ,Hm} is the set of all subgroups of G. Then
the number of soft groups on G is equal to the number of functions F : A → Ω which
is m|A|.

Parts (ii), (iii), (iv) and (v) are easy.

Proposition 3.2. Let (F, A) = {(1,H1), (2,H2), . . . , (k,Hk)} be a soft group on a group G, where
each Hi has mi subgroups (i = 1,2, . . . ,k), then (F, A) possesses

k∑
i=1

mi +
∑
i 6= j

mim j +
∑

i 6= j,i 6=t, j 6=t
mim jmt + . . .+ (m1m2 . . .mk)

soft subgroups.
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Proof. Let Ui,1,Ui,2, . . . ,Ui,mi be all of the subgroups of Hi then consider below rows:

(1,U1,1), (1,U1,2), . . . , (1,U1,m1),
(2,U2,1), (2,U2,2), . . . , (2,U2,m2),

...
(k,Uk,1), (k,Uk,2), . . . , (k,Uk,mk ).

A singleton {α} where α is an entry of the above table, is a soft subgroup of (F, A). Also, a soft
set consists of two elements of different rows is also a soft subgroup of (F, A). The number of
such soft subsets is

∑
i 6= j

mim j . Analogously, the number of soft subgroups of (F, A) contains three

elements is
∑

i 6= j,i 6=t, j 6=t
mim jmt. By inductive method, we got m1m2 . . .mk soft subgroups involve

k elements. These are all soft subgroups of (F, A) as desired.

Definition 3.3. Let (F, A) and (H,B) be two soft groups over G,K respectively. Also, let
f : G → K and g : A → B be two functions such that f (F(a)) = H(g(a)) for all a ∈ A. The
pair θ = ( f , g) is a soft homomorphism. If f|F(a) is homomorphism, for all a ∈ A. Moreover, if
f|F(a) is homomorphism and g is one to one (onto) then θ is soft monomorphism (epimorphism).
Furthermore, θ is soft isomorphism if f is homomorphism and g is a bijection.

Let G be a group and E is an initial set. The notation S(G) will be used for the set of all soft
groups on G with all soft homomorphisms between them.

Assume that (F, A), (H,B) be two soft groups on G and K respectively. For the soft
homomorphism θ = ( f , g) : (F, A)→ (H,B), the kernel of θ denoted by kerθ is defined as

kerθ = {((F(a),a), (F(b),b)) | θ(F(a),a)= θ(F(b),b)}.

We use the notation Hom(FA,HB) to denote the set of all homomorphisms θ : (F, A)→ (H,B).

Proposition 3.4. Combination of soft homomorphism — if exists — is again soft homomorphism.
Moreover, if (F, A) be a soft groups on a group G. Then Hom(FA,FA) = Hom(F, A) is a non-
commutative regular semigroup if and only if for every θ = ( f , g), at least one of the functions
f , g is regular. Moreover, S is finite and |S| ≤ |(F, A)||F,A|.

Proof. Suppose that Hom(F, A) is regular and θ = ( f , g) ∈ Hom(F, A). Then there exists an
element φ= (α,β) ∈Hom(F, A) such that θφθ = θ. So, ( fα f , gβg)= ( f , g), which yields:{

fα f|F(a) = f|F(a) , ∀ a ∈ A
gβg = g

f and g are regular because of the commutativity of the diagrams:

X
f−−−−→ X α−−−−→ X

f−−−−→ X

F
x xF

xF
xF

A
f−−−−→ A

β−−−−→ A
g−−−−→ A

Conversely, suppose that gβg = g, that is g is regular. So, F(gβg(a))= F(g(a)), for all a ∈ A.
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Proposition 3.5. Let (F, A), (H,B) are two soft groups on groups G,K respectively, and
θ = ( f , g) : (F, A)→ (H,B) be a soft homomorphism. Then, there is a one to one correspondence
between (F,A)

kerθ and Imθ.

Proof. Define φ : (F,A)
kerθ → (H,B) such that φ([(F(a),a)]kerθ) = (H(g(a)), g(a)) for every a ∈ A.

Now, if for a,b ∈ A; (H g(a), g(a)) = (H g(b),b) then θ(F(a),a) = θ(F(b),b) which means is
[(F(a),a)]kerθ = [(F(b),b)]kerθ .

Let (F, A) be a soft group on a group G. As usual the coset may be defined. For every
x ∈G, the left coset (similarly for it right coset) of (F, A) in G denoted by x(F, A) is defined as
x(F, A) := (xF, A) such that xF : A → P(G), (xF)(a) := x(F(a)) for all a ∈ A.

Proposition 3.6. Let (F, A) be a soft group on a group G and x, y ∈ G. Then just one of the
followings holds:

(i) x(F, A)∩ y(F, A)= (;,;),

(ii) x(F, A)= y(F, A).

Proof. Note that if x = y then (ii) holds and there is nothing to prove. Thus, assume that x 6= y.
First, suppose that (i) dose not hold, i.e.; x(F, A)∩ y(F, A) 6= (;,;). By the Definitions 2.3, 2.5,
we get A 6= ; and

(xF, A)∩ (yF, A) 6= (;,;) ⇐⇒ (xF ∩ yF,B) 6= (;,;)

where,

B = {a ∈ A∩ A; xF(a)∩ yF(a) 6= ;}= {a ∈ A; xF(a)∩ yF(a) 6= ;}.

Since, F(a) is a subgroup of G (for all a ∈ A) then xF(a) and yF(a) are two left cosets of F(a) in
G which are not disjoint. So, xF(a)= yF(a) therefore, B = {a ∈ A; xF(a) 6= ;}= A.

Moreover, for all b ∈ B = A we get that:

(xF ∩ yF)(b)= xF(b)∩ yF(b)

= xF(b)∩ yF(b)

6= ;.

Thus, the intersection of two left cosets of F(b) in G is nonempty. This implies that xF(b)= yF(b).
Since b is arbitrary, then xF = yF and (xF, A)= (yF, A). Now, the result follows at once.

Proposition 3.7. Let (F, A) be a soft group on a group G and x ∈ X . Then:

(i)
⋃

x∈G
x(F, A)= (G, A),i.e., the collection of all left (right) cosets of (F, A) in G is a partition of

A-universal soft set (G, A).

(ii) x(F, A)= (F, A) if and only if x ∈⋂
a∈A F(a).

Proof. (i) It is clear.
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(ii) Perceive that

x(F, A)= (F, A) ⇐⇒ (xF, A)= (F, A)
⇐⇒ (xF)(a)= F(a) (for every a ∈ A)
⇐⇒ x(F(a))= F(a)
⇐⇒ x ∈ F(a).

The converse is clear.

4. Soft Actions

Our definition of soft action is:

Definition 4.1. Let Ω ∈ S−Act and F :Ω→ P(Ω) be a soft set. The action (S |Ω) is called an
F-soft action if F(sω)= s(F(ω)), for every ω ∈Ω and s ∈ S. Here, s(F(ω))= {sx | x ∈ F(ω)}.

If Ω ∈ S−Act then P(Ω) ∈ S−Act too. Thus, the soft set F : Ω → P(Ω) is an S−Act
homomorphism.

Let us examine some simple examples. Let F be a constant soft set, then, every action
of G on Ω is an F-soft action. Moreover, assume that F(ω) = {ω} for each ω ∈Ω (which may
refers to the identity soft set). Then every group action (G |Ω) is an F-soft action. A nontrivial
example is given as follows. Let N be a normal subgroup of a group G. Define FN : N → P(N)
by FN (n) :=Gn ∩N where Gn is the stabilizer of n in the action (G | N) defined by gn := g−1ng,
n ∈ N , g ∈G. Clearly, (G | N) is an FN -soft action. Furthermore, one can easily show that (G | N)
yields (G | P(N)).

Let (S |Ω) be an F-soft action and ∆⊆Ω. Then, F(s∆)= sF(∆) for all s ∈ S.

Indeed, F(s∆)= {F(sδ) | δ ∈∆}= {sF(δ) | δ ∈∆}= sF(∆). Now, if ∆ is a stable block under this
action (i.e., s∆=∆ for all s ∈ S), then we get F(∆)= sF(∆).

It is easy to show that if (S |Ω) be an F-soft action and H ⊆ F then (S |Ω) is an H-soft
action.

As a quick result of the concept of soft action, we can get the following lemmas:

Lemma 4.2. Let (S |Ω) be an F-soft action as well as an H-soft action where F,H :Ω→ P(Ω)
are two soft sets. Then for every ω ∈Ω and s ∈ S :

(1) (S |Ω) is an (F
⋃

H)-soft action,

(2) If st = sv implies that t = v for all s ∈ S and t,v ∈Ω, then s(F
⋂

H)(ω)= (F
⋂

H)(sω).

Proof. The assertion (1) is straightforward. For (2) it is easy to show that s((F
⋂

H)(ω)) ⊆
(F

⋂
H)(sω). Conversely, for each x ∈ (F∩H)(sω)= F(sω)∩H(sω) we have, x ∈ sF(ω) and x ∈ sH(ω)

because of F-softness and H-softness of (S |Ω). Thus there exist t ∈ F(ω) and v ∈ H(ω) such
that x = st, x = sv; which gives that t = v by the assumption. Then t ∈ F(ω)

⋂
H(ω) and so

x ∈ s(F
⋂

H)(ω).
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Lemma 4.3. Let Ω1,Ω2 ∈ S−Act and (S |Ω1), (S |Ω2) be F-soft actions. Then

(1) (S |Ω1∪̇Ω2) and (S |Ω1∩Ω2) are F -soft actions, where Ω1∪̇Ω2 denote the disjoint union of
Ω1,Ω2.

(2) (S |Ω1 ×Ω2) which is defined by s(ω1,ω2) := (sω1, sω2) for all s ∈ S, (ω1,ω2) ∈Ω1 ×Ω2 is a
T-soft action where T :Ω1 ×Ω2 → P(Ω1 ×Ω2) is given by:

T(ω1,ω2)= F(ω1)×F(ω2).

Let Ω1,Ω2 ∈ S−Act. Assume that FA and HB are two soft sets on Ω1 and Ω2, respectively.
By a soft map from FA to HB we mean a pair of functions θ = ( f , g) where f :Ω1 →Ω2 and
g : A → B such that f F(a)= H g(a), for all a ∈ A, i.e., we have the commutative diagram

P(Ω1)
f−−−−→ P(Ω2)

F
x xH

A
g−−−−→ B

When A =Ω1, B =Ω2 and f = g, we simply use the notation f instead of ( f , f ). In this case,
f is said to be a soft homomorphism if it is an S−Act homomorphism, i.e., f (sω) = s f (ω). If
f is a surjective (injective) soft homomorphism then we say that f is a soft epimorphism
(monomorphism). A soft isomorphism is a soft epimorphism as well as a soft monomorphism.

Proposition 4.4. Let Ω1 ∈ S1 −Act, Ω2 ∈ S2 −Act, ε : S1 → S2 a monoid epimorphism, and
F1,F2 be two soft sets on Ω1 and Ω2, respectively. Moreover, assume that the action (S | Ω1)
is an F1-soft action and f :Ω1 →Ω2 is a soft epimorphism such that f (sω) = ε(s) f (ω) for all
s ∈ S1,ω ∈Ω1. Then the action (S |Ω2) is an F2-soft action.

Proof. Consider the diagram

P(Ω1)
f−−−−→ P(Ω2)

F1

x xF2

Ω1
f−−−−→ Ω2

We prove that for each s2 ∈ S2 and ω2 ∈Ω2, s2(F2(ω2))= (F2(s2ω2)). Since ε, f are epimorphisms,
there exist s1 ∈ S1 and ω1 ∈Ω1 such that ε(s1)= s2, f (ω1)=ω2. Hence,

F2(s2ω2)= F2(ε(s1)( f (ω1)))
= F2( f (s1ω1))
= f (F1(s1ω1)
= f (s1(F1(ω1)))
= ε(s1)( f (F1(ω1)))
= ε(s1)(F2 f (ω1))
= s2(F2(ω2))

and the proof is complete.
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Proposition 4.5. For an action (S |Ω), SF(Ω) ≤G. Where SFΩ, theF-softener of Ω is defined
to be

SF(Ω)= {s ∈ S | F(sω)= sF(ω), ∀ ω ∈Ω}.

Proof. First, for every g1, g2 ∈ SF(Ω) we get

F(g2 g−1
1 ω)= F(g2(g−1

1 ω)) (G |Ω)

= g2F(g−1
1 ω) g2 ∈ SF(Ω)

= g2(g−1
1 F(ω)) g−1

1 ∈ SF(Ω)

= g2 g−1
1 F(ω) (G | P(Ω)).

It implies that g2 g−1
1 ∈ SF(Ω) and then the assertion holds.

Obviously, for an action (S | Ω), SF(Ω) is a submonoid of S and so SF(Ω) acts on Ω in a
natural way.

Let Ω ∈ S−Act. An equivalence relation ρ on Ω is called an S-congruence or simply a
congruence on Ω, if ω1ρ ω2 implies sω1ρ sω2 for all ω1,ω2 ∈Ω, s ∈ S. Moreover, for a soft set
F :Ω→ P(Ω), the kernel of F is denoted by kerF and is defined by

kerF = {(ω1,ω2) ∈Ω | F(ω1)= F(ω2)}.

For each ω ∈Ω, the equivalent class of ω by kerF denoted by [ω]kerF is

[ω]kerF = {ω′ ∈Ω |ω′(kerF)ω}= {ω′ ∈Ω | F(ω)= F(ω′)}.

Lemma 4.6. (i) Let (G |Ω) be an F-soft action. For the congruence kerF on Ω, g[ω]kerF =
[gω]kerF , for all g ∈G, ω ∈Ω.

(ii) Let (G |Ω) be an F-soft action. Then, the hereditary action (G |Ω/
kerF) is an F∗-soft

action, where

G×Ω/
kerF →Ω

/
kerF

(g, [ω]kerF )→ g[ω]kerF := [gω]kerF

and

F∗ :Ω
/

kerF → P(Ω
/

kerF)

F∗([ω]kerF ) := {[ω′]kerF |ω′ ∈ F(ω)}.

Proof. (i) First, for all g ∈G and ω ∈Ω we have

x ∈ g[ω]kerF ⇒∃ y ∈ [ω]kerF , x = gy
⇒ y kerF ω, gy kerF gω
⇒ x kerF gω
⇒ x ∈ [gω]kerF .

Conversely,

x ∈ [gω]kerF ⇒ x kerF gω
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⇒ g−1x kerF ω

⇒ g−1x ∈ [ω]kerF

⇒ x = g(g−1x) ∈ g[ω]kerF .

(ii) We have

F∗(g[ω]kerF )= F∗([gω]kerF )
= {[ω′]kerF |ω′ ∈ F(gω)}
= {[ω′]kerF |ω′ ∈ gF(ω)}
= {[ω′]kerF | g−1ω′ ∈ F(ω)}
= {[gt]kerF | t ∈ F(ω)}
= g{[t]kerF | t ∈ F(ω)}
= gF∗([ω]kerF )

for all g ∈G and ω ∈Ω.

The proof is complete.

Remark 4.7. For a soft set F1 : Ω → P(Ω), consider the soft set F2 : Ω → P(Ω) defined by
F2(ω)= [ω]kerF1 , then

Ω
F1
⇒
F2

P(Ω)

is an equalizer situation in S−Act. One can easily check that the equalizer of F1 and F2,
represented as Eq(F1,F2), is the pair (E, inc) where E = {ω ∈ Ω | F1(ω) = [ω]kerF1} ⊆ Ω is
nonempty.

Let us use the notation S(G |Ω) for the set of those soft sets such as F :Ω→ P(Ω) for which
the action (G |Ω) is an F-soft action and Con(G |Ω) for the set of all congruence relations on
Ω. Obviously, for each group action (G |Ω), the identity soft set belongs to S(G |Ω) and the
identity relation on Ω (which is denoted by ∆Ω) belongs to Con(G |Ω). Consequently, S(G |Ω)
and Con(G |Ω) are both nonempty.

Proposition 4.8. Let G acts on a nonempty set Ω. Then Con(G |Ω) is equipotent to the subset
H of S(G |Ω) consisting those soft sets F ∈ S(G |Ω) satisfying the condition F(ω)×F(ω)⊆ kerF,
and ω ∈ F(ω) for all ω ∈Ω.

Proof. Let F ∈ S(G | Ω). First we show that F ∈ H if and only if F satisfies the condition
“(ω,ω′) ∈ kerF if and only if ω′ ∈ F(ω)”, for all ω,ω′ ∈Ω.

Let F ∈ H and ω,ω′ ∈ Ω. If (ω,ω′) ∈ kerF , then F(ω) = F(ω′). Also, ω′ ∈ F(ω′) by the
assumption. Thus, ω′ ∈ F(ω). Conversely, let ω′ ∈ F(ω). Since ω ∈ F(ω) we get (ω,ω′) ∈ F(ω)×F(ω).
Consequently, (ω,ω′) ∈ kerF by hypothesis.

For the converse, suppose for ω,ω′ ∈ Ω, (ω,ω′) ∈ kerF if and only if ω′ ∈ F(ω). We show
that F ∈ H. Let ω ∈Ω. First, F(ω)= F(ω) implies that (ω,ω) ∈ kerF . So, ω ∈ F(ω). Moreover, if
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(ω1,ω2) ∈ F(ω)×F(ω), then ω1 ∈ F(ω) and ω2 ∈ F(ω). Using the assumption, (ω,ω1), (ω,ω2) ∈ kerF
and hence (ω1,ω2) ∈ kerF . Thus, F(ω)×F(ω)⊆ kerF and then F ∈ H.

Now, define the mapping α : H →Con(G |Ω) by α(F)= kerF for each F ∈ H. Let F1,F2 ∈ H
and α(F1) = α(F2). Then kerF1 = kerF2. We claim that F1 = F2. Take any ω ∈ Ω. It must
be shown that F1(ω) = F2(ω). For every ω′ ∈ F1(ω), we have (ω,ω′) ∈ kerF1 = kerF2 and so
(ω,ω′) ∈ kerF2. This gives that ω′ ∈ F2(ω) whence F1(ω)⊆ F2(ω). By the same way, F2(ω)⊆ F1(ω).
Hence, F1 = F2 which means that α is one to one. Finally, we prove that α is onto. For this, take
any ρ ∈Con(G |Ω). Consider the (natural) soft set Πρ :Ω→Ω

/
ρ ⊆ P(Ω) defined by Πρ(ω)= [ω]ρ

for all ω ∈ Ω. Using Lemma ??, for each g ∈ G and ω ∈ Ω,Πρ(gω) = [gω]ρ = g[ω]ρ = gΠρ(ω).
Therefore, (G | Ω) is a Πρ-soft action. On the other hand, for each ω ∈ Ω,Πρ(ω)×Πρ(ω) =
[ω]ρ× [ω]ρ ⊆ ρ = kerΠρ and ω ∈ [ω]ρ =Πρ(ω). Hence, Πρ ∈ H and α(Πρ)= kerΠρ = ρ, as desired.
Consequently, α is a bijection and then Con(G |Ω) is equivalent to H.

Using Theorem 4.8, the following is immediate:

Corollary 4.9. Let (G |Ω). Then |Con(G |Ω)| ≤ |S(G |Ω)|.

5. Conclusion

Certain concrete examples justifying the contents of sections 3 and 4.

Example 5.1. Consider X = D6 = 〈x1, x2 | x3
1 = 1, x2

2 = 1, (x1x2)2 = 1〉 the dihedral group and let
A = {x1, x2}. Then, (F, A)= {(〈x1〉, x1), (〈x2〉, x2)} is a soft cyclic group.

Example 5.2. In Example 5.3, if (H,B)= {({a},2), ({a2},3)} then 〈(H,B)〉 = 15.

Example 5.3. Let A = {1,2,3}, G = 〈a | a4 = 1〉 = {1,a,a2,a3}. Also, assume that H1 = 〈1〉,
H2 = 〈a〉 = G, H3 = 〈a2〉. Moreover, let (F, A) = {(〈1〉,1), (〈a〉,2), (〈a2〉,3)}. By the Theorem 3.2
notations, m1 = 1, m2 = 3, m3 = 2; thus (F, A) has

(1+3+2)+ ((1×2)+ (1×3)+ (2×3))+ (1×2×3)= 23

soft subgroups which are listed below:

1= {(〈1〉,1)} ,

2= {(〈1〉,2)} ,

3= {(〈a〉,2)} ,

4= {〈a2〉,2} ,

5= {(〈1〉,3)} ,

6= {(〈a2〉,3)} ,

7= {(〈1〉,1), (〈1〉,2)} ,

8= {(〈1〉,1), (〈a〉,2)} ,

9= {(〈1〉,1), (〈a2〉,2)} ,
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10= {(〈1〉,1), (〈1〉,3)} ,

11= {(〈1〉,1), (〈a2〉,3)} ,

12= {(〈1〉,2), (〈1〉,3)} ,

13= {(〈1〉,2), (〈a2〉,3)} ,

14= {(〈a〉,2), (〈1〉,3)} ,

15= {(〈a〉,2), (〈a2〉,3)} ,

16= {(〈a2〉,2), (〈1〉,3)} ,

17= {(〈a2〉,2), (〈a2〉,3)} ,

18= {(〈1〉,1), (〈1〉,2), (〈1〉,3)} ,

19= {(〈1〉,1), (〈1〉,2), (〈a2〉,3)} ,

20= {(〈1〉,1), (〈a〉,2), (〈1〉,3)} ,

21= {(〈1〉,1), (〈a〉,2), (〈a2〉,3)} ,

22= {(〈1〉,1), (〈a2〉,2), (〈1〉,3)} ,

23= {(〈1〉,1), (〈a2〉,2), (〈a2〉,3)} .

Example 5.4. Let G,K are two cyclic groups of the same order 6 generated by a,b,
respectively. Assume that f : G → K defined by f (a) = b and A = {1,2,3}. Let (F, A) =
{(〈1G〉,1), (〈a2〉,2), (〈a3〉,3)}, (H, A) = {(〈1K 〉,1), (〈b2〉,2), (〈b3〉,3)}, then θ = ( f ,1A) is a soft
isomorphism, thus (F, A)∼ (H, A).
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