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Speech Around the Twin Primes Conjecture, the Mersenne
Primes Conjecture, and the Sophie Germain Primes Conjecture

Ikorong Anouk Gilbert Nemron

Abstract. Here, we state a simple Assertion (A), we introduce an original method
of induction, and we use it to give a simple and detailed proof that (A) is stronger
than the twin primes conjecture, the Mersenne primes conjecture and the Sophie
Germain primes conjecture; this helps us to explain why it is not surprising to
conjecture that the Mersenne primes conjecture and the Sophie Germain primes
conjecture are all special cases of the twin primes conjecture.

Prologue

Briefly, our original method of induction is based around the following simple
definitions. Let n be an integer ≥ 2, we say that y(n) is a cache of n, if y(n) is an
integer of the form 0 ≤ y(n) < n (Example. If n = 6, then y(n) is a cache of n
if and only if y(n) ∈ {0, 1, 2, 3, 4, 5}). Now, for every couple of integers (n, y(n))
such that n ≥ 2 and 0 ≤ y(n) < n (observe that y(n) is a cache of n), we define
y(n, 2) as follows: y(n, 2) = 1 if y(n) ≡ 1 mod [2]; and y(n, 2) = 0 if y(n) ≡ 0
mod [2]. It is immediate that y(n, 2) is well defined, since n ≥ 2. In this paper,
induction will be made on n and y(n, 2) (where n is an integer ≥ 2 and y(n) is a
cache of n).

1. Introduction

The primes numbers are well-known (see [9] or [10] or [11]); in particular, it
is known:

Theorem 1.0 (see [9]). Let n be an integer ≥ 1. Then there exists a prime between
n and 2n.

The twin primes are also well-known. We recall that an integer t is a twin
prime (see [1] or [2], [4] or [5] or [6] or [8] or [13]), if t is a prime number
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≥ 3 and if t − 2 or t + 2 is also a prime number ≥ 3. Example. 1000000000061
and 1000000000063 are twin primes (see [8]). It is conjectured that there are
infinitely many twin primes. A Mersenne prime (see [8] or [9] or [13]) is a prime
of the form Mm = 2m − 1, where m is prime (the Mersenne primes are known
for large values and it is conjectured that there are infinitely many Mersenne
primes); we recall (see [3] or [12]) that a prime q′ is called a Sophie Germain
prime, if both q′ and 2q′ + 1 are prime; the first few Sophie Germain primes are
2, 3, 5, 11, 23, 29, 41, . . ., and the Sophie Germain primes conjecture says that there
are infinitely many couples of the form (q′, 2q′+1), where q′ and 2q′+1 are prime.
Now, for every integer n≥ 2, we define P (n), pn, T (n), tn,M (n), mn, mn,1, mn,2,
H (n), hn, hn,1 and hn,2 as follows: P (n) = {p; p is prime and 1 < p < 2n},
pn = max

p∈P (n)
p, T (n) = {t; t is a twin prime and 1 < t < 2n}, tn = max

t∈T (n)
t (note

that 3 ∈ T (n)), tn = max
t∈T (n)

t, H (n) = {h; 1 < h < 2n, and h is a Sophie Germain

prime} (note 3 ∈ H (n)), hn = max
h∈H (n)

h, hn,1 = hhn
n , hn,2 = h

hn,1

n,1 , M (n) = {m;

1 < m < 2n, and m is a Mersenne prime} (note 3 ∈ M (n)), mn = max
m∈M (n)

m,

mn,1 = mmn
n and mn,2 = m

mn,1

n,1 . Using the previous denotations, let us define:

Definition 1.0 (Fundamental 1). For every integer n≥ 2, we put

X (n, 2) = {hn,2}
⋃
{mn,2} .

From Definition 1.0 and the definition of tn, then the following two allegations
are immediate.

Allegation 1.1. Let n be an integer ≥ 3; consider xn,2 ∈ X (n, 2), and look at
the couple (xn, xn,1) (Example 0. If xn,2 = hn,2, then xn = hn and xn,1 = hn,1.
Example 2. If xn,2 = mn,2, then xn = mn and xn,1 = mn,1). Then 0 < xn < xn,1 <

xn,2, and xn−1,2 ≤ xn,2.

Allegation 1.2. Let n be an integer ≥ 3; consider tn, and look at tn−1 (tn−1 is
meaningful since n− 1≥ 2). If 2n− 1 is not a twin prime, then tn = tn−1.

Now, using the previous notations and definitions, let (A) be the following
assertion:

(A). For every integer r ≥ 3, one and only one of the following two properties
w(A.r) and o(A.r) is satisfied.

w(A.r): There exists not a twin prime ≥ pr .
o(A.r): For every x r,2 ∈ X (r, 2), we have x r,2 > t r .

Let us remark (see page 38 for detail) that if for every integer r ≥ 3, property
o(A.r) of assertion (A) is satisfied, then the Sophie Germain primes conjecture and
the Mersenne primes conjecture are simultaneously special cases of the twin primes
conjecture. It is easy to see that property o(A.r) of assertion (A) is satisfied for
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large values of r . In this paper, using only the immediate part of the original
method of induction, we prove a Theorem which immediately implies the following
result (Q):

(Q). Suppose that assertion (A) holds. Then the Sophie Germain primes conjecture,
the Mersenne primes conjecture and the twin primes conjecture simultaneously hold.

Result (Q) helps us to explain why to conjecture that the Sophie Germain primes
conjecture and the Mersenne primes conjecture are simultaneously special cases of
the twin primes conjecture is not surprising.

2. Proof of a Theorem which Implies the Result (Q)

The following theorem immediately implies our result (Q) mentioned above.

Theorem 2.1. Let (n, y(n)) be a couple of integers such that n ≥ 3 and y(n) is a
cache of n. Now suppose that assertion (A) holds. Then at least one of the following
two properties (i) and (ii) is satisfied by the couple (n, y(n)).

(i) If y(n)≡ 0 mod[2], then, there exists a twin prime ≥ pn − y(n).
(ii) If y(n) 6≡ 0 mod[2], then, for every xn,2 ∈ X (n, 2), we have

xn,2 > 1+ tn − y(n).

To prove Theorem 2.1, we use:

Lemma 1. Suppose that n= 3. Then Theorem 2.1 is contented.

Proof. Clearly y(n) ∈ {0, 1, 2}, and it suffices to show that Theorem 2.1 is satisfied
for all y(n) ∈ {0, 1, 2}. So, we have to distinguish two cases (namely case where
y(n) ∈ {0, 2}, and case where y(n) = 1).

Case 0. y(n) ∈ {0,2}. Clearly y(n) ≡ 0 mod[2] and we have to show that
property (i) of Theorem 2.1 is satisfied by the couple (n, y(n)). Recall
n= 3, so P (n) = {2, 3, 5}, pn = 5= tn, and clearly 5 is a twin prime ≥ pn;
in particular 5 is a twin prime ≥ pn− y(n). So property (i) of Theorem 2.1
is satisfied by the couple (n, y(n)), and Theorem 2.1 is contented. Case 0
follows.

Case 1. y(n) = 1. Clearly y(n) ≡ 1 mod[2]; so y(n) 6≡ 0 mod[2], and therefore,
we have to show that property (ii) of Theorem 2.1 is satisfied by the
couple (n, y(n)). Since n = 3, then T (n) = {3, 5}, tn = 5, M (n) = {3},
mn = 3, mn,1 = 33 = 27, mn,2 = 2727, H (n) = {2, 3, 5}, hn = 5,
hn,1 = 55 = 3125 and hn,2 = 31253125; clearly X (n, 2) = {mn,2, hn,2}, and
via the previous equalities, it becomes immediate to see that, for every
xn,2 ∈ X (n, 2), we have xn,2 > tn; in particular, for every xn,2 ∈ X (n, 2),
we have xn,2 > 1+ tn − y(n). So property (ii) of Theorem 2.1 is satisfied
by the couple (n, y(n)), and Theorem 2.1 is contented. Case 1 follows, and
Lemma 1 immediately follows. ¤
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From the meaning of Theorem 2.1, let us define:

Definition 2.2. We say that (n, y(n)) is a remarkable couple of Theorem 2.1, if
the couple (n, y(n)) is a counter-example of Theorem 2.1 with n minimum and
y(n, 2) minimum.

Using Lemma 1 via the meaning of Theorem 2.1, it becomes easy to see:

Remark 0. If Theorem 2.1 is false, then there exists (n, y(n)) such that (n, y(n))
is a remarkable couple of Theorem 2.1.

Consequence 0 (Application of Remark 0 and Lemma 1). Suppose that
Theorem 2.1 is false, and let (n, y(n)) be a remarkable couple of Theorem 2.1. Then
n≥ 4, pn and pn−1 are odd primes, and pn−1 ≤ pn ≤ 2n− 1.

Proof. n ≥ 4 (use Lemma 1), so pn and pn−1 are odd primes, and clearly
pn−1 ≤ pn ≤ 2n − 1 (use the definition of pn and observe that n ≥ 4, by the
previous). ¤

Remark 1. Suppose that Theorem 2.1 is false, and let (n, y(n)) be a remarkable
couple of Theorem 2.1. We have the following two simple properties (R.1.0)
and (R.1.1).

(R.1.0) (The using of the minimality of n). Put d = n − 1 and let y(d) = j,
where j ∈ {0, 1} (note that d < n, d ≥ 3 (use Consequence 0), y(d) is
a cache of d, and the couple (d, y(d)) clearly exists). Now look at the
couple (d, y(d)); then, by the minimality of n, the couple (d, y(d)) is not
a counter-example of Theorem 2.1. Clearly y(d) ≡ j mod[2] (because
y(d) = j, where j ∈ {0, 1}), and therefore property (j) of Theorem 2.1 is
satisfied by the couple (d, y(d)) ((Example 1.0. If j = 0 (i.e. if y(d) = j =
0), then property (i) of Theorem 2.1 is satisfied by the couple (d, y(d)); so
there exists a twin prime ≥ pd . Example 1.1. If j = 1 (i.e. if y(d) = j = 1),
then property (ii) of Theorem 2.1 is satisfied by the couple (d, y(d)); so,
for every xd,2 ∈ X (d, 2), we have xd,2 > td)).

(R.1.1) (The using of the minimality of y(n, 2): the immediate part of the
original method of induction). If y(n) ≡ 1 mod[2], clearly y(n, 2) = 1.
Now let the couple (n, y ′(n)) such that y ′(n) = 0. Clearly y ′(n) is a
cache of n such that y ′(n, 2) = 0 (note that n ≥ 4 (use Consequence 0)).
Clearly y ′(n, 2) < y(n, 2), where y(n) and y ′(n) are two caches of
n (since y(n, 2) = 1 and y ′(n, 2) = 0, by the previous); then, by the
minimality of y(n, 2), the couple (n, y ′(n)) is not a remarkable couple of
Theorem 2.1; in particular, the couple (n, y ′(n)) is not a counter-example
of Theorem 2.1. Note that y ′(n) ≡ 0 mod[2] (since y ′(n) = 0, by the
definition of y ′(n)), and therefore, property (i) of Theorem 2.1 is satisfied
by the couple (n, y ′(n)); so there exists a twin prime ≥ pn − y ′(n) , and
clearly there exists a twin prime ≥ pn (because y ′(n) = 0).
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Consequence 1 (Application of Remark 1). Suppose that Theorem 2.1 is false, and
let (n, y(n)) be a remarkable couple of Theorem 2.1. Then we have the following four
properties.

(c.1.0) There exists a twin prime ≥ pn−1.
(c.1.1) For every xn−1,2 ∈ X (n− 1, 2), we have xn−1,2 > tn−1.
(c.1.2) For every xn,2 ∈ X (n, 2), we have xn,2 > tn−1.
(c.1.3) If y(n)≡ 1 mod[2], then for every xn,2 ∈ X (n, 2), we have xn,2 > tn.

Proof. Property (c.1.0) is easy (indeed consider the couple (d, y(d)) such that
d = n− 1 and y(d) = 0, and apply Example 1.0 of property (R.1.0) of Remark 1);
property (c.1.1) is also easy (indeed, consider the couple (d, y(d)) such that d =
n− 1 and y(d) = 1, and apply Example 1.1 of property (R.1.0) of Remark 1), and
property (c.1.2) immediately follows by using property (c.1.1) and by observing
(via Allegation 1.1) that xn−1,2 ≤ xn,2. Now to prove Consequence 1 it suffices to
show property (c.1.3). Fact. For every xn,2 ∈ X (n, 2), we have xn,2 > tn. Indeed,
observing that there exists a twin prime ≥ pn (use property (R.1.1) of Remark 1),
clearly property w(A.n) of assertion (A) is not satisfied, and recalling that assertion
(A) holds, then we immediately deduce that property o(A.n) of assertion (A) is
satisfied; therefore, for every xn,2 ∈ X (n, 2), we have xn,2 > tn. ¤

Proof of Theorem 2.1. We reason by reduction to absurd. Suppose that
Theorem 2.1 is false and let (n, y(n)) be a remarkable couple of Theorem 2.1 (such
a remarkable couple exists, by using Remark 0). Then we observe the following.

Observation 1. y(n) 6≡ 1 mod[2].

Otherwise,

y(n)≡ 1 mod[2],(2.1)

so

y(n) 6≡ 0 mod[2],(2.2)

and clearly there exists xn,2 ∈ X (n, 2) such that xn,2 ≤ tn ((indeed note y(n) 6≡
0 mod[2] (by congruence (2.2)), and in particular, property (ii) of Theorem 2.1 is
not satisfied by the couple (n, y(n)); therefore there exists xn,2 ∈ X (n, 2) such that
xn,2 ≤ 1+ tn − y(n); in particular there exists xn,2 ∈ X (n, 2) such that xn,2 ≤ tn

(because y(n) ≥ 1, since y(n) ≡ 1 mod[2] (by congruence (2.1)) and y(n) is
a cache of n))). This contradicts property (c.1.3) of Consequence 1 (by using
congruence (2.1) and property (c.1.3) of Consequence 1). Observation 1 follows.

Observation 1 implies that

y(n)≡ 0 mod[2],(2.3)

and clearly

there exists not a twin prime≥ pn − y(n)(2.4)
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((indeed note y(n)≡ 0 mod[2] (by congruence (2.3)), and in particular, property
(i) of Theorem 2.1 is not satisfied by the couple (n, y(n)); so there exists not a twin
prime ≥ pn − y(n))); (2.4) immediately implies that

there exists not a twin prime≥ pn(2.5)

(indeed note that y(n) ≥ 0, since y(n) ≡ 0 mod[2] (by Congruence (2.3)) and
y(n) is a cache of n); consequently,

there exists xn,2 ∈ X (n, 2) such that xn,2 ≤ tn(2.6)

(indeed, observing that there exists not a twin prime ≥ pn (use (2.5)), clearly
property w(A.n) of assertion (A) is satisfied, and recalling that assertion (A)
holds, then we immediately deduce that property o(A.n) of assertion (A) is not
satisfied; therefore there exists xn,2 ∈ X (n, 2) such that xn,2 ≤ tn). Now we have
the following simple fact.

Fact. 2n− 1 is not a twin prime. Otherwise, clearly pn = tn = 2n − 1 (note (via
consequence 0) that n ≥ 4), and so tn is a twin prime ≥ pn (where tn = 2n− 1);
in particular there exists a twin prime ≥ pn, and this contradicts (2.5). The Fact
follows.

This simple Fact made, observing (by the previous Fact) that 2n − 1 is not a
twin prime and remarking (via Consequence 0) that n ≥ 4, then Allegation 1.2
immediately implies that

tn = tn−1 .(2.7)

Now, using equality (2.7) and using (2.6), then we immediately deduce that there
exists xn,2 ∈ X (n, 2) such that xn,2 ≤ tn−1; this contradicts property (c.1.2) of
Consequence 1. Theorem 2.1 follows. ¤

Remark 2. Note that to prove Theorem 2.1, we consider a couple (n, y(n)) such
that (n, y(n)) is a counter-example with n minimum and y(n, 2) minimum (i.e.
(n, y(n)) is a remarkable couple of Theorem 2.1). In properties (c.1.0), (c.1.1),
and (c.1.2) of Consequence 1 (via property (R.1.0) of Remark 1), the minimality
of n is used; and in property (c.1.3) of Consequence 1 (via property (R.1.1) of
Remark 1), the minimality of y(n, 2) is used. Consequence 1 helps us to give a
simple and detailed proof of Theorem 2.1.

Corollary 2.3. Suppose that Assertion (A) holds. Then we have the following five
properties.

(2.3.0) For every integer n≥ 3, there exists a twin prime ≥ pn.
(2.3.1) The twin primes conjecture holds.
(2.3.2) For every integer n≥ 3 and for every xn,2 ∈ X (n, 2), we have xn,2 > tn.
(2.3.3) lim

n→+∞
mn,2 = lim

n→+∞
hn,2 =+∞.

(2.3.4) The Mersenne primes conjecture and the Sophie Germain primes conjecture
simultaneously hold.
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Proof. (2.3.0). Indeed, consider the couple (n, y(n)) with y(n) = 0. The couple
(n, y(n)) is of the form 0 ≤ y(n) < n, where n ≥ 3, y(n) ≡ 0 mod[2], and y(n) is
a cache of n. Then property (i) of Theorem 2.1 is satisfied by the couple (n, y(n)).
So there exists a twin prime ≥ pn (since y(n) = 0).

(2.3.1). Observing (via Theorem 1.0) that there exists always a prime between n
and 2n (for every integer n ≥ 1), clearly pn ≥ n (use the definition of pn and the
fact that there exists always a prime between n and 2n (for every integer n ≥ 1)),
and using property (2.3.0), then we immediately deduce that for every integer
n ≥ 3, there exists a twin prime ≥ pn ≥ n. Consequently, for every integer n ≥ 3,
there exists a twin prime ≥ n, and the previous is clearly stronger than the twin
primes conjecture.

(2.3.2). Let the couple (n, y(n)) be such that y(n) = 1. The couple (n, y(n)) is of
the form 0 ≤ y(n) < n, where n ≥ 3, y(n) ≡ 1 mod[2], y(n) 6≡ 0 mod[2], and
y(n) is a cache of n. Then property (ii) of Theorem 2.1 is satisfied by the couple
(n, y(n)). So for every xn,2 ∈ X (n, 2), we have xn,2 > tn (since y(n) = 1).

(2.3.3). Observing (via property (2.3.1)) that the twin primes conjecture holds,
clearly

lim
n→+∞

tn =+∞ .(2.8)

Now using equality (2.8) and property (2.3.2) (via the definition of X (n, 2)),
then we immediately deduce that lim

n→+∞
mn,2 = lim

n→+∞
hn,2 =+∞.

(2.3.4) It is an immediate consequence of property (2.3.3) (via the definition of
mn,2 and hn,2). ¤

Using property (2.3.1) and property (2.3.4) of Corollary 2.3, then the following
result (Q) becomes immediate.

Result (Q). Suppose that Assertion (A) holds. Then, the twin primes conjecture, the
Mersenne primes conjecture and the Sophie Germain primes simultaneously hold.

Conjecture 1. Assertion (A) holds.

Epilogue. To conjecture that the Mersenne primes conjecture and the Sophie
Germain primes conjecture are simultaneously consequences of the twin primes
conjecture is not surprising. Indeed, let (A′) be the following assertion:

(A′) For every integer r ≥ 3, at most one of the following two properties
w(A′.r) and o(A′.r) holds.

w(A′.r) There exists not a twin prime ≥ pr .
o(A′.r) For every x r,2 ∈ X (r, 2), we have x r,2 > t r .

Note that assertion (A′), somehow, resembles to assertion (A). More precisely,
assertion (A) implies assertion (A′) (Proof. In particular, the twin primes conjecture
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holds (use property (2.3.1) of Corollary 2.3); consequently, assertion (A′) holds
(use the definition of assertion (A′) and the previous)).

Consequence 2. Assertion (A) and assertion (A′) are equivalent.

Conjecture 1 implies that the Mersenne primes conjecture and the Sophie
Germain primes conjecture are consequences of the twin primes conjecture.

Proof. Suppose that Conjecture 1 holds. If the twin primes conjecture holds,
clearly assertion (A′) holds; observing that assertion (A′) and assertion (A) are
equivalent, then (A) holds, and result (Q) implies that the Mersenne primes
conjecture and the Sophie Germain primes conjecture simultaneously hold. ¤

Conjecture 2. Suppose that assertion (A′) holds. Then the twin primes conjecture,
the Mersenne primes conjecture and the Sophie Germain primes conjecture
simultaneously hold.

Conjecture 2 immediately implies that the Mersenne primes conjecture and the
Sophie Germain primes conjecture are consequences of the twin primes conjecture.

Proof. Suppose that Conjecture 2 holds. If the twin primes conjecture holds,
clearly assertion (A′) holds, and in particular the Mersenne primes conjecture and
the Sophie Germain primes conjecture simultaneously hold. ¤

Conjecture 3. For every integer r ≥ 3, property o(A.r) of assertion (A) holds (note
that property o(A.r) of assertion (A) is exactly property o(A′.r) of assertion (A′);
moreover, it is easy to see that property o(A′.r) of assertion (A′) is satisfied for very
large values of r ).

Conjecture 3 also implies that the Mersenne primes conjecture and the Sophie
Germain primes conjecture are consequences of the twin primes conjecture.

Proof. Suppose that Conjecture 3 holds. If the twin primes conjecture holds,
clearly, lim

n→+∞
tn = +∞; so lim

n→+∞
mn,2 = lim

n→+∞
hn,2 = +∞ (via the definition of

X (n, 2)), and it results that the Mersenne primes and the Sophie Germain primes
are all infinite. ¤

Now, using the previous three conjectures, it becomes natural and not surprising
to conjecture the following:

Conjecture 4. The Mersenne primes conjecture and the Sophie Germain primes
conjecture are consequences of the twin primes conjecture.

Conjecture 5. Let (n, r(n)) be a couple of integers such that n≥ 3 and 0≤ r(n)< n.
We have the following.

(i) If r(n)≡ 0 mod[3], then mn,2 > tn − r(n).
(ii) If r(n)≡ 1 mod[3], then hn,2 > 1+ tn − r(n).
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(iii) If r(n)≡ 2 mod[3], then there exists a twin prime ≥ 2+ pn − r(n).

It is easy to see that Conjecture 5 simultaneously implies the twin primes
conjecture, the Mersenne primes conjecture and the Sophie Germain primes
conjecture, and to attack this conjecture, we must consider the original method
of induction.
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