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General Proximal Point Algorithmic Models and Nonlinear
Variational Inclusions Involving RMM Mappings

Ram U. Verma

Abstract. The proximal point algorithms based on relative A-maximal
monotonicity (RMM) is introduced, and then it is applied to the approximation
solvability of a general class of nonlinear inclusion problems using the generalized
resolvent operator technique. This algorithm seems to be more application-
oriented to solving nonlinear inclusion problems. Furthermore, the obtained
result could be applied to generalize the Douglas-Rachford splitting method to
the case of RMM mapping based on the generalized proximal point algorithm.

1. Introduction

Consider a real Hilbert space X with the norm || - || and the inner product (-, ).
Here we are concerned with a general class of nonlinear variational inclusion
problems: determine a solution to

0e M(x), (1.1)

where M : X — 2% is a set-valued mapping on X.

Recently, the Verma [24] investigated the solvability of a generalized class
of variational inclusion systems involving RMM, RMRM, PSM and cocoercive
mappings. These notions, especially RMM and RMRM generalize most of the
existing concepts of general maximal monotonicity in literature. On the other
hand, these notions do have significant applications to proximal point algorithms
and its variants, especially introduced and studied by Eckstein and Bertsekas [1],
that was based on the work of Rockafellar [10], while solving inclusion problems
of the form (1.1). Furthermore, Verma [19] applied the relative A-maximal
monotonicity (RMM), in the context of investigating the approximation solvability
of an inclusion problem of the form (1.1) relating to sensitivity analysis.
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In this communication, we develop a general framework for the generalized
proximal point algorithm in light of the notion of the relative A-maximal
monotonicity (RMM) of the set-valued map M, that encompasses most of
proximal point algorithms applied to the context of solving general inclusion
problems (1.1) in literature. Verma [17] introduced and studied the notion of A-
maximal monotonicity, while examining the approximation solvability of inclusion
problems of the form (1.1) that may have applications to problems arising from
mathematical economics, optimization and control theory, operations research,
mathematical finance, mathematical programming, and decision and management
sciences. The notion of A-maximal monotonicity generalizes the existing general
theory of maximal monotone mappings, including the H-maximal monotone
mappings [4]. For more literature, we recommend the reader [1]-[27].

2. General Relative A-Maximal Monotonicity

In this section we present some basic properties on relative A-maximal
monotonicity (RMM) and related results. Let M : X — 2X be a multivalued
mapping on X. We shall denote both the map M and its graph by M, that is, the
set {(x,y): y € M(x)}. This is equivalent to stating that a mapping is any subset
M of X x X, and M(x) ={y : (x,y) € M}. If M is single-valued, we shall still use
M (x) to represent the unique y such that (x, y) € M rather than the singleton set
{¥}. This interpretation shall much depend on the context. The domain of a map
M is defined (as its projection onto the first argument) by

DIM)={xeX:dyeX:(x,y)eM}={xeX : M(x)#0}.
The inverse M~ of M is {(y,x) : (x,y) € M}.
Definition 2.1. Let A: X — X be a single-valued mapping, and M : X — 2X be a
multivalued mapping on X. The map M is said to be:
(i) Monotone if
W —v,u—v) =0V (u,u*),(v,v*) € graph(M).
(ii) (r)-strongly monotone if there exists a positive constant r such that
W —v5u—v)>rllu—v|*V (u,u),(v,v*) € graph(M).
(iii) (r)-expanding if there exists a positive constant r such that
[u* = v = rllu—v|| ¥ (u,u),(v,v*) € graph(M).
(iv) (m)-relaxed monotone if there exists a positive constant m such that
W —v5u—v) > (=m)lju—v|*V (u,u*),(v,v*) € graph(M).
(v) (c)-cocoercive if there exists a positive constant ¢ such that
(W — v ,u—v)>cllu* —=v¥|* V¥ (u,u*),(v,v*) € graph(M).
(vi) Cocoercive if we have

(W =v,u=v) > llu" = v*|* ¥ (u,u"), (v, v*) € graph(M).
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(vii) (d)-relaxed cocoercive if there exists a positive constant d such that
(W = v u—v) > —d|lu* —v* V (u,u*), (v,v*) € graph(M).
(viii) Nonexpansive if
lu* = vl < llu=vIl ¥ (w,u"), (v,v") € graph(M).
(ix) Firmly nonexpansive if
[t —v¥)|? < (u* = v, u—v) V (u,u*),(v,v*) € graph(M).
(x) (c)-Firmly nonexpansive if there is a positive constant ¢ such that
lu* = v¥||? < c(u* — v, u—v) V¥ (u,u*),(v,v*) € graph(M).
(xi) Hypermonotone if
u* — v ,AW) —A(W)) =0V (u,u"),(v,v") € graph(M).
(xii) (r)-Strongly hypermonotone if there exists a positive constant r such that
(u* = v Aw) —AW) > rllu—v|* V (u,u®), (v,v*) € graph(M).
(xiii) (m)-relaxed hypermonotone if there exists a positive constant m such that
(u* —v*,A(u) —AW)) = (—m)|lu—v|I? V (u,u®), (v,v*) € graph(M).
(xiv) (c)-hypercocoercive if there exists a positive constant ¢ such that
(u* —v*,A(u) —AW)) > cllu* —v¥||2 V¥ (u,u*), (v, v*) € graph(M).
(xv) Hypercocoercive if we have
(u* —v*,A(u) —AW)) > |lu* = v¥|12 V (u,u*),(v,v*) € graph(M).
(xvi) (d)-relaxed hypercocoercive if there exists a positive constant d such that
(u* —v*,Au) —A(W)) > —d|lu* —v*|* V (u,u*), (v,v*) € graph(M).
(xvii) Firmly hypernonexpansive if
[t = v¥)|? < (u* = v*,A(u) —A(W)) V (u,u*), (v, v*) € graph(M).
(xviii) (c)-Firmly hypernonexpansive if there is a positive constant ¢ such that
lu* —v¥[|2 < c{u* — v, A(w) —A(V)) V¥ (u,u*), (v, v*) € graph(M).

Definition 2.2. The map M : X — 2% is said to be maximal monotone if
(i) M is monotone, that is,
W —v55u—v) >0V (u,u"),(v,v*) € graph(M),
and
(i) it follows from (u,u*) € X x X and
W —v,u—v) =0V (v,v*) € graph(M)
that (u,u*) € graph(M).
Definition 2.3. Let A: X — X be a single-valued mapping. The map M : X — 2%
is said to be maximal hypermonotone (MHM) if
(i) M is hypermonotone, that is,
u* —v*,A(u) —A(v)) =0V (u,u”), (v,v*) € graph(M),

and it follows from
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(i) (u,u*)eX x X and
u* —v*,A(u) —A(v)) =0V (v,v*) € graph(M)
that (u,u*) € graph(M).
Definition 2.4 ([19]). Let A : X — X be a single-valued mapping. The map
M : X — 2% is said to be relative A-maximal monotone (RMM) if:
(i) M is hypermonotone, that is,
(U —v*, A(u) — A(V)) = 0 ¥ (u,u"), (v, ") € graph(M).
(i) R(A+ pM) =X for p > 0.
Example 2.1. We consider an example where M is hypermonotone but not

monotone. Let X = (—o00,4+00), M(x) = —x and A(x) = —%x for all x € X.
Then it is easy to check that M is hypermonotone but not monotone.

Definition 2.5 ([19]). Let A: X — X be an (r)-strongly monotone mapping and
let M : X — 2X¥ be an RMM mapping. Then the generalized resolvent operator
R]X[,A : X — X is defined by

RY, (W)= A+ pM) " (w).
Proposition 2.1. Let A: X — X be an (r)-strongly monotone single-valued mapping

and let M : X — 2% be an RMM mapping. Then (A+ pM) is maximal hypermonotone
for p > 0.

Proof. In light of Definition 2.3, A4+ pM is hypermonotone for p > 0, since A is
(r)-strongly monotone and M is hypermonotone. All be need to show at this stage
is for (u,u*) € X x X and

(u* = v, A(u) —A(v)) =0V (v,v*) € graph(A+ p M),

we have (u,u*) € graph(A+ pM).
To achieve this, assume that there exists some (u,u;) ¢ graph(A+ pM) such
that

(up —v*,Aug) —A(v)) 20 V (v,v*) € graph(A+ pM).

Since M is RMM (and hence (A+ pM)X = X for p > 0), there exists an (uy,u}) €
graph(A+ p M) such that A(uy) + pug = A(u;) + puj, and as a result, we have

P(US - UT:A(UO) —A(uy)) = —(A(ug) — A(uy),A(ug) —A(uy)) = 0.

Now aplying the (r)-strong monotonicity of A (and hence ||A(x)—A(y) = r|lx—y|),

we infer that uy = u;, and as a result, we conclude u; = uj, a contradiction to

(ug,ug) & graph(A+ pM). O
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Example 2.2. LetA: X — X be (r)-strongly monotone. Let f : X — R be a locally
Lipschitz function such that
(W' = v, AW) —AW)) 20V (w,u"), (v,v") € graph(9f),

and R(A+ 9f) = X. Then clearly A+ 9f is strongly hypermonotone, and for
(u,u*) €X x X and

Wu* —v*,A(u) —A(v)) >0V (v,v*) € graph(A+ 2 f),
we have (u,u*) € graph(A+ 9 f). Thus, A+ 2 f is maximal hypermonotone.

Proposition 2.2 ([19]). Let X be a real Hilbert space, let A : X — X be (r)-strongly
monotone, and let M : X — 2X be RMM. Then the generalized resolvent operator
associated with M and defined by

Ri‘fﬁ(u) =A+pM) (W) Vuex,
is (%)-Lipschitz continuous.

Proposition 2.3 ([19]). Let X be a real Hilbert space, let A : X — X be (r)-strongly
monotone, and let M : X — 2% be RMM. Then the generalized resolvent operator
associated with M and defined by

RJZ{A(u) =A+pM) (W) Vuex,
satisfies
(1= v, AR, (W) — ARY, (7)) > AR, () — ARY, ().

Proposition 2.4 ([19]). Let X be a real Hilbert space, let A: X — X be (r)-strongly
monotone, and let M : X — 2X be RMM. Then the generalized resolvent operator
associated with M and defined by

R}[\:’A(u) =A+pM) (W) Vuex,
satisfies
{A(W) = AW, AR} ,(AW))) — AR} 4(A(V))))
> [IARRY ,(A(W))) — AR}, (A
When A= I in Proposition 2.4, we have the well-known result in literature.

Proposition 2.5. Let X be a real Hilbert space, and let M : X — 2X be maximal
monotone. Then the resolvent operator associated with M and defined by

R}[\f(u) =(I+pM) W) VueXx,
satisfies
{u=v,RY () = RY (V) 2 IRY () = RY (WII%,

that is, the resolvent operator RII‘;’ is firmly nonexpansive.
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3. Generalized Proximal Point Algorithm

This section deals with an introduction of a generalized version of the proximal
point algorithm and its applications to approximation solvability of the inclusion
problem (1.1) based on the relative A-maximal monotonicity (RMM).

Proposition 3.1 ([19]). Let J, =A—A0J:)”A0A If in addition,

(AW) = AW, AU, (A))) — AU (A()))
> AW, (AW)) — AU (A
then

AT, (A))) = AW (AN + 1k (w) = T )II?
< |lA(w) —AM)|I> YV u,v € X. 3.1
Theorem 3.1. Let X be a real Hilbert space, let A : X — X be (r)-strongly monotone,
and let M : X — 2% be RMM. Then the following statements are equivalent:
(1) An element u € X is a solution to (1.1).
(ii) For an u € X, we have
u= RJXIA(A(u)).

where Rgﬂ(u) =(A+pM) (w).

In the following theorem, we apply the generalized proximal point algorithm
to approximating the solution of (1.1), and as a result, we establish the weak
convergence.

Theorem 3.2. Let X be a real Hilbert space, let A: X — X be (r)-strongly monotone
and weakly continuous, and let M : X — 2% be RMM. For an arbitrarily chosen initial
point x°, suppose that the sequence {x*} is generated by the generalized proximal
point algorithm

A(xM Y = (1 — a AR + apy* ¥V k>0, (3.2)
and y* satisfies
k M k
ly* - ARY ,(AGM) < &,
where R%OA =(A+pM)7Y, and {e}, {or}, {pi} € [0, 00) are scalar sequences.

Suppose that {x*} is bounded in the sense that there exists at least one solution
to 0 € M(x). Then the sequence {x*} converges weakly to a unique solution x* of
(1.1) with 3,2 € < 00, infay > 0, sup oy < 2, a = limsupy_,, o, and inf p; > 0.

Proof. Let x* be a zero of M. We infer from Theorem 3.1 that any solution to (1.1)
: . : M M *)) — 4ok — A M

is a fixed point oprkAOA. Thus, RpkA(A(x ))=x"and for J, =A Aon,A oA, we
need to show that

Je(x*) = A(x*) = AR}, (A(x*))) — 0.
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Now we begin with the result, that follows, in light of Proposition 2.4 that
(ALY = AG), T () = T (x)) = () = T NI, (3.3)
that is, J; is firmly nonexpansive with respect to A.
Next we start the main part of the proof by expressing (for all k > 0),
A = (1= A + ARY L (AX))
= (A= aJi)(x").

For all k > 0, using (3.3), we have

A1) — AG)|1?

= JIA(X") = ari(x*) — AP
AG) = AG)I? — 20 (AGxF) = A(x), T (X)) + a2 17, () ||
AG) = AG)I? = 20 10 (xF) = T eIPT + a2 15 ()2
A" = AP = [2a, — a1k (x>

IAN I

Since a;[2 — a;] > 0, we have
AGZ**T) = AG)I| < IAG®) = AG)I. (3.4)
Since A(x*™1) = (1 — o )A(X*) + a; y*, we have
A = A() = oy (y* — AN) .
It follows that
4G 1) = Az
= (1 = @AC®) + ay* = [(1 = @ )AR) + @R (A
llaw(y* = RY (A

A €.

IA

Next, we estimate using the above arguments

JAG) = A < TIAGH) = ACOl| + G - AGH)|
< A — A + ager
< JAGR) = A + agey. (3.5
Therefore, we have
AGH) — A < JJAGS) — A + ageey. (3.6)

Combining (3.6) for k > 0, we have

k
JAGH) G < G A+ D ae,
=0
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(0.9)
< JA(x®) — AG)|| +2Zek. (3.7)
k=0
Since A is (r)-strongly monotone (and hence, ||A(u) —A(v) > r|jlu — v||), we have

1 00
e =2l < = [AG) = A +2 ) e | - (3.8)
k=0

We infer now that the sequence {x*} is bounded.
Using (3.7), we further derive the estimate leading to J;(x*) — 0.

AGKH) = AP
= IAG") —AGT) + AT - AP

< JJAEF) — AGI* + 2(AEFT) — A(x), AT — A(FT))
+ JAG*T) — A2
< JJA(X®) = ACH)I? — age[2 — o Tk ()2

+ 2az. e (JJAGxR) = A(x™)|| 4 2a,€;) + aiei.

Since {€;} is summable (and hence {€?} is summable) and .. a; < o), it
implies, for all k, that

AGKH = AGIP < IAG®) = AGH)I?

k
+ 206 (IIA(xO) —AC+2) ajej)

j=0

k k
+Zoa§e§ ~ a2~ ak]ZO WGP
J= J=

It follows that Z;’io [17;(x)II* < oo implies J;(x*) — 0 as k — oo.

Now, by the Generalized Representation Lemma, for all k, there is a unique
point (u¥,v¥) € M such that A@w*) + p,vk = A(x*). Since J,(x*) — 0 and u* =
(RJXIIOA 0 A)(x"), it implies A(x*) — A(u*) — 0. Furthermore, p, v = A(x*) — A(u"),
and hence v = p; 'J;(x*¥) — 0, where p; is bounded away from zero. As {x*} is
bounded in light of (3.8), it must have a weak cluster point, say x’. Suppose that
{xk(j)}?io be a subsequence such that x¥0) 2 x”.

Since A(x*) — A(u*) — 0 and A is (r)-strongly monotone (and hence, A is (r)-
expanding, that is, ||A(x*) — A(WX)|| > r|lx* — u¥|]), it follows that x* — u* — 0.
Given that A is weakly continuous, we have A(u*?) 5 A). Finally, consider a
point (u,v) € M. Then relative A-maximal monotonicity of M ensures that

(AW —AW"),v—vF) >0V k>o0.
Thus, we have

(A(u) —A(x"),v—0) > 0.
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Since M is relative A-maximal monotone, and (u, v) is arbitrary, we have (x’,0) €
M. As a result, x’ is a solution to (1.1). Moreover, the uniqueness of the solution
easily follows. O

(ii) For A=1 (identity), Theorem 3.2 reduces to ([1, Theorem 3]).

Theorem 3.3. Let X be a real Hilbert space, and let M : X — 2X be maximal
monotone. For an arbitrarily chosen initial point x°, suppose that the sequence {x*}
is generated by the generalized proximal point algorithm

=1 -a)x*+ay*Vk>0, (3.9)
and y* satisfies
lyk =M () < e,

where ng’( =1+ pM)7Y, and {e;}, {ay}, {px} C [0, 00) are scalar sequences.
Then the sequence {x*} converges weakly to a unique solution x* of (1.1) with
where Zio:o €, <00, infay > 0, supay <2, a =limsup,_,., o, and inf p; > 0.

4. Concluding Remark

In literature [26, 27], the Yosida regularization/approximation has been applied
in the context of solving evolution equations as well as evolution inclusions in
Hilbert and Banach space settings, where the Yosida regularization and Yosida
approximation, respectively, of the form

Mp,regular =M+ PM)_l,
and

M

p.app — p*I—-I+pM)™") forp>0,

are considered. As a matter of fact, both are mutually equivalent in nature and to
applications.

Based on our construction in Proposition 3.1, we generalized the Yosida
approxi-mation to the case of A-maximal monotonicity as

_ -1 -1
M, ap=p (A—A(A+pM)—"A) forp >0,

and applied to the solvability of a class of first-order evolution inclusions
empowered by the maximal accretivity/maximal monotonicity in a forthcoming
communication.

References

[1] J. Eckstein and D.P Bertsekas, On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators, Mathematical
Programming 55(1992), 293-318.



24

(2]

(3]

(7]
(8]
[9]
[10]

[11]

Ram U. Verma

Y.J. Cho, J.H. Kim and H.Y. Lan, On a new class of nonlinear A-monotone
multivalued variational inclusions, Journal of Mathematical Analysis and Applications
327(1)(2007), 481-493.

J. Douglas and H.H. Rachford, On the numerical solution of heat conduction problems
in two and three space variables, Transactions of the American Mathematical Society 82
(1956), 421-439.

Y.P Fang and N.J. Huang, H-monotone operators and system of variational inclusions,
Communications on Applied Nonlinear Analysis 11(1)(2004), 93-101.

R. Glowinski and P Le Tellec, Augmented Lagrangians and Operator-Splitting Methods
in Continuum Mechanics, SIAM, Philadelphia, 1989.

S.M. Robinson, Strong regularity of generalized equations, Mathematics of Operations
Research 5(1980), 43-62.

S.M. Robinson, Newton’s method for a class of nonsmooth functions, Set-Valued
Analysis 2(1994), 291-305.

S.M. Robinson, Composition duality and maximal monotonicity, Mathematical
Programming 85(1999), 1-13.

S.M. Robinson, Linear convergence of epsilon-subgradient descent method for a class
of convex functions, Mathematical Programming 86(1999), 41-50.

R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal
of Control and Optimization 14(1976a), 877-898.

R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point
algorithm in convex programming, Mathematics of Operations Research 1(1976), 97—
116.

R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 2004.

M. Solodov and B. Svaiter, A hybrid approximate extragradient-proximal point
algorithm using the enlargement of a maximal monotone operator, Set-Valued Analysis
7(1999), 323-345.

P Tossing, The perturbed proximal point algorithm and some of the applications,
Applied Mathematics and Optimization 29(1994), 129-159.

R.U. Verma, On the generalized proximal point algorithm with appliations to inclusion
problems, Journal of Industrial and Management Optimization 5(2)(2009), 381-390.
R.U. Verma, Generalized Rockafellar’s theorem on linear convergence, Nonlinear
Functional Analysis and Applications (in press).

R.U. Verma, A-monotonicity and its role in nonlinear variational inclusions, Journal of
Optimization Theory and Applications 129(3)(2006), 457-467.

R.U. Verma, Approximation solvability of a class of nonlinear set-valued inclusions
involving (A, n)-monotone mappings, Journal of Mathematical Analysis and
Applications 337(2008), 969-975.

R.U. Verma, Nonlinear variational inclusion problems for sensitivity analysis based on
RMM mappings, Mathematical Sciences Research Journal, 12(8)(2008), 192-201.
R.U. Verma, New class of nonlinear A-monotone mixed variational inclusion problems
and resolvent operator technique, Journal of Computational Analysis and Applications
8(3)(2006), 275-285.

R.U. Verma, Nonlinear A-monotone variational inclusion systems and the resolvent
operator technique, Journal of Applied Functional Analysis 1(1)(2006), 183-190.

R.U. Verma, A-monotone nonlinear relaxed cocoercive variational inclusions, Central
European Journal of Mathematics 5(2)(2007), 1-11.



Proximal Point Algorithmic 25

[23] R.U. Verma, General framework for the over-relaxed A-proximal point algorithm and
applications to inclusion problems, Applied Mathematics Letters 22(2009), 698-703.

[24] R.U. Verma, General nonlinear variational inclusion systems involving RMM, RMRM,
PSM, and cocoercive mappings, Advances in Nonlinear Variational Inequalities
12(1)(2009), 73-99.

[25] E. Zeidler, Nonlinear Functional Analysis and its Applications 1, Springer-Verlag, New
York, New York, 1986.

[26] E. Zeidler, Nonlinear Functional Analysis and its Applications 11/B, Springer-Verlag, New
York, New York, 1990.

[27] E. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New
York, New York, 1985.

Ram U. Verma, Florida Institute of Technology, Department of Mathematical Sciences,
Melbourne, Florida 32901, USA
E-mail: verma99@msn.com, webmaster@internat ionalpubls.com

Received  April 20, 2009
Accepted June 30, 2009



